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PREFACE

This book was developed as a textbook for my course Genome 562 (Population Genetics).
It is nearly in a final form.

Each chapter ends with two sets of problems. Those labeled Exercises are intended
to be relatively straightforward application of principles given in the text. They usually
involve numerical calculation or simple algebra. The set labeled Problems/Complements
are more algebraic, and often involve extension or re-examination of the material in the
text.

The level of mathematics required to read this text is not high, although the volume
of algebra is sometimes heavy. It is probably sufficient to know elementary calculus, and
parts of elementary statistics and probability. Matrix algebra is used in several places, but
these can be skipped without much loss. The most relevant mathematical technique for
population genetics is probably factorization of simple polynomial expressions, which
most people are taught in high school (and then, unfortunately, forget).

The text can be criticized for not introducing the reader to empirical population ge-
netics. That would roughly double the length of the book. Keep in mind that this an
introduction to theoretical population genetics.

These notes have been developed over the last 34 years. They were not finished
rapidly and published primarily because I got interested in phylogenies and was less
interested in theoretical population genetics. Nevertheless I needed these to teach my
theoretical population genetics course, and so they were gradually expanded. At first
they were encoded on magnetic card storage for an IBM word processor. Later we had
them transferred to magnetic tape, and hand-edited that into text for the Runoff family
of text-formatting programs. They finally became a LaTeX file with Postscript figures.

Many of the references are from the 1970s and earlier. Population genetics theory
had its major development in the 1920s-1940s (at the hands of Fisher, Wright, and Hal-
dane) and was finally rigorized in the 1960s and 1970s under the influence of people
like Richard Lewontin, James Crow, Motoo Kimura, Sam Karlin, Geoff Watterson, and
Warren Ewens. I have been bringing the references up to date, but still find that much
of the basic work in theoretical population genetics was done before 1980.

Many people have contributed to the production of these notes, particularly students
in earlier years of the course who caught many errors in earlier versions. The presenta-
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tions were heavily influenced by lecture notes and courses on this subject by J. F. Crow
and R. C. Lewontin. The cover illustration is adapted from an original by Helen Leung.
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Chapter I

RANDOM MATING POPULATIONS

Theoretical population genetics (or theoretical evolutionary genetics) is arguably the area
of biology in which mathematics has been most successfully applied. Other areas such as
theoretical ecology model phenomena which are more immediately important to human
welfare, but are nevertheless not as successfully modeled. The major reason why theory
is more readily applied to population genetics is that there is a precise framework –
Mendelian segregation – on which to hang it. The Mendelian mechanism is a highly
regular process with strong geometric and algebraic overtones. The other reason why
Mendelian segregation is particularly important to population genetics is that it occurs
whether or not natural selection is present, whether or not mutation is present, and
whether or not migration is present.

Another mechanism important to population genetics is random mating. This is an
approximate model for a messy and complex process, but it is successful for a simple
reason – many aspects of the genome do not have the type of effects that influence who
mates with who. Random mating is a good default assumption in those cases.

In this chapter we examine the consequences of Mendelian segregation and random
mating for the genetic composition of a population. That there can be consequences
that are not intuitively obvious follows from one property of Mendelian segregation –
that the composition of offspring for some matings differs from the composition of the
parents. For example, a cross of AA × aa yields, not half AA and half aa, but instead Aa.

“Normal” Mendelian segregation is diploid and sexual. To understand it we must
start with an examination of the simpler cases in which populations are asexual or hap-
loid. In doing so we hope to make the results of this chapter intuitively obvious – after
the fact.

I.1 Asexual inheritance.

TWO GENOTYPES. The first case we cover is one so simple that there is virtually noth-
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ing to report. Consider a mixed population of two strains which reproduce asexually
(as do many bacteria, dandelions, and maybe bdelloid rotifers). The offspring of this
form of uniparental inheritance have genotypes which are exact copies of their parents’
genotypes (we are deliberately ignoring the possibility of mutation). Suppose that the
population is undergoing synchronous reproduction with nonoverlapping generations.
Let the two strains be numbered 1 and 2, and suppose that the number of strain i in
some generation t is Ni, for i = 1 or 2. Now if each individual has Wt offspring in
generation t, irrespective of its genotype, and we denote the number of strain i in the
next generation as N′i , then

N′1 = WtN1,
and

N′2 = WtN2.
(I-1)

(In this book, putting a prime (an apostrophe) on a variable such as N1 will usually
indicate the value in the next generation. When it instead means the first derivative, I
will specify that.)

The number of offspring of each genotype is simply the number of parents of that
genotype, multiplied by the number of offspring each has. (For single-celled organisms
that reproduce by cell division, Wt would be 2 in each generation, unless some of the
offspring do not survive to reproduce themselves).

Note that we have assumed that the individuals of type 1 have exactly the same num-
ber of offspring as the individuals of type 2. If the populations are small this is very
unlikely to be true, since random environmental circumstances will cause some indi-
viduals to have more surviving offspring than others. If there are a very large number
of individuals, these circumstances should average out, and the average number of off-
spring per parent from each strain will be nearly equal.

Consider the fraction of all individuals that are of genotype 1. This is, in generation
t + 1,

N′1
N′1 + N′2

=
WtN1

WtN1 + WtN2
=

Wt

Wt

N1

N1 + N2
=

N1

N1 + N2
(I-2)

This establishes the fact that when different genotypes reproduce equally well, the
proportion of any one of them does not change. We can make the same point by calcu-
lating the ratio of the numbers of one genotype to the other, and noting that the factors
Wt cancel:

N′1
N′2

=
WtN1

WtN2
=

N1

N2
(I-3)

Thus, the proportions and ratios of different genotypes are not changed by asexual
reproduction in a large population.
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MULTIPLE GENOTYPES. If we had not two, but k different genotypes, the picture is
the same. If we denote by pi the frequency of the i-th genotype in generation t, then if

N = N1 + N2 + · · ·+ Nk,

we find that

N′ = WtN1 + WtN2 + · · ·+ WtNk =
k

∑
i=1

WtNi = Wt

k

∑
i=1

Ni = WtN,

and we have

p′i =
N′i
N′

=
WtNi

WtN
=

Ni

N
= pi, (I-4)

so that the frequencies of the different genotypes do not change, even though their
numbers may increase or decrease (depending on whether Wt is greater or less than 1).

We will have frequent recourse to the conclusions of this section. In sexual diploids
the effect of Mendelian segregation is felt only as one moves from one generation to the
next. Within a generation the population is effectively asexual. Thus the logic of this sec-
tion applies perfectly to the genotypic composition of a single generation in which each
individual has probability Wt of surviving to adulthood. From now on we will leave out
the factor Wt and simply assume that genotypic compositions are not changed by ran-
dom survival in infinite populations, provided that survival is unaffected by genotype.

Similarly, when we have a set of sexual offspring and ask who their parents were,
we will assume that the composition of the parents is unaffected by differences between
individuals in the amount of reproduction they do, provided that the differences in re-
production are independent of genotype, and provided that there are an infinite number
of parents.

I.2 Some cautionary notes

I should make two cautionary notes. First, we will frequently use the word “frequency”,
as in gene frequency, genotype frequency, or haplotype frequency. When we do, we
mean relative frequency. If in a sample of 200 rabbits, a genotype that makes the fur
color white occurs in 6 of them, the genotype frequency is 6/200, or 0.03. More correct
statistical usage would say that the frequency of that genotype is 6. Its relative frequency
would be 0.03. But in population genetics we use the word “frequency” to refer to the
relative frequency, not the number of occurrences.

There is also what appears to be a major self-contradiction in our models. In the pre-
vious section we had a model with a finite population, but we assume that the number
of offspring is exactly W1N1. As mentioned in that section, this implicitly assumes that
N1 is very large, so that the randomness of events such as births and deaths averages out,
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Figure 1.1: Diploid stage of a predominantly haploid organism.

and we can treat the actual numbers of offspring as if they were the same as the expected
numbers. Then we can predict what will happen to the total number of individuals N,
even though we are in the limit where N is effectively infinite. One way to have it both
ways is to have N be the mean population density per unit space, with the population
spread over a vast area, so the the actual population number is effectively infinite.

I.3 Haploid inheritance

There are many cases, particularly among microorganisms, of organisms which are hap-
loid during most of their life cycle, having only the briefest of diploid phases. Figure 1.1
shows a typical generation in such an organism.

Suppose that we have a population of haploid organisms of two genotypes, A and a.
Let the proportions of these genotypes be p and 1− p in generation t. If the organisms
mate at random, we can easily compute the proportions of the three resulting diploid
genotypes. When mating is random, the genotypes of the two mates are independent
of one another. For an AA diploid to be formed the first parent must be an A, which
will be true p of the time. The second parent must also be an A. If mating is at random,
then given that the first parent is A, the probability that the second parent is also A is
unaffected by that, so it too is p. Thus a fraction p of the time the first parent is A and a
fraction p of those cases also have the second parent being A.

So an AA diploid is formed in p × p = p2 of the matings. An aa will be formed
(1− p)× (1− p) of the time. There will be two ways of forming heterozygotes: Aa, with
probability p× (1− p), and aA, with probability (1− p)× p. Since we cannot normally
tell these apart, we combine these cases, so that the proportions of the diploid genotypes
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are:

AA p2

Aa 2p(1− p) (I-5)
aa (1− p)2.

These are the so-called Hardy-Weinberg proportions, actually a simple case of a bino-
mial expansion, having the same probabilities as tossing a coin twice that has probability
p of coming up Heads each time. To obtain the proportions of A and a in the next gener-
ation, we must consider the results of meiosis in these diploids. It is, of course, assumed
that all three genotypes are equally likely to undergo meiosis. Then p2 of the haploids
in the next generation come from AA diploids. All of these haploids must be A, since
there is no mutation in this idealized case. 2p(1− p) of the haploids will come from Aa
diploids, and half of these will be A. All of the (1− p)2 of the gametes which come from
aa diploids will be a. The total proportions of A and a among the offspring generation
are then

A : p2 + 1/2× 2p(1− p) = p2 + p(1− p) = p [p + (1− p)] = p,

a : (1− p)2 + 1/2× 2p(1− p) = (1− p)2 + p(1− p) = (1− p) [(1− p) + p] = 1− p.
(I-6)

So we once again, if we denote the gene frequency in generation t by p, and the
frequency in generation t + 1 as p′,

p′ = p, (I-7)

so that genotype frequencies remain unchanged from their initial values. It is tempting
to consider haploids as exactly equivalent to asexuals. But this is not true when we
consider recombination, as we shall see later. We have ignored sex determination. It has
been implicitly assumed that, even if there is a mating type system as in yeast, where two
alleles, a and α determine the mating types, that the genotype frequencies are the same
among both a and α haploids, so that we need not take mating types into account. We
will shortly see the consequences of relaxing this assumption. Many of the phenomena
of population genetics can be seen most clearly in haploid cases, and we will return to
the haploid case more frequently than its biological importance alone warrants.

I.4 Diploids with two alleles: Hardy-Weinberg laws.

DERIVATION. We now consider a random-mating population of diploids in which two
alleles are segregating. We assume that there is no difference in genotype proportions
between the sexes. Suppose that in generation t the population contains the three geno-
types AA, Aa, and aa in proportions PAA, PAa, Paa. These we henceforth call the genotype
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frequencies. Consider a haploid gamete produced by one individual chosen at random.
The individual has chance PAA of being an AA, and PAa of being an Aa. In the latter
case, the gamete is A one half of the time. The chance that the gamete produced by a
randomly chosen individual is A is then p1 and the chance that it is a is p2 where

p1 = PAA + 1
2 PAa,

p2 = 1
2 PAa + Paa.

(I-8)

p1 and p2 will be referred to as the gene frequencies of the two alleles. (Allele frequen-
cies would be a more consistent term, but gene frequencies is solidly entrenched in the
literature). They are not only the frequencies of the two types of gametes, but also the
proportion of all genes in generation t which are each of the two alleles. We can see this
by indirect argument, as follows: PAA of all copies of this gene are in AA individuals,
and all of these are A. PAa of the copies are in Aa individuals, and half of these are A
alleles. So the total fraction of all copies which are A is PAA + 1

2 PAa, which is just the
gene frequency p1. More directly, a randomly chosen haploid gamete contains a copy of
a gene chosen at random from the parental diploids. So the probability that such a ga-
mete is A is just the gene frequency, p1. An alternative approach to this point, involving
direct counting of A and a alleles, is given in the next section.

If it happened to be true that random mating of individuals gave the same results
as random combination of the pool of gametes, then the following would be true, as a
consequence of the results of the previous section:

1. The diploid genotypes in the next generation would occur in the frequencies p2
1,

2p1p2, p2
2.

2. The gametes which they produce would be in the same frequencies as the gametes
of generation t. So if we use the argument (t) to indicate which generation a gene
frequency is from, p(t+1)

1 = p(t)1 = p(t−1)
1 = · · · = p(0)1 .

It follows from these two principles that not only will the gene frequencies remain
constant from one generation to the next, so will the genotype frequencies, with the
exception of the initial generation. In fact, it turns out to be true that random mating is
equivalent to random union of gametes. This is simply the result of the fact that choosing
a gamete at random from the pool of gametes is equivalent to sampling a parent at
random, and then having it produce a gamete containing one of its two genes (at this
locus), chosen at random by the mechanism of Mendelian segregation. The reader who
doubts that this is so can consult Table 1.1, which enumerates the possible matings, their
probabilities, and the resulting offspring genotype frequencies. The Table makes use of
the independence of the genotypes of the two mates under random mating, so that the
probability of an AA × AA mating is PAA × PAA.
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Table 1.1: Mating types, their frequencies, their contribution to the offspring
genotype frequencies, and the resulting genotype frequencies under random
mating.

Mating Type Contribution to Offspring Generation

Mating Frequency AA Aa aa

AA× AA PAA × PAA P2
AA — —

AA× Aa PAA × PAa
1
2 PAAPAa

1
2 PAAPAa —

AA× aa PAA × Paa — PAAPaa —

Aa× AA PAa × PAA
1
2 PAaPAA

1
2 PAaPAA —

Aa× Aa PAa × PAa
1
4 P2

Aa
1
2 P2

Aa
1
4 P2

Aa

Aa× aa PAa × Paa — 1
2 PAaPaa

1
2 PAaPaa

aa× AA Paa × PAA — PaaPAA —

aa× Aa Paa × PAa — 1
2 PAAPAa

1
2 PaaPAa

aa× aa P2
aa — — P2

aa

The genotype frequencies from Table 1.1 are:

AA : P2
AA + PAAPAa + 1/4 P2

Aa = (PAA + 1/2 PAa)
2

Aa : PAAPAa + 1/2 P2
Aa + 2PAAPaa + PAaPaa = 2 (PAA + 1/2 PAa) (1/2 PAa + Paa)

aa : 1/4 (PAa)
2 + PAaPaa + (Paa)2 = (1/2 PAa + Paa)2

(I-9)

MEANING. The two principles given above are often known as the Hardy-Weinberg
Law. They have two important impacts on population genetics. The first implies that
genotype frequencies can (under appropriate conditions) be predicted from gene fre-
quencies. Together with the second, it implies that we can carry through an analysis
in terms of gene frequencies instead of genotype frequencies. The second part of the
Hardy-Weinberg Law implies that Mendelian reproduction in a random-mating popu-
lation has no inherent tendency to favor one allele or the other: it will not tend to lose
genotypic variability. This is a dramatic difference from the pre-Mendelian scheme of
blending inheritance, in which the offspring’s genotype (supposed to be contained in its
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blood) was a mixture of the parents’, without any mechanism of segregation. Blending
inheritance would tend to lose half of the genotypic variability each generation, with
dramatic consequences for evolution. A professor of engineering in Scotland, Fleeming
Jenkin (1867), made this point in response to Darwin’s Origin of Species. It led him to the
conclusion that the response to natural selection would shortly stall for lack of variation.
Darwin was unable to convincingly rebut Jenkin. In later editions of the Origin, he raised
the origin of new variation by direct effects of the environment to a greater importance
than he had hitherto assigned it, in order to provide the continuous torrent of new vari-
ation necessary to keep evolution operating. With the rise of Mendelian genetics, and
the realization of its consequences, the problem vanished.

HISTORY. The Hardy-Weinberg law was discovered by the famous English mathemati-
cian G. H. Hardy (1908), and simultaneously and independently in a paper by the Ger-
man obstetrician and human geneticist Wilhelm Weinberg (1908), whose proof was more
generalized. Hardy seems to have deliberately buried his paper in an obscure American
journal so that his mathematical colleagues would not realize that he had strayed into
applied mathematics. It has sometimes been claimed that William Ernest Castle made
use of it in an earlier paper (1903), but a careful reading of that paper will show that
Castle worked in terms of genotypes rather than gene frequencies. The Hardy-Weinberg
Law is as close to being trivially obvious as it can be, but it had a major impact on the
practice of population genetics. Before it, calculations of the effect of natural selection
required one to keep track of three variables, the genotype frequencies, and the alge-
bra required to do even simple cases was quite complicated. By focusing attention on
the gene frequencies, and establishing the constancy of gene frequencies in the absence
of perturbing forces, the Hardy-Weinberg Law greatly simplified calculations. The ad-
vances of the next two decades would have come much more slowly and tortuously if
it had not been understood. The history of Hardy and Weinberg’s work has been well-
explained by Crow (1988, 1999) and by Edwards (2008). For a more detailed history of
population genetics during the decade of the 1900s, the reader should consult the book
by Provine (1968).

EQUILIBRIUM?. The Hardy-Weinberg Law is sometimes referred to as the Hardy-
Weinberg Equilibrium. It is an equilibrium in only a restricted sense. If we change
the gene frequency of a population, there is nothing inherent in the Law which will
restore the gene frequency to its original value. It will remain indefinitely at the new
gene frequency. But if we perturb the genotype frequencies in such a way that the gene
frequency is not changed, then in the next generation Hardy-Weinberg proportions will
be restored. If we take a population in Hardy-Weinberg proportions 0.81 AA : 0.18
Aa : 0.01 aa, and alter the genotype frequencies to 0.88 AA : 0.04 Aa : 0.08 aa, then the
gamete frequencies will be 0.9 A : 0.1 a, and the offspring generation will once again have
genotype frequencies 0.81 AA : 0.18 Aa : 0.01 aa. But had we altered the gene frequency,
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the genotype frequencies of the offspring would be in Hardy-Weinberg proportions, but
in those dictated by the new gene frequency.

ASSUMPTIONS. To maintain the Hardy-Weinberg principles, we have made many
assumptions. Among these are:

1. Random mating.

2. No differential fertility of the genotypes, so that the contribution a mating type
makes to the next generation is simply its frequency among all mating types.

3. Equal genotype frequencies in the two sexes, which we have assumed since we
use the same three genotype frequencies for both parents.

4. No mutation, so that the offspring of any mating are simply those expected from
Mendel’s laws.

5. No immigration, so that all members of the next generation come from the present
generation. It is also assumed that there is

6. No differential emigration, so that any emigration which occurs does not change
the genotype frequencies.

7. No differential viability, so that any mortality between newly fertilized zygote
and adult stages does not alter the genotype frequencies.

8. Infinite population size, so that the proportions of mating types expected from
random mating, as well as the proportions of offspring expected from Mendelian
segregation are exactly achieved.

Much of the remainder of these notes will be devoted to the consequences of relaxing
one or more of these assumptions. We will not be able to cover all possibilities, even
superficially, but we should be able to arrive at some intuitive understanding of the
effects, singly and in combination, of these various evolutionary forces.

I.5 Where the rare alleles are found.

Hardy-Weinberg proportions imply that homozygotes for rare alleles will be uncommon.
This must be emphasized, since it makes it much easier for us to intuitively understand
the behavior of natural selection in diploids. The algebra is simple if we calculate the
proportion of copies of a rare allele that are found in homzygotes. If the gene frequency
of allele A is p, we know that p2 of all individuals in the population are expected to be
homozygotes for that allele. If there are N individuals in the population, we expect that
Np2 of them will be AA homozygotes, and in these there will be a total of 2Np2 copies
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of the A allele. Overall, there are 2N copies of this gene, of which a fraction p are copies
of A, so that there are 2Np copies of that allele.

The fraction of all copies of A that are expected to be found in AA homozygotes is
then

2Np2

2Np
= p

which is a dramatic and simple result. If an allele has gene frequency 0.0003, only a
fraction 0.0003 of the copies of that allele will occur in homozygotes. Fully 0.9997 of
them will be found in heterozygotes. This has strong implications for the effectiveness
of selection for or against recessive alleles, and also for the relative importance of the
fitness effects of a rare allele when it is heterozygous and when it is homozygous.

It will be helpful to keep in mind that

Rare alleles occur mostly in heterozygotes; common
alleles occur mostly in homozygotes.

because these will help us understand the results of natural selection on rare alleles.
There is an even simpler way to obtain the result of equation (I.5). Imagine that you

are a copy of a rare allele, and you have been segregated into a gamete (say an egg).
What is the probability that you will end up in a homozygote, paired with another allele
like yourself? That is simply the probability that the sperm will contain that rare allele.
If mating is at random, the probability of this is your allele frequency, p.

I.6 Multiple alleles.

If, instead of 2 alleles, a population contains n alleles, the principles stated in the previous
section either apply or generalize naturally. In a haploid population, we have n different
haploid genotypes A1, A2, . . . , An, whose frequencies in generation t we call p1, p2, . . . pn.
When diploids are formed by random mating, the frequencies of the diploid genotypes
are simply the products of the respective haploid frequencies. Thus the frequency of the
A1A1 diploid genotypes is p2

1 since each of the two haploid genotypes independently
has probability p1 of being A1. In general (if we count genotype Ai Aj as being distinct
from genotype Aj Ai for i �= j),

Ai Ai : Pii = p2
i i = 1, 2, . . . , n

Ai Aj : Pij = pi pj i = 1, 2, . . . , n,

j = 1, 2, . . . , n,

(i �= j).

(I-10)
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To keep the notation straight, you must keep in mind that, although we cannot tell
Ai Aj and Aj Ai genotypes apart, we count their genotype frequencies Pij and Pji sepa-
rately, as if we could distinguish them in practice. Thus, the total genotype frequency of
Ai Aj and AjAi heterozygotes is

pi pj + pj pi = 2 pi pj. (I-11)

If we had a population of diploid genotypes, in which we knew the numbers Nii of
Ai Ai homozygotes, and the numbers Nij + Nji of Ai Aj or Aj Ai heterozygotes, we could
compute the genotype frequencies directly, by counting Ai genes. There are two Ai genes
in each Ai Ai homozygote and one in each Ai Aj heterozygote. If we have N individuals
in all, there are 2N copies of the A gene, so that the fraction of them which are Ai is

p∗i = [2Nii + (N1i + N2i + · · ·+ Ni−1,i + Ni+1,i + · · ·+ Nni)

+(Ni1 + Ni2 + · · ·+ Ni,i−1 + Ni,i+1 + · · ·+ Nin)] /(2N)

= [(N1i + N2i + · · ·+ Nni) + (Ni1 + Ni2 + · · ·+ Nin)] /(2N).

(I-12)

Dividing each term of the numerator by 2N, and noticing that Nij/N = Pij,

p∗i = 1/2 (P1i + · · ·+ Pni) + 1/2 (Pi1 + · · ·+ Pin)

= 1/2
n
∑

j=1
Pji + 1/2

n
∑

j=1
Pij.

(I-13)

This is half the total frequency of genotypes in the ith column of the table, plus half the
total frequency of genotypes in the ith row.

In producing the next generation of haploids from a diploid generation with geno-
type frequencies Pij, the proportion of haploid offspring of genotype Ai is just the gene
frequency of Ai in the diploids of the previous generation:

p′i = p∗i = 1/2
n

∑
j=1

(Pji + Pij). (I-14)

If generation t was itself formed by random mating, then Pij = pi pj, so if we denote
by p′i the gene frequency in the next generation,

p′i = 1/2
n
∑

j=1
(2 pi pj)

=
n
∑

j=1
pi pj

= pi p1 + . . . + pi pn = pi (p1 + p2 + · · ·+ pn),

(I-15)
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which clearly equals pi, since the sum of all of the haploid genotype frequencies is 1. So
if p(t)i is the gene frequency in generation t,

p(t+1)
i = p(t)i = . . . = p(0)i , (I-16)

for all n values of i. Thus the gene frequencies of all n alleles remain constant through
time and, by equations (I-10), the diploid genotype frequencies can be predicted from
the gene frequencies.

All of the above has been for a haploid organism. The results for diploids are identi-
cal. All we need to do is note that the principle that random mating is equivalent to random
union of gametes is still valid, unaffected by the number of alleles present. Therefore,
under the assumptions of the Hardy-Weinberg Law (random mating, no differential fer-
tilities, no sex differences, no mutation, no migration, no differential viabilities, infinite
population size), the Hardy-Weinberg Laws still hold. In fact, Weinberg (1908) made his
derivation in terms of multiple alleles at the outset.

AN INTUITIVE ARGUMENT. At least part of the results of this section can be seen
intuitively. If we classify alleles into two classes, one containing the A1 allele and the
other containing all other alleles, we can consider the resulting population as having
two-alleles. The gene frequency of A1 cannot depend on whether or not the geneticist
can perceive differences among the other alleles. Neither can the frequency of A1A1
homozygotes. It follows immediately that the gene frequency of A1 (or of any other
allele we choose) must remain constant through time, and that the genotype frequency
of A1A1 must become the square of the frequency of the A1 allele. Only the genotype
frequencies of the heterozygotes are not predicted by this analogy between two and
many alleles.

I.7 Overlapping generations.

So far, the generations have been discrete. One generation gives rise to another, where-
upon the parents do not reproduce again, and are no longer counted as part of the
population. In that case, the population moves into Hardy-Weinberg proportions in one
generation. This life cycle is reasonable only for organisms which breed synchronously
and only once in their lifetime (such as annual plants). If there is repeated reproduction
and overlapping generations it is not a good representation of the life cycle. A realis-
tic model for continuous reproduction and/or overlapping generations would be quite
complex. As a start towards considering such cases, in this section we consider a very
simple continuous-time model.

We assume overlapping generations, continuous time, but not age-dependent repro-
duction. The discrete-generation model is one with perfect memory: organisms “remem-
ber” exactly when they were born, and reproduce exactly on schedule. But the present
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model is the opposite: in each small interval of time, a small fraction of the population,
chosen irrespective of age, dies. These individuals are replaced by newborns formed by
random mating among all existing individuals, again irrespective of age. Since we wish
to consider a case parallel to the Hardy-Weinberg situation, we here assume that deaths
and births occur irrespective of genotype, that there is no difference in genotype fre-
quencies between sexes, no mutation, no migration, and an infinite population size. The
relationship between clock time and generation time is set once we know what fraction
of individuals die in a given amount of time, and therefore how rapidly the population
turns over. To equate one unit of time with one generation, we assume that during an
amount δt of time (assumed to be short), a fraction δt of the population dies and is re-
placed. This scales the situation so that the probability that an organism survives t units
of time is (1− δt)t/δt which as δt is made small approaches e−t. (You may remember
from a calculus course that (1 + 1/n)n approaches e as n → ∞, and this is a variant
on that result). So lifespan has an exponential distribution, which turns out to have a
mean (average) of 1. The process of allowing δt to approach zero is justified by the fact
that if the process of death and replacement occurs continuously with constant death
rates the probability of survival for δt units of time is 1− δt only approximately, the
approximation improving as δt becomes small.

The newborns who replace the deaths constitute a fraction δt of the population (again
approximately: exactly if we let δt → 0). They are the result of random mating in
the population under Hardy-Weinberg assumptions, so if the current population gene
frequency of A is pA(t), the newborns are of genotype AA with probability [pA(t)]2. The
AA individuals after δt units of time are a mixture of a fraction δt of newborns and 1− δt
of survivors, so if PAA(t) is the frequency of genotype AA at time t:

PAA(t + δt) = PAA(t) (1− δt) + δt [pA(t)]2 (I-17)

and (rearranging)

PAA(t + δt) − PAA(t)
δt

= [pA(t)]2 − PAA(t). (I-18)

Taking the limit as δt→ 0, the left side of (I-18) is simply the derivative of PAA(t):

dPAA(t)
dt

= [pA(t)]2 − PAA(t). (I-19)

Similarly, it is easy to show that if PAa(t) is the frequency of heterozygotes Aa (and
aA)

dPAa(t)
dt

= 2 pA(t) pa(t) − PAa(t). (I-20)
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Before attempting to solve these equations to find the way PAA(t) changes through
time, it will be instructive to look at the gene frequency pA(t). This is equal to PAA(t) +
1
2 PAa(t). We can add together equations (I-19) and (I-20), after multiplying (I-20) by
one-half. We get

d(PAA(t) + 1
2 PAa(t))

dt
= [pA(t)]2 + pA(t) pa(t) − PAA(t) − 1/2 PAa(t), (I-21)

so
dpA(t)

dt
= pA(t) [pA(t) + pa(t)] − pA(t) = 0. (I-22)

So pA(t) = pA(0) = pA: the gene frequency does not change, just as we might
have expected. Knowing that pA remains constant, as does pa, means that we can solve
equations (I-19) and (I-20) by treating pA(t) as a constant.

Before going through any algebraic details, we can see from (I-17) and (I-19) what the
result will be. Equation (I-17) shows what is happening: as the initial generation of indi-
viduals dies out, it is replaced by newborns who are in Hardy-Weinberg proportions at
the constant gene frequency pA. Ultimately, when the last of the original individuals has
died, the population will be in Hardy-Weinberg proportions. Equation (I-19) verifies this
conclusion. If PAA(t) > p2

A, then we have more AA individuals than Hardy-Weinberg
proportions would predict. Then the right side of (I-19) is negative, so that PAA(t) de-
creases. Likewise, when PAA(t) < p2

A, it will increase. Ultimately PAA(t) = p2
A, and PAA

will not change further.
We can solve (I-19) by elementary separation of variables and integration. It first

becomes
dPAA(t)

[pA(t)]2 − PAA(t)
= dt. (I-23)

Then (remembering that pA(t) = pA is constant) we can integrate both sides:∫ 1
p2

A − PAA(t)
dPAA(t) =

∫
dt, (I-24)

which yields on taking the natural logarithm

− ln [p2
A − PAA(t)] = t + C. (I-25)

(In this book I will use ln rather than loge to denote the natural logarithm).
We can determine the value of the unknown constant C by setting t = 0. Then

C = − ln (p2
A − PAA(0)). (I-26)

So
ln (p2

A − PAA(t)) = −t + ln (p2
A − PAA(0)). (I-27)
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Taking the exponential function (ex) of both sides of this equation:

p2
A − PAA(t) = [p2

A − PAA(0)] e−t. (I-28)

which shows that the deviation of PAA(t) from the Hardy-Weinberg proportion p2
A de-

cays exponentially with time. Solving for PAA(t):

PAA(t) = PAA(0) (e−t) + p2
A (1− e−t). (I-29)

This confirms precisely the explanation already given. As time passes, a fraction e−t

of the population consists of survivors of the original population. A fraction PAA(0) of
these are AA. All individuals born later are in Hardy-Weinberg, proportions, so that a
fraction p2

A of them are AA. Analogous equations hold for PAa and Paa. While PAA(t)
approaches its limiting value exponentially, and never quite reaches it, all newborns are
in Hardy-Weinberg proportions. In that sense, Hardy-Weinberg proportions are reached
in one generation.

In the remainder of this book we will rarely make use of the overlapping-generations
models, but you should keep in mind that there are overlapping-generations versions of
some of the models treated here. However, overlapping-generations models are gener-
ally far less tractable than discrete-generations models. This is mostly because Hardy-
Weinberg proportions cannot be assumed. As we have seen, they are approached only
asymptotically even with random mating. If there is any evolutionary force, such as nat-
ural selection, making the population continually depart from Hardy-Weinberg propor-
tions, we will have to follow genotype frequencies rather than gene frequencies, which
makes life harder. In discrete-generations models one is usually in Hardy-Weinberg
proportions once per generation, when the new generation of zygotes is produced.

The monograph by Charlesworth (1980) should be consulted for a clear review of the
problems involved in extending overlapping-generations models to cases in which birth
and death rates are age-dependent. The paper by Nagylaki and Crow (1974) should also
be consulted on this issue.

I.8 Different Gene Frequencies in the Two Sexes

We have been assuming that the genotype frequencies are the same in both sexes. We
now relax that assumption, in a discrete generations model which otherwise obeys all
of the Hardy-Weinberg assumptions. We follow a population in which two alleles seg-
regate. Suppose that in the initial generation the gene frequencies of A in females and
in males are, respectively p f and pm. Random mating is equivalent to the combination
of a random female gamete with a random male gamete. Table 1.2 shows the resulting
genotypes:
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Table 1.2: Genotype frequencies when gene frequencies differ in the sexes.

Female Gametes:
A a

Male Gametes: p f 1− p f

A pm p f pm pm(1− p f )

a 1− pm p f (1− pm) (1− p f )(1− pm)

which give the genotype frequencies:

AA p f pm

Aa p f (1− pm) + pm (1− p f )

aa (1− p f )(1− pm)

(I-30)

We are assuming that the gene A is unlinked to the sex chromosome or sex-determining
locus. Thus in the offspring generation the genotypes AA, Aa, and aa are distributed in-
dependently of the sex of the offspring. So in that generation, although the genotypes
may not be in Hardy-Weinberg proportions, they are the same in both sexes. There-
fore the next offspring generation is produced by parents with equal gene frequencies
in both sexes, and it will therefore be in Hardy-Weinberg proportions, as will all subse-
quent generations. Putting primes on the p f ’s and pm’s to denote the next generation,
the gene frequency in the gametes forming the offspring generation is

p′m = p′f = p f pm + 1
2 [p f (1− pm) + pm(1− p f )]

= p f pm + 1
2 p f − 1

2 p f pm + 1
2 pm − 1

2 p f pm

= 1
2 p f + 1

2 pm.

(I-31)

It is entirely intuitively obvious why this must be so. The gametes produced by the
first offspring generation contain in half of them genes coming from the initial female
generation, and in half of them genes coming from the initial males. This is true even if
there is a great inequality of the sex ratio: even if there are very few females (say), the
symmetry of mating - the fact that each mating consists of one male and one female -
ensures that (I-31) will hold. The totality of male genes is copied into the next generation
as many times as the totality of female genes.

The picture we get from all this is that after starting with unequal male and female
gene frequencies, we do not reach Hardy-Weinberg proportions in the offspring. But
we do achieve equal gene frequencies in the two sexes of the offspring. In the second
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generation Hardy-Weinberg proportions are achieved. So the effect of unequal gene
frequencies in the two sexes is to delay achievement of Hardy-Weinberg proportions by
one generation. We can still say that the overall gene frequency of the population does
not change. But we can only say this if we define it as p = 1

2 p f +
1
2 pm, irrespective of the

actual numbers of the two sexes. In other words, we must count the aggregate of all females
as contributing as much to the population gene frequency as the aggregate of all males.
Any other weighting system - such as counting each individual as equivalent - will lead
to the population gene frequency changing during the first generation.

In this presentation, p has been the frequency of an allele A, and 1− p of a. But we
could as easily have designated 1− p as being the frequency of all other alleles than
A. So the above argument applies to the frequency of an allele A irrespective of how
many other alleles there are. Having multiple alleles in a population will not alter the
conclusions.

GENOTYPE FREQUENCIES. Finally, we verify the direction of departure of genotype
frequencies from Hardy-Weinberg proportions. Suppose that, instead of having variables
p f and pm, we measure the gene frequency in each sex as the average gene frequency
plus (or minus) a deviation from that quantity, so that

p f = p + δ

pm = p− δ. (I-32)

Then the genotype frequencies in the next generation are:

AA (p + δ)(p− δ)

Aa (p + δ)(1− p + δ) + (p− δ)(1− p− δ)

aa (1− p− δ)(1− p + δ).

(I-33)

or (collecting terms)

AA p2 − δ2

Aa 2 p (1− p) + 2δ2

aa (1− p)2 − δ2.

(I-34)

This demonstrates that in the two allele case, if there is any difference between gene
frequencies in the sexes, if δ �= 0, there will be a departure from Hardy-Weinberg propor-
tions in the next generation. Furthermore, whether δ is positive or negative, the result is
the same: there are fewer homozygotes and more heterozygotes than we would expect
from Hardy-Weinberg proportions.
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With multiple alleles, there must also be a deficit of each homozygote class, and
also an average excess of heterozygotes compensating for this. But specific heterozygote
classes can be in deficit, despite the fact that there is an overall excess of heterozygotes.

Biologically, the main implication of the results of this section is that for autosomal
loci, we would not expect to see gene frequency differences between the sexes unless
some evolutionary force continually created such differences. This has an interesting
implication for differentiation of the sexes: it will be difficult to explain it by genotypic
differences at loci that are not linked to the sex-determining loci.

I.9 Sex linkage.

HAPLOIDS. We get quite different results when the locus in question is on the sex chro-
mosome. In the haploid case, the results are a bit trivial. If the system resembles yeast,
we may have two sex-determining alleles (say S and s). Each mating must be between
an S and an s haploid, producing heterozygous diploids. The “sexes” of the offspring
are determined by which of the two alleles the haploid receives in the segregation of the
diploid. If we follow another allele which is completely linked to the sex-determining
locus, the results are rather obvious. If we have an allele (A) which has gene frequency
pS among the S haploids, and ps among the s haploids, neither of these gene frequencies
will change. The allele linked to the S haploid in any mating will show up only in the S
haploid offspring. The same, of course, holds for s. Figure 1.2 may help you see this.

If the sexes are determined by a region of the chromosome instead of by a single
locus, there will be powerful natural selection to prevent this region of the sex chro-
mosome from having any crossing-over that might cause recombination. Typically a
recombination event will create a chromosome that causes the individual to be an inter-
sex, capable of successfully mating with neither of the existing sexes. If natural selection
suppresses crossing-over in that region, the two forms of the sex-determining segment
will segregate as if they were alternative alleles.

DIPLOIDS. When the organism is diploid, with an X-Y chromosome sex-determination,
the situation is both more complex and more interesting. Now we assume that a sex-
linked locus is carried on the X chromosome, with no counterpart on the Y. Suppose
that allele A has gene frequency p f among X-bearing gametes from females, and fre-
quency pm among X-bearing gametes from males. Since female offspring contain one X
from their male parent, and one from their female parent, then under Hardy-Weinberg
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Figure 1.2: Segregation of an allele completely linked to a sex-determining
locus in a haploid organism

.

conditions the genotype frequencies in the female offspring are

AA p f pm

Aa p f (1− pm) + pm(1− p f )

aa (1− p f )(1− pm),

(I-35)

which are exactly the same as these genotype frequencies would be for an autosomal
locus in which gene frequencies differ between the sexes. But we cannot expect to see
Hardy-Weinberg proportions in only two generations. After the first generation we do
not have equal gene frequencies in both sexes in this case, because the locus is linked to
the sex-determining chromosome. In male offspring, the genotype frequencies are:

AY : p f

aY : 1− p f .
(I-36)

We can easily calculate the gene frequency of A among the gametes coming from
these offspring. In males there is no algebra to do. In females the algebra is identical to
that in Equation (I-31) of the previous section. Placing primes on the p’s to indicate the
next generation, the results are:

p′f = 1
2 p f +

1
2 pm

p′m = p f .
(I-37)
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Figure 1.3: Gene frequency changes resulting from initial sex differences of
gene frequencies in the two sexes (circles are for females, squares for males)
at a sex-linked locus (with initial gene frequencies pm = 1, p f = 0).

LONG-TERM BEHAVIOR. It is not immediately obvious what are the long term im-
plications of these relations. Figure 1.3 shows the results if we start with pm = 1 and
p f = 0. Clearly the gene frequencies do not settle down immediately, but oscillate to an
equilibrium.

There are methods available for the complete solution of simultaneous difference
equations such as (I-37). But here we will take a short cut which we can only do once we
know the answer in advance. Suppose that we arbitrarily decided to look at the quantity
2
3 p f +

1
3 pm = p. Then from (I-37),

p′ = 2
3 p′f +

1
3 p′m = 2

3(
1
2 p f +

1
2 pm) +

1
3 p f

= 2
3 p f +

1
3 pm = p,

(I-38)

so this quantity does not change through time. It is a weighted average of the gene
frequencies in females and in males. The weighting assigns twice as much weight to
females as to males. This may seem to be straightforward: that each X chromosome is
being counted once. But notice that it is irrespective of the sex ratio: the males as a
whole are given half as much weight as the aggregate of all females. As in the previous
section, if there are very few males, this is compensated for by the fact that each male
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will then mate more times than each female (on average). This is a simple consequence
of the fact that each mating involves one male and one female.

If the gene frequencies of the two sexes converge to the same value, then since at that
point p f = pm, from (I-37) if the initial gene frequencies are p f (0) and pm(0)

p f = pm = p =
2
3

p f (0) +
1
3

pm(0). (I-39)

But will this equilibrium value always be approached? We can examine this by com-
puting the difference between the female and male gene frequencies, and seeing how
this changes in successive generations:

p′f − p′m = (1
2 p f +

1
2 pm)− p f

= 1
2 pm − 1

2 p f

= (− 1
2 )(p f − pm).

(I-40)

So the magnitude of the differences between the gene frequencies in the two sexes
decreases by half every generation, and it changes sign every generation. Convergence
of the male and female gene frequency is certain, irrespective of their initial values.

GENOTYPE FREQUENCIES. When both gene frequencies are equal, (I-35) and (I-36)
are:

Females Males

AA p2 AY p

Aa 2 p (1− p) aY 1− p

aa (1− p)2.

(I-41)

When p is small, this has the interesting property that male hemizygotes for A will
be much more common than female homozygotes: if p = 0.01, then p2 = 0.0001. This is
of course reasonable: to get a hemizygote for A we need only one copy of the rare allele,
but to have an AA female two rare alleles must be present in the same individual.

If we have multiple alleles, the results are the same: the frequency of each allele os-
cillates to an equilibrium value which is 2

3 p f (0) + 1
3 pm(0), the oscillations being reduced

in magnitude by one-half in each generation. But if we have a model of continuous
overlapping generations without age effects (analogous to Section I.7), there are no os-
cillations! Nagylaki (1975b) has demonstrated that in such cases the gene frequencies in
the two sexes approach each other smoothly from their initial values, reaching the same
equilibrium values as calculated above.

Although our calculations have been stated in terms of an X-Y system, we may make
the following comments about other systems of sex determination:
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1. An XX-XO system will behave like an XX-XY system in this respect.

2. A ZW-ZZ system (as in birds or lepidoptera, where the female is the heterogametic
sex) will behave like an XX-XY system with sex labeling reversed.

3. A haplo-diploid sex determination system, as in Hymenoptera (males coming from
unfertilized haploids and females from fertilized eggs) will have every locus in the
organism segregating as if sex-linked.

The oscillating approach to equilibrium genotype frequencies was first shown by H.
S. Jennings, a pioneer protozoan geneticist, in 1916.

I.10 Linkage.

INDEPENDENCE OF GENOTYPES AT TWO LOCI. Let us consider two linked loci,
each with two alleles. The gene frequency of allele A will be pA, the frequency of a
being 1− pA. Likewise, the gene frequency of B will be pB, and of b, 1− pB. It is a
basic property of the Mendelian system that the segregation of one locus is not affected
by the genotypes of neighboring loci. So each locus will individually follow the Hardy-
Weinberg laws if the assumptions underlying those laws apply, as we now assume. Then
pA and pB will each remain constant through time. The genotype frequency of AA will
be p2

A after the first generation, and similarly the frequency of BB will be p2
B. But what

about the frequency of AABB ? Can we assume that the genotypes at the two loci are
independent, and compute the genotype frequency of AA BB as p2

A p2
B ? If so, is this

situation reached after one, two or many generations of random mating?

A RETROSPECTIVE DERIVATION. To investigate this we must compute gamete fre-
quencies. An AA BB individual is the product of the fusion of two AB-bearing gametes.
In thinking about gamete frequencies, we discover that they cannot simply be computed
from gene frequencies. They have a life of their own. Consider two populations, each
having pA = 1

2 and pB = 1
2 . The first consists of half AA BB individuals and half aa

bb. There are only two gamete types produced by this population: AB and ab, in equal
frequencies. On the other hand, the population might consist of half AB/ab and half
Ab/aB individuals (it is necessary in this case for us to know the phase of the double
heterozygotes). Then whatever the recombination fraction between the loci, one-quarter
of all gametes will be AB. So we must consider gamete frequencies as well as gene fre-
quencies. Different haploid genomes, such as found in gametes, are often referred to as
haplotypes.

Let PAB be the frequency of AB among the gametes that formed generation t. We
want to compute P′AB, the frequency in the next generation. There are two ways in which
this could be done. One is to enumerate all possible matings. The other makes use of
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Figure 1.4: A two-locus haplotype in a gamete is derived either from a single
haplotype one generation earlier or from the different loci in the two haplo-
types of the parent, depending on whether there has been a recombination
between those loci. The probabilities of these two origins are respectively
1− r and r.

a shortcut. Consider a gamete of the next generation, and let r be the recombination
fraction between these two loci. We need not restrict ourselves to the case where the two
loci are on the same chromosome: if they are not, r = 1

2 . In the next generation, 1− r of
the gametes will not have suffered any fresh recombination between these two loci. The
gamete frequency of AB in these gametes will be the same as in the previous generation.
But r of the time, there will have been a recombination. Then the gamete will be AB
only if one gamete coming into the parent carried an A, and the other a B. But we have
assumed random mating, so that the two gametes which go to make up an individual
are chosen randomly and independently of one another. Then the chance that one is A,
and the other B, is simply pA pB. We do not need to inquire about the other gene copy at
either of these two loci, since we are not concerned with the genes which are not copied
into the gamete. Putting all of this together,

P′AB = (1− r) PAB + r pA pB. (I-42)
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The result in the long run can be seen by subtracting pA pB from both sides of (I-42).
Then

P′AB − pA pB = (1− r) PAB + r pA pB − pA pB

= (1− r) (PAB − pA pB).
(I-43)

A MEASURE OF NONINDEPENDENCE. The quantity PAB − pA pB measures the
difference between the actual gamete frequency of AB and the hypothetical frequency
which would obtain if the presence of A in a gamete (an event with probability pA) were
independent of the presence of B. Let us call this difference DAB(t) in generation t. Then

DAB(t) = (1− r) DAB(t− 1)

= (1− r)t DAB(0).
(I-44)

Provided there is any recombination between the two loci (1− r) is less than unity,
so that as t→ ∞, DAB approaches zero. When DAB is zero, not only does

PAB = pA pB, (I-45)

but the genotype frequency of AA BB, being P2
AB, is then p2

A p2
B. So ultimately we end

up in a state where each locus is in Hardy-Weinberg proportions and the occurrence
of genotypes at the two loci is independent of each other. This latter state is usually
called linkage equilibrium, and the measure DAB is the amount of linkage disequilibrium.
The name is somewhat misleading. It seems to imply that there will be no linkage
disequilibrium if there is no linkage. But equations (I-43) and (I-44) show that this is
not so. If there is no linkage r = 1

2 . Then DAB declines by half each generation. It
will rapidly become quite small, but will not be exactly zero if it is initially nonzero. In
fact, there is little difference between two loci being far apart on the same chromosome,
or being unlinked. Some authors have preferred “gametic phase imbalance” instead of
“linkage disequilibrium,” but the latter phrase seems impossible to dislodge from the
literature. Linkage disequilibrium is commonly referred to as “LD”, and it is not clear
that all users of the initials know what name it stands for.

The decline of DAB at the rate (1− r)t has a straightforward interpretation. Note that
we can give a general expression for the chromosome frequency PAB(t):

PAB(t) = pA pB + (PAB(0) − pA pB) (1− r)t

= PAB(0) (1− r)t + [1− (1− r)t] pA pB.
(I-46)

Note that (1− r)t is the probability that a gamete passes through t generations with-
out suffering a recombination. The first term on the right side represents the contri-
bution to the gamete frequency of AB from those gametes which have never suffered
recombination between these loci since the initial generation. The persistence of part
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these unrecombined gametes is the reason for the persistence of part of the initial link-
age disequilibrium. Note that the right-hand term on the right side of (I-46) implies that
any gamete which has ever suffered a recombination has an expected frequency of pA pB
for AB, irrespective of the initial gamete frequency PAB(0). It is the fact of random mat-
ing each generation which allows us to reach this conclusion. In particular, for (I-43) and
hence (I-44) to hold, the initial generation must itself have been formed by random mat-
ing. Otherwise we could only write DAB(t) = (1− r)t−1DAB(1). In either case, D tends
to zero. Recombination gradually scrambles the initial associations of alleles at different
loci, until a state of complete randomness is obtained, in which each chromosome is a
patchwork of segments derived from different ancestors.

The implications of linkage equilibrium go unnoticed by many geneticists. Suppose
the population is in linkage equilibrium. Then if a plague carries off all but the AA
individuals, what will happen to the gene and genotype frequencies at the unselected
B locus? Precisely nothing! Among the A-bearing gametes, the fraction which are B is
simply pB. And among AA individuals, the fraction which are BB is simply p2

B. This
illustrates a general principle, that if linkage equilibrium is maintained, natural selection
at one locus will not affect another.

SIMPLIFYING POPULATION GENETICS: THE GENE POOL. It should not go un-
mentioned that linkage equilibrium among all combinations of loci allows a vast reduc-
tion in the number of variables required to describe genotype frequencies. Consider
a genotype at twenty loci, each of which can have two alleles. There are 220 different
gametes possible, so that there are 220 × 220 = 240 possible genotypes. Of course, we
usually cannot tell coupling from repulsion double heterozygotes, or which alleles came
from the maternal and which from the paternal gamete. Since we can observe at each
locus only three distinct genotypes, there are merely 320 distinguishable genotypes. But
this is still 3,486,784,401 genotypes! We can predict the genotype frequencies from the
gamete frequencies, of which there are 1,048,576. We can discard one of these as an
independent quantity, since the sum of all gamete frequencies must be unity. This does
not help much. But linkage equilibrium does. At one stroke, it allows us to compute all
genotype and gamete frequencies from only 20 quantities, the gene frequencies! It is this
simplification which allows us to speak of the evolving population in terms of changes
in its “gene pool,” the collection of its gene frequencies. If linkage equilibrium does not
hold, the best we could do would be to consider it as a “gamete pool”.

A MORE DIRECT DERIVATION. Now let us briefly consider the other, more exhaus-
tive proof of the approach to linkage equilibrium. We consider the four types of gametes:
AB, Ab, aB, and ab, designating their frequencies PAB, PAb, PaB, and Pab. Consider all of
the parents from which a AB gamete might emerge. These are given in Table 1.3, along
with their genotype frequencies and the proportion of their gametes which are AB.
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Table 1.3: Genotype frequencies of genotypes giving rise to AB gametes, and
the frequencies with which they do so.

Genotype
Frequency

(assuming random mating)
Proportion of AB
(among gametes)

AB/AB P2
AB 1

AB/Ab or Ab/AB 2PAB PAb
1
2

AB/aB or aB/AB 2PAB PaB
1
2

AB/ab or ab/AB 2PAB Pab
1
2(1− r)

Ab/aB or aB/Ab 2PAb PaB
1
2r

The resulting frequency of AB is

P′AB = (PAB)
2 + (PABPAb) + (PABPaB) + (PABPab) − r(PAB Pab − PAb PaB)

= PAB[PAB + PAb + PaB + Pab]− r(PABPab − PAbPaB)

= PAB − r(PAB Pab − PAb PaB).
(I-47)

This does not look familiar, until we consider the quantity in parentheses on the last
line of the equation. Note that

PAB + PAb = pA,

PAB + PaB = pB,

Pab = 1− PAB − PAb − PaB.

(I-48)

Substituting (I-48c) into (I-47),

P′AB = PAB − r [PAB − PAB PAB − PAB PAb − PAB PaB − PAb PaB]

= PAB − r [PAB − (PAB + PAb) (PAB + PaB)]

= PAB − r [PAB − pA pB]

= (1− r) PAB + r pA pB,

(I-49)

which is simply (I-42). Comparing the quantity in parentheses in the last line of (I-47) to
the quantity in brackets in the third line of (I-49) demonstrates an interesting fact:

PAB Pab − PAb PaB = PAB − pA pB. (I-50)
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This implies that the linkage disequilibrium DAB is half the difference between the fre-
quencies of coupling and repulsion double heterozygote genotype frequencies.

HAPLOTYPE FREQUENCIES IN TERMS OF D. Since DAB is defined as PAB − pA pB,
by simple rearrangement we can write PAB in terms of pA pB and DAB. We can do the
same for the other three haplotypes:

PAB = pA pB + DAB

PAb = pA pb + DAb

PaB = pa pB + DaB

Pab = pa pb + Dab

(I-51)

For this case with two alleles at each locus, we might think that we need two gene
frequencies and four linkage disequilibrium parameters to predict the four haplotype
frequencies. That seems like too many. In fact if we add the first two equations, we get

PAB + PAb = pA (pB + pb) + DAB + DAb (I-52)

But the quantity in parentheses is the sum of the frequencies of all alleles at the B locus,
and so it must be 1. Making that substitution we recognize that in view of equation
(I-48) we must the have

DAb = −DAB. (I-53)

A similar derivation using the first and third equations shows that

DaB = −DAB. (I-54)

I leave it to you to persuade yourself that, since the frequencies of the four haplotypes
sum to 1, it is also true that

Dab = DAB. (I-55)

Then we can write the four haplotype frequencies in terms of only three quantities (as
we know that pa = 1− pA and pb = 1− pB):

PAB = pA pB + D

PAb = pA (1− pB) − D

PaB = (1− pA) pB − D

Pab = (1− pA) (1− pB) + D

(I-56)

This is more comforting: we knew that we had four quantities that must add to 1. Now
we have predicted them from three variables: two gene frequencies and one linkage
disequilibrium parameter.
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All of the above proofs have been for the case of two alleles at each locus. The
first proof did not refer to a or b at all. It would not have altered things at all had
there been several alternatives instead of just a and b. The principle of approach to
linkage equilibrium proportions at a rate (1− r)t holds for any number of alleles, and
for each gamete type (say A6B4) we can compute a linkage disequilibrium measure
DA6B4 = PA6B4 − pA6 pB4 , which will gradually decline to zero (or, if initially negative,
will rise to zero).

HISTORY. Although Weinberg (1909) was aware that with linkage, random associa-
tion would be approached only gradually, the algebraic treatment for two loci was first
given by Jennings (1917). The linkage disequilibrium quantity was first used by Rob-
bins (1918), though that name was not given it until the paper of Lewontin and Kojima
(1960). Hilda Geiringer (1944, 1948) was the first to prove convergence to random asso-
ciation for multiple loci; a more abstract proof was given by Reiersøl (1962), who used
incomprehensible genetic algebras.

WHAT CAUSES LINKAGE DISEQUILIBRIUM. We will see when we discuss migra-
tion that genetic admixture from parent populations that have different gene frequencies
at more that one locus will cause linkage disequilibrium. In Chapter VIII there is an
extensive discussion of the ways in which natural selection at linked loci can produce
linkage disequilibrium, especially if the fitnesses at the two loci show epistasis (that is,
interact). Later in that chapter there is also a discussion of the formation of random
disequilibria as a result of genetic drift at sites that are nearby in the genome. An under-
standing of the ways LD can arise is essential to anyone wanting to work on population
genomics.

I.11 Other Measures of Linkage Disequilibrium

Linkage disequilibrium, usually simply referred to as “LD”, is has become more widely
computed as population-level studies have become more common in genomics. But
using the quantity D to describe the extent of linkage disequilibrium between two alleles
at different loci, such as A and B, can be misleading, because there is less possibility of
large values of D the nearer the gene frequencies are to 0 or to 1. This has led to two
alternative measures that try to rescale it, D′ and r2.

The first of these was invented by Lewontin (1964a). It computes the largest value
that D could have, and divides it by the absolute value of that value. If D is positive, it
cannot exceed (1− pA)pB, and also cannot exceed pA(1− pB), because past those values
one or more of the frequencies of haplotypes Ab or aB would be negative, which is
impossible. Likewise, if D is negative, it cannot be more negative than either −pA pB or
−(1− pA)(1− pB), for beyond those values one or more of the frequencies of haplotypes
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AB or ab would be negative. Lewontin suggested scaling D by dividing by the absolute
value of the relevant limit, so that the scaled value could not be above 1 or below -1:

D′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D

min (pA(1− pB), (1− pA)pB)
if D ≥ 0

D
min (pA pB, (1− pA)(1− pB))

if D < 0

(I-57)

Although D′ is widely used as a descriptive statistic, it has what appears to be a
disadvantage. If pA = 0.1 and pB = 0.2, then a value of (say) D = 0.01 is to be scaled
by dividing by the largest possible positive value of D, which will be 0.08, to give D′ =
0.125. But if instead we had D = −0.01, it should instead be scaled by dividing by 0.02,
which gives D′ = −0.5. The sudden change of the scaling factor as D passes through 0
seems arbitrary and unnatural.

An alternative that does not have this problem is the r measure of Hill and Robertson
(1968). In effect, this codes the two alleles at each locus as 0 and 1, and computes the
correlation coefficient of these two numbers. The result is

r =
D√

pA(1− pA)pB(1− pB)
. (I-58)

This measure is often used by giving its square, r2. As r cannot lie outside the interval
between -1 and 1, r2 cannot lie outside of [0, 1]. This would seem to solve the problem,
but alas, it too has a seeming limitation. If gene frequencies at one locus are less extreme
than at the other, the value of r may not be able to reach 1 or -1. Thus in our example, if
pA = 0.1 and pB = 0.2, it turns out that the value of r cannot be greater than 2/3 or less
than −1/6. Only when the gene frequencies of the two alleles are equal at the two loci
will r be able to get as small as −1 or as large as 1.

Thus, as useful as these are as descriptive measures, each seems to have distinct
limitations. But the problem is that we have not formulated the problem in terms of
estimating or testing anything – instead we relied on intuitive feel as to which properties
were “natural”. When we try to formulate a well-posed statistical problem that these
measures solve, we are in fact led away from using any of them, and into the wonderland
of coalescent methods, which we visit in Chapter X.

I.12 Estimating Gene Frequencies

MAXIMUM LIKELIHOOD ESTIMATION OF GENE FREQUENCIES.
If we draw a sample of n diploid individuals from a random-mating population, and

wish to estimate the gene frequency pA in the population, there would seem to be several
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courses of action possible. Suppose that we sampled 100 individuals, and found 49 AA,
26 Aa, and 25 aa. We could estimate the gene frequency in the population by simply
taking the gene frequency in the sample. This gives pA = (98 + 26)/200 = 0.62. But
we could also consider that we expect the proportion of AA individuals in the sample
to be (on the average) the same as the population genotype frequency p2

A. So we could
take the observed frequency of AA, 0.49, and take its square root to get an estimate of
the gene frequency, 0.7. We could also take the square root of the observed frequency
(0.25) of aa, which gives an estimate of 0.5 for the frequency of a, and hence 0.5 for the
frequency of A. Now we have three different estimates (0.5, 0.62, and 0.7) for the same
quantity. All share one justification: as the sample size increases, the observed genotype
frequencies in the sample will approach those in the population. Thus all three of these
methods will give a gene frequency close to that in the population, if the sample size is
large. But which estimate is to be preferred when it is not?

To get an answer to this problem, we must pose the problem as a statistical one,
and use a standard statistical approach. There are a variety of these (e.g., minimum
variance unbiased estimates, minimum mean square error methods, Bayesian and em-
pirical Bayesian approaches). But one method exceeds the others in general applicability
and widespread acceptance by statisticians. This is R. A. Fisher’s method of maximum
likelihood. This is discussed in Box 1.

In this case, the data are the numbers of the genotypes observed in the sample. Sup-
pose that these are nAA, nAa, naa. The role of θ is played by the unknown gene frequency
p. We need to know how to compute Prob(nAA, nAa, naa | p). We have a sample of n
individuals, drawn from a population in which the true genotype frequencies are p2,
2p(1− p), (1− p)2. The probability of the observed numbers nAA, nAa, naa is the multi-
nomial probability

Prob (nAA, nAa, naa | p) =

(
n

nAA nAa naa

)
(p2)nAA [2p(1− p)]nAa [(1− p)2]naa. (I-59)

This can be rewritten as

Prob (nAA, nAa, naa | p) = C p2nAA+nAa (1− p)nAa+2naa, (I-60)

where C incorporates the constant terms and the factorials which depend on the n’s
but not on p. We want to vary p to maximize the likelihood. It will turn out to be
easier to work in terms of the natural logarithm of the likelihood. Since the logarithm
of a quantity increases as the quantity increases, the value of p which maximizes one
maximizes the other.

The logarithm of the likelihood is:

ln L = ln C + (2nAA + nAa) ln p + (nAa + 2naa) ln(1− p). (I-61)
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Suppose that we want to estimate a parameter, θ, and are given some data. If we have a
probabilistic model for the generation of the data, we could compute for a given value of
θ, the probability Prob(Data | θ) that the observed set of data would have arisen. (When
the data are values of continuous variables, we use instead the probability density
rather than the probability). This is not to be confused with Prob(θ | Data), which
would be the probability of a particular value of θ, given the data. We usually do
not have enough information to find that. (For more on this distinction, consult a text
of mathematical statistics concerning the distinction between Bayesian and maximum
likelihood methods).
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The likelihood curve for the case of tossing a coin with probability p of
Heads, when we toss 11 times and get 5 Heads. The likelihood curve is the
product of 5 factors of p and 6 factors of (1− p), so that it is p5(1− p)6. The
maximum likelihood is achieved at p = 5/11, which is 0.454545, indicated
by the dashed arrow. Note that this is not a distribution: the area under the
curve is not 1, as the curve never gets much higher than 0.000511.

The method of maximum likelihood is to vary θ until we find that value which max-
imizes Prob(Data | θ), the probability of the data, given θ. Prob(Data | θ) is referred
to as the likelihood of θ. Considered as a function of the data, it is a probability. But
for a fixed set of data, as a function of θ, it is called a likelihood. The two terms (prob-
ability and likelihood) that are barely different in English usage, become distinct and
specific in statistical use. The maximum likelihood method has a number of desirable
properties. In most well-behaved cases, as the sample size increases, the estimate will
approach the true value of θ (a property called consistency). For typical cases with a
large sample size, the variance of the estimate of θ around the true value is less under
the ML method than under any other (this property is called efficiency). The estimate
is not necessarily unbiased (that is, the average estimate of θ on repeated sampling may
not be exactly θ), but the amount of bias declines as sample size increases.

Box 1: The method of maximum likelihood

31



If we plot ln L as a function of p, when it reaches the maximum, the slope of the
curve will be zero. Trying to find the value of p at this point, we take the derivative of
(I-61) and equate it to zero. The term C does not contain p, so:

d ln L
dp

=
2nAA + nAa

p
− nAa + 2naa

1− p
= 0. (I-62)

The value of p which solves this equation is, after a few straightforward algebraic
rearrangements,

p̂ =
2nAA + nAa

2nAA + 2nAa + 2naa

=
2nAA + nAa

2n
.

(I-63)

The numerator is simply the number of A genes observed in the sample. The denom-
inator is the total number of genes. So the estimate is the observed fraction of A genes. In
the example just given, this was 0.62, so that the maximum likelihood method selects one
of the three methods as preferable. This selection is not arbitrary: R. A. Fisher showed
that maximum likelihood estimates make more efficient use of data than do others. For
large amounts of data, they have at least as small a variance as do other estimators.

CONFIDENCE INTERVALS. The maximum likelihood estimate is a point estimate; it
gives you a single number, but we really want an interval estimate giving upper and
lower bounds on p. If we want to put confidence limits on p, there are several possible
approaches:

Using the curvature of the log-likelihood surface. If we can compute the
second derivative of the likelihood, and evaluate it at the point p̂, there is a well-known
formula which estimates the variance of p̂, from the second derivative of the likelihood:

Var (p̂) = −1

/[
d2 ln L

dp2

]
p = p̂

(I-64)

The 95% confidence limits on p will be approximately found by taking the standard de-
viation σ = [Var (p̂)]1/2, with the limits being ±1.96σ. The logic of this formula, derived
by Fisher, involves approximating the binomial distribution by a normal distribution. It
will be inaccurate when p is near 0 or 1, since then the confidence limits it calculates on
p can exceed 0 or 1.

Using the distribution of p̂. A second, and simpler approach looks directly at the
formula for the estimate p̂, and finds its variance from the multinomial distribution (I-59)
of nAA, nAa, and naa. Here we are helped by a simplification: p̂ is simply the fraction of
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the 2n genes in the sample which are A. If the population is in Hardy-Weinberg propor-
tions (which we assume) each gene sampled independently has probability p of being A.
In estimating p we are simply estimating the parameter of a Binomial distribution, based
on a sample of 2n genes. If we are willing to approximate the binomial distribution by a
normal distribution, we can obtain 95% confidence limits from p̂± 1.96σ, where σ is the
standard deviation of the underlying binomial distribution. This is obtained from:

σ2 =
p(1− p)

2n
. (I-65)

Of course, this can only be calculated once we know the true underlying value of p. But
this is precisely what we are trying to estimate! We can use our estimate p̂ in (I-65) to
get an approximate confidence interval of p. The interval will sometimes exceed 0 or
1. If the observed p̂ is zero, we estimate σ = 0 from (I-65), and find that (apparently) p̂
is not an estimate, but is exact! This cannot really be so: we are being betrayed by the
inaccuracy of the normal approximation, and by the fact that we are using an estimate p̂
rather than the true p in (I-65). An improved approximation is

sin2

[
(sin−1√p̂)± 1.95996

√
1

8n

]
, (I-66)

with the quantity in brackets being kept confined to the interval (0, π/4). (Note that the
angles in (I-66) are expressed in radians rather than degrees). This is still an approxima-
tion. For a truly correct confidence interval, we can either make use of published tables
of confidence limits in statistical tables (using 2n as the sample size) or can use tables
of the binomial distribution, as follows. For the upper confidence limit, we find a value
of p such that only 2.5% of the binomial distribution will lie at or below the observed
sample gene frequency p̂. The lower limit will be the value of p such that only 2.5%
of the binomial distribution is at or above the observed p̂. No approximation is then
involved.

The exact confidence interval. A more exact confidence statement can be made
using the binomial distribution. Suppose that we can exactly compute tail probabilities
for the binomial, using a computer program. Given the observed numbers of A and
a alleles sampled, we can calculate the smallest value of p such that the probability of
getting less than this number of A alleles in a sample of that size is less than or equal
to 2.5%. We can also calculate the largest value of p such that the probability of getting
more than the observed number of A alleles is less than or equal to 2.5%. These are the
bounds of a confidence interval on p.

For example, if we sample 100 copies at a locus and find that 96 of them are A, these
exact confidence limits are 0.914824 and 0.983568. We can contrast this to the normal
approximation, which gives limits of 0.93284 and 0.98716. The arc sine approximation
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(I-66) comes closer, giving 0.928518 and 0.982661. The exact and arc sine approximations
cannot get outside the allowable range [0, 1]; the normal approximation can.

This is only one of the ways to construct an exact confidence interval. One other one
tries to find the shortest such interval, by allowing a probability of slightly more than
2.5% in one tail and slightly less than 2.5% in the other. We will not go further into that
here.

If more than two alleles are involved, the situation is more complex. When all geno-
types can be identified, as above, the procedures parallel the above ones. The estimate
of each allele is simply its fraction among the 2n genes in the sample. The estimated
variance of allele A is simply

σ2
A =

pA(1− pA)

2n
. (I-67)

Its covariance with allele A′ is

Cov (pA, pA′) = −pA pA′/(2n). (I-68)

It is also possible to compute joint confidence intervals on the frequencies of two or more
alleles, but we will not consider that further here.

GENE COUNTING (EM ALGORITHM). When not all genotypes can be distinguished,
we can use a general technique known as gene-counting. This can be illustrated by using
the ABO blood group alleles as examples. The relationship between genotypes and
phenotypes is (if we ignore the two types of A alleles):

Genotypes Blood Type Number Phenotype Frequency

AA, AO A nA p2
A + 2pA pO

BB, BO B nB p2
B + 2pB pO

AB AB nAB 2pA pB

OO O nO p2
O

(I-69)

If we somehow knew how many of the nA individuals in our sample of blood type A
were AA and how many AO, our estimate of pA would be the observed frequency of A

pA =
2nAA + nAO + nAB

2n
. (I-70)

But we do not know nAA and nAO separately: we cannot tell these genotypes apart.
If we knew pA and pO, then we expect, from the relative Hardy-Weinberg frequencies
that on the average p2

A/(p2
A + 2pA pO) of all type A individuals are really AA, and the

remainder, 2pA pO/(p2
A + 2pA pO), will be AO. These are only expectations, and will not
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necessarily apply in any given sample. In any case we do not know pA and pO. Note that
we can remove a factor of pA from the numerator and denominator of these fractions,
which simplify to pA/(pA + 2pO) and 2pO/(pA + 2pO). The gene-counting method takes
the seemingly senseless approach of using these expectations, themselves based on the
gene frequencies that we do not know and are trying to estimate, to divide the type A
individuals into AA and AO according to the above expressions, and doing the same for
BB and BO. Having done so, we then pretend that these numbers (such as the number of
type A individuals that are inferred to really be AA) are observed numbers, and estimate
the gene frequencies by counting of alleles. The estimates are

pA =

[
2
(

pA + pO

pA + 2pO

)
nA + nAB

]/
(2n),

pB =

[
2
(

pB + pO

pB + 2pO

)
nB + nAB

]/
(2n),

pO =

[(
pO

pA + 2pO

)
nA +

(
pO

pB + 2pO

)
nB + nO

]/
n.

(I-71)

These equations have one major problem: we cannot compute pA, pB, and pO (on the
left side of the equations) until we know them (to use on the right side)! One way to
resolve this difficulty would be to consider (I-71) as a set of equations whose unknowns
are pA, pB, and pO, and solve them. An easier (and equivalent) technique is to start with
a set of guesses at pA, pB, and pO, then use them on the right side of (I-71) to compute
new estimates of pA, pB, and pO. These are then used to compute newer estimates, and
so on until the process converges. This is a relatively easy process, which can be carried
out on a small computer.

This procedure seems to be merely another exercise in ad-hocery, of equating vari-
ables with their expectations. Normally, such techniques are recipes for confusion, un-
informed by valid statistical principles. In this case, and in analogous ones, it turns out
that the estimates of pA, pB, and pO obtained are actually the maximum likelihood esti-
mates! In fact, the more general gene-counting technique usually has this property. This
technique consists of using estimates of the gene frequencies to divide up phenotype
classes into their underlying genotypes, according to expected fractions computed using
the guesses of the gene frequencies. These reconstructed genotype numbers are then
used as if they were observed data to count genes and obtain thereby new estimates of
the gene frequencies. The process is then repeated until it converges.

This technique was introduced by C. A. B. Smith (Ceppelini, Siniscalco, and Smith,
1955). For a general treatment see the paper of Smith (1957). Dempster, Laird, and
Rubin (1977) have introduced a more general version of gene counting called the “EM
Algorithm” which has become widely-used in statistics. The gene counting technique
often converges slowly, but is much less vulnerable to bad choices of initial guesses than
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are other iterative methods of finding maximum likelihood estimates. It is a good way
of starting the search for the maximum likelihood estimate.

I.13 Testing Hypotheses about Frequencies

The preceding section considered the estimation of gene frequencies. The natural statis-
tical counterpart of estimation is testing. Some of the hypotheses we may be most inter-
ested in testing include Hardy-Weinberg proportions, linkage equilibrium, and equality
of gene frequencies in different populations. This section will briefly cover the first two
of these. The third will be covered in a later chapter when we consider the effects of
migration.

In testing for departure from Hardy-Weinberg proportions, we have a sample of
individuals from a population and have scored their phenotypes. We have a genetic
model which generates expected phenotype frequencies from gene frequencies under
the assumption of Hardy-Weinberg proportions. The problem reduces to comparing
observed and expected frequencies in a sample from a multinomial distribution (such
as I-59), where the gene frequencies are not known but must be estimated. Two closely
related methods, which should give nearly the same result, are the chi-square test of
goodness of fit and the likelihood ratio test. The chi-square test can in fact be shown to
be an approximation to the likelihood ratio test.

CHI-SQUARE GOODNESS-OF-FIT TEST. To do a chi-square test of goodness of fit
we first estimate gene frequencies, then use them to generate expected numbers of the
different observed phenotypes. We then compute the chi-square statistic:

χ2 = ∑
i

(ni − Ni)
2

Ni
, (I-72)

where the observed number in class i is ni, the expected number is Ni, and summation
is over all classes i. If the number of classes is k and the number of independent gene
frequencies estimated is m, this chi-square statistic should have (to good approximation)
a Chi-Square distribution with k− 1−m degrees of freedom. We can use standard tables
of this distribution to test whether the value of χ2 is too large to be the result of sampling
error. In doing so we are, of course, doing a one-tailed test. It is unfortunate that the
statistic and the distribution with which we compare it have both come to be known as
“chi-square”. It is important to distinguish between them. Here the one will be called
the “chi-square statistic” and the other the “Chi-Square distribution.”

THE LIKELIHOOD RATIO TEST. This proceeds similarly, starting with the estimation
of the gene frequencies and the computation of the expected numbers Ni. In principle,
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what it computes is the ratio of the likelihood of the sample allowing the expected geno-
type frequencies to be completely arbitrary (and to be estimated directly from the sam-
ple), L1, and the likelihood L0 when the expected genotype frequencies are constrained
to be in Hardy-Weinberg proportions. The likelihood ratio test, which you will find
described in mathematical statistics textbooks, but in all too few introductory statistical
“cookbooks”, tests whether the likelihood is significantly higher under the hypothesis of
no constraint than under the null hypothesis of Hardy-Weinberg proportions. To do it
one calculates the the statistic 2 ln(L1/L0). This should approximately have a Chi-Square
distribution, the number of degrees of freedom being the difference between the number
of parameters estimated under the alternative and the null hypotheses.

In practice, this turns out to be rather easy to do. If there are k observed classes
then there are k− 1 parameters being estimated under the alternative hypothesis; these
are the k − 1 for the genotype frequencies. We do not have k parameters because they
must sum to 1. Under the null hypothesis we have m parameters being estimated. The
difference between these is k− 1− m, which is the same number of degrees of freedom
we used when we computed the chi-square statistic (I-72). Twice the log of the likelihood
ratio turns out to be simply

G = 2 ln(L1/L0) = −2 ∑
i

ni ln(ni/Ni), (I-73)

which is just as easy to compute as the chi-square statistic (I-72). We compare its value
with the significance levels of the Chi-Square distribution in a one-tailed test. Thus both
statistics, the chi-square statistic and the likelihood ratio test statistic, are expected to
have approximately the same distribution.

One difficulty that arises is that if expected numbers in some of the classes are small,
the approximation starts to break down. The usual rule of thumb is that it cannot
be trusted if the expected number in any class is less than 5. This seems to be an
overly conservative value; both tests usually do not break down until expected numbers
approach 1. If you encounter small expected numbers in any class, you can combine
that class (adding up the observed numbers and also the expected numbers) with some
other class. This reduces the number of observed classes k.

Here is a sample data set and an example of both tests. Suppose that we had observed
genotypes AA, Aa, and aa in a sample of 1000 individuals in numbers 520, 426, and 54.
Our best estimate of the gene frequency of A is the observed frequency 0.733. With that
gene frequency the expected Hardy-Weinberg frequencies are 0.537, 0.391, and 0.066.
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The observed and expected numbers are

Genotype Observed number Expected number
AA 520 537.29
Aa 426 391.42
aa 54 71.29

Total : 1000 1000.00

The chi-squared statistic is χ2 = (520− 537.29)2/537.29 + (426− 391.42)2/391.42 +
(54− 71.29)2/71.29 = 0.556 + 3.055 + 4.193 = 7.804. The number of degrees of free-
dom is 3− 1− 1 = 1. The 95% significance level of the Chi-Square distribution for a
one-tailed test with one degree of freedom is 3.841, so that we can reject the null hypoth-
esis of Hardy-Weinberg proportions; the observed excess of heterozygotes is significant.

The likelihood ratio test uses the same observed and expected numbers, computing
instead −2× [520 ln(520/537.29) + 426 ln(426/391.42) + 54 ln(54/71.29)] = −[−17.01 +
36.06− 15.00] = 8.11. The number of degrees of freedom is again 3− 1− 1 = 1. The one-
tailed 95% value 3.841 is again exceeded. The two tests give very similar numbers in this
case, and they reach the same conclusion, that the excess of heterozygotes is significant.

TESTING LINKAGE DISEQUILIBRIUM. When we test linkage disequilibrium, there
are a number of cases that have to be considered. If we can observe haploid ga-
metes, the test is quite simple. For the two-allele case, we have four observed numbers,
nAB, nAb, naB, and nab. We can estimate the gene frequencies of A and a by direct count-
ing, and generate expected values for the numbers of the four gametes. As in the case
of a single locus, the data is assumed to be a sample from an infinite population, so that
the observed numbers follow a multinomial distribution with some expectations. Com-
puting the four expectations under the null hypothesis of no linkage disequilibrium, we
have four observeds and four expecteds, and can compute either the chi-square statistic
or the likelihood ratio statistic. The number of degrees of freedom is 4− 1− 2 = 1, since
we have estimated two parameters, the gene frequencies.

Alternatively, we could imagine ourselves making a 2× 2 table, placing each gamete
in a row according to whether or not is has the A allele, and in a column according to
whether or not it has the B allele:

B b
A nAB nAb
a naB nab

(I-74)

If we employ a standard chi-square heterogeneity test on this table, it will in fact be
exactly the same test as the chi-square test for linkage disequilibrium! If we compute the
statistic G (e.g. Sokal and Rohlf, 1969, Chap. 16) instead of χ2, we will simply be using
the likelihood ratio statistic instead of the chi-square statistic.
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Often we will not observe the gametes directly, but instead will have to infer their
identities from diploid zygotes in which we cannot tell an AB/ab double heterozygote
from an Ab/aB. If we could distinguish these, then we could reconstruct the gametes
from which each individual arose. For example, an AABB arose from two AB gametes,
and an AaBB from one AB and one aB. Each sample of n diploid individuals is then
exactly equivalent to a sample of 2n haploid gametes, and we can test those to see
whether there is evidence for D �= 0. If we cannot divide the double heterozygotes into
the coupling and repulsion classes we have nine observable phenotypes, which we can
regard as being arranged in a 3× 3 table:

BB Bb bb
AA nAABB nAABb nAAbb
Aa nAaBB nAaBb nAabb
aa naaBB naaBb naabb

(I-75)

On seeing this arrangement, it is tempting to test linkage disequilibrium by testing inde-
pendence of rows and columns in this table. In doing so we would in effect be assuming
arbitrary genotype frequencies at both loci, while testing linkage disequilibrium. How-
ever, we would be testing more than we intended. For example, if heterozygosity at
locus A were not independent of heterozygosity at locus B (for example, if locus A were
heterozygous only when locus B was not), the test could be significant.

The matter is complex; there are many possible hypotheses that could be tested with
these data. The reader is referred to the papers by Hill (1974) and Weir (1979). A solid
grasp of the theory of likelihood ratio tests will be helpful to anyone setting out to test
for the presence of linkage disequilibrium.

Exercises

1. Suppose that at a two-allele locus in a random-mating diploid population we find
32% of the individuals to be of the aa phenotype. What fraction of the individuals
are Aa ?

2. In a population where the frequency of a is 0.4, what proportion of aa individuals
have neither parent aa? One parent aa? Both parents aa ? Assume that both parents
and offspring were produced by random mating.

3. An obtuse researcher is investigating a locus with two alleles in a random-mating
population, with no selection, migration, etc. (i.e., Hardy-Weinberg proportions
are expected). The researcher finds in a population 44% heterozygotes and 56%
homozygotes, but forgets to distinguish between the two kinds of homozygote.
What can the researcher say about the gene frequency of allele A?
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4. Suppose there are two populations that have genotype frequencies
AA Aa aa

Pop. 1 0.64 0.32 0.04
Pop. 2 0.09 0.42 0.49

If a researcher draws a very large sample, thinking it is coming from a single
population, but it is actually composed of individuals two-thirds of whom came
from population 1, and one-third from population 2,

(i) Are the two original populations each in Hardy-Weinberg proportions?

(ii) If these individuals are simply collected together, but have no time to inter-
breed, what will the genotype frequencies in the sample expected to be?

(iii) What will the gene frequencies be in that sample?

(iv) If we mistakenly assume that the sample is from a single random-mating pop-
ulation, and want to see whether it is in Hardy-Weinberg proportions, if we
use the sample gene frequency to examine that, what proportion of heterozy-
gotes will we expect to see?

5. A locus has three alleles, B′, B, and b. B′ is completely dominant to B, and both of
these are completely dominant to b. What are the frequencies of the three alleles
in a random-mating population which has these phenotype frequencies: 50% B′-,
30% B-, and 20% bb ?

6. We have a sample of 190 individuals from a diploid population and have genoty-
oped them at a locus which has three alleles, A1, A2, and A3. We find the following
numbers in our sample:

A1A1 A1A2 A1A3 A2A2 A2A3 A3A3
20 35 47 62 14 12

(i) What are the gene frequencies of these three alleles in the sample?

(ii) At these gene frequencies, what genotype frequencies will be expected to result
from random mating?

(iii) Are there more or fewer heterozygotes in this sample than expected?

7. In a sample of 200 individuals from a population which is expected to be at Hardy-
Weinberg equilibrium for a locus with 3 alleles, the numbers of the 6 possible
genotypes found are
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Genotype Number

A1A1 76
A1A2 54
A1A3 33
A2A2 18
A2A3 16
A3A3 3

Calculate the gene frequencies of the three alleles, and what numbers of the six
genotypes you would have expected from those frequencies. Without doing a for-
mal statistical test, can you see any apparent discrepancies between the numbers
in the sample and Hardy-Weinberg proportions? Where?

8. Suppose that at a sex-linked locus, the frequency of a hemizygotes among males is
0.2 and the frequency of aa homozygotes among females is 0.1. Assuming that
random mating with different gene frequencies in the two sexes produced the
current generation, figure out what the gene frequencies were in those two sexes.
What will the genotype frequencies be in the next generation if it too is produced
by random mating?

9. Suppose that a sex-linked locus has two alleles, A and a. We look at a population
and find among females:

AA Aa aa
0.95 0.04 0.01

while among males:
A a

0.94 0.06
Note that we have not said that the gene frequencies in the parents of these indi-
viduals were the same in both sexes – they might be different.

(i) Does the population appear to be the result of at least one generation of random
mating? (Hint: consider whether random mating with different gene frequencies in
the two sexes can produce exactly those frequencies).

(ii) If it reproduces for one more generation by random mating of these females
with these males, what genotype frequencies do we expect to see in the off-
spring?

10. Suppose that we have two populations, each at linkage equilibrium for two un-
linked loci. Suppose that the gene frequencies are:

Allele
Population A a B b

1 0.6 0.4 0.3 0.7
2 0.3 0.7 0.5 0.5
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Suppose we produce an F1 population by crossing the two populations (mating
males from one population with females from the other), and an F2 by mating at
random among the offspring of all of those F1 individuals. What will the linkage
disequilibrium value DAB be in gametes produced by the F1 individuals and in
gametes produced by the F2 individuals?

11. Suppose that in a population produced by random mating, we have two alleles at
each of two loci, with pA = pB = 0.5, and DAB = 0.2. Let half of the individuals
be females and half males. The recombination fraction between the loci is 0.3 in
females and 0.1 in males. What will DAB be in the offspring generation in terms of
DAB in the current generation? What will be the frequency of genotype AA BB in
the offspring generation?

12. Suppose that we have a large diploid population at linkage equilibrium at two loci,
each with two alleles. At the first locus the frequency of allele A is 0.1, and of allele
a 0.9. At the second locus the frequencies of alleles B and b are respectively 0.2 and
0.8. A strongly favorable mutation at a nearby locus occurs in an AB haplotype,
and natural selection brings its descendants rapidly up to a haplotype frequency of
0.5. Suppose that there has been no recombination among these haplotypes during
this rise.

(i) What will the haplotype frequencies in the population be at that point? (Hint:
simply make an equally-weighted average of the haplotype frequencies in a population
that is all AB, and the original population which had gene frequencies 0.1 and 0.2,
and had no linkage disequilibrium).

(ii) In this population, what is the value of D for alleles A and B?

(iii) What is the value of D′ ?
(iv) Now suppose that this “selective sweep” continues until we reach the point

where the favorable mutation is now at frequency 0.9, still with no recombi-
nation having occurred. What are the haplotype frequencies? (Hint: now it’s
a weighted average with weights 0.9 : 0.1). What is D ? Has it increased? What is
D′ ? Has it increased?

13. When we sample 100 individuals from a random mating population, we observe
63 AA, 27 Aa, and 10 aa. Put 95% confidence limits on the frequency of A. What
have you had to assume?

14. Among 100 individuals, we observe 10 aa’s. Assuming random mating, how do
you place 95% confidence limits on the frequency of A?

15. We sample 200 individuals from a diploid population and find 89 AA, 57 Aa, and
54 aa individuals. Test the hypothesis that this is a sample from a population that
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is Hardy-Weinberg proportions.

16. We sample 100 individuals from a diploid population and find the following num-
bers of genotypes at two two-allele loci:

BB Bb bb
AA 0 25 0
Aa 25 0 25
aa 0 25 0

Use a 3× 3 heterogeneity chi-square test to test whether the genotypes at these two
loci are distributed independently of each other. See if you can also make an esti-
mate of the linkage disequilibrium DAB between these loci. Is there a discrepancy
between these two conclusions? Why or why not?

17. In a computer simulation of mutation and genetic drift in a stretch of 100,000 bases
of DNA, with rates of mutation and recombination typical of human populations,
I found 304 SNP loci (single nucleotide polymorphisms). Here are 10 sampled
diploid genotypes, each a row, each scored at the same set of four of the SNP loci.
The alleles are called 0 and 1 – these are actually two different bases. The genotypes
are unphased – we do not know which parent each copy came from:

11 00 00 01
11 01 01 01
01 00 00 01
11 01 00 01
01 00 00 00
11 00 00 01
01 01 00 01
00 00 01 01
01 00 00 00
00 00 00 00

(i) Resolve these 10 diploid genotypes into haplotypes as well as you can. (First,
resolve those that have one or fewer heterozygous loci, as you can always do
that. Then try to resolve the others so as to come up with more of those same
haplotypes, to the extent you can). Do this “by eyeball” and list the haplotypes
you get, and how often each one occurs in this sample which must be of 20
haplotypes.

(ii) Compute the gene frequencies at the 4 SNP loci.

(iii) Make a table of values of D between each pair of loci. (It should be lower-
triangular). It will have 6 entries.
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(iv) Also make tables of the relative linkage disequilibrium measures D′ and r.

(v) The loci are in this order left-to-right on the genome. Do you see any sign
(looking at the D′ values for extreme LD) that there are “haplotype blocks”?

Complements/Problems

1. Imagine a multiple-allele locus with gene frequencies p1, p2, . . . , pn. In terms of
these quantities, after random mating, what fraction of copies of allele Ai occur in
heterozygotes? What is the overall fraction of all copies that occur in heterozygotes?
(Be sure to consider what is supposed to be in the denominator when answering
each of these questions).

2. Suppose that there are n equally-frequent alleles. In terms of n, what will be the
proportion of individuals in the population that are homozygotes? Heterozygotes?

3. Suppose we draw a “panel” of 20 diploid individuals from a population and pro-
ceed to discover SNPs (single nucleotide polymorphisms) by looking for sites that
vary and have more than one copy of the rare allele. We do that to exclude sites that
might simply have a sequencing error. Suppose that about one site in every 1000
has a true SNP, and the rate of error in sequencing is 0.002 per copy sequenced.
Further, suppose that the true SNPs all happen to have their minor allele gene fre-
quency be p, and sequencing error makes a copy change to the other one of the
two alleles.

(i) For a site which has only one allele in the population, so that all the variation
in the sample is due to sequencing error, what is the probability, for a single
copy, that this copy is scored as having the other allele?

(ii) Using that, in the sample of 20 diploid individuals, what is the probability
of seeing more than one copy of the less common allele? Hint: compute the
probability of seeing none, and also the probability of seeing one.

(iii) At a site which has a true SNP, whose rarer allele has population frequency p,
when sequencing error is taken into account, what is the probability that one
copy is scored as having that rarer allele?

(iv) At that true SNP site, what is that probability of seeing more than one copy of
that rarer allele?

(v) Taking into account that it is 999 times as likely that any site is not a true SNP
than that it is a true SNP site, what fraction of the putative SNPs we find will
be true ones?
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(vi) What would that fraction be if we included as putative SNPs also sites where
the minor allele only occurred once?

(v) For p = 0.001 and for p = 0.01 what is the fraction computed in each of these
two cases?

Hint for all these: If an allele has expected frequency q, in a sample of 20 diploids
the chance that it shows up k times is(

40
k

)
qk(1− q)40−k.

Note that you will need to compute the probability of 0 or 1 occurrences of an
allele (or an error), and also the probability of 39 or 40 copies of that allele, and
then subtract all these from 1, in order to get the probability that more than there
are more than one occurrence. The combinatorial factor for each of these terms will
just be 1 or 40.

4. Suppose that we have a large diploid population which is in Hardy-Weinberg pro-
portions for two alleles A and a, with gene frequency p of A. We draw a sample con-
sisting of n individuals. We estimate the gene frequency from the gene frequency
in that sample. From it, we are going to predict the proportion of heterozygotes in
that sample.

• Suppose that the sample has n = 1, that is, it consists only of a single in-
dividual. Are we as likely to see an excess of heterozygotes as a deficit of
heterozygotes? Hint: work out all possibilities – there are only 3 of them.

• Now consider samples of size n = 2. There are only 9 possibilities, which are
not equally probable. Calculate the excess of heterozygotes over the prediction
from the sample gene frequency for each case, and make a weighted average
of this, using the sample probabilities computed from the true gene frequency
(which the researcher would not know). Is the average excess of heterozygotes
zero?

• In a sample of n diploid individuals, in which of the 2n copies, k of them are
allele A, what will be the predicted proportion of Aa individuals, computed
from the observed gene frequency using Hardy-Weinberg proportions, as a
function of n and k? If we draw two copies without replacement from that
sample, what is the probability that the resulting individual is Aa? Are these
the same? Does this predict the results you found for the two previous cases?

(This problem is based on a paper published in 1949 by Howard Levene).
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5. Suppose that we have a locus with two alleles, linked to the sex-determining locus
in a haploid organism with random mating. (The sex-determining locus has two
alleles, a female-determining allele and a male-determining allele, and each gener-
ation females and males mate, form a diploid, and then the sex-determining alleles
segregate out in the resulting haploids). The recombination fraction between our
locus and the sex locus is r. If the initial gene frequency of A in one sex is p1 and
in the other p2,

(a) What will be the value of p1 and p2 in the next generation?

(b) What will the value of the average of p1 and p2 be? How does it change from
generation to generation?

(c) What will the value of the difference between p1 and p2 be? How will it change
from generation to generation?

(d) From these, work out what will be the values of p1 and p2, t generations from
now.

(e) What will be the ultimate values of p1 and p2 in terms of their initial values.

6. Suppose we have a haploid population with two alleles, A and a, whose frequencies
are p and 1− p. If a fraction s of the gametes mate only with others having the
same allele, the remaining 1− s combining at random

(i) What will be the genotype frequencies in the diploid stage?

(ii) What will be the gene frequencies in the next haploid stage?

7. If we have two populations, with a three-allele locus, find two sets of gene frequen-
cies such that if we cross males from one population randomly with females of the
other, there will be fewer A1A2 heterozygotes in the first-generation cross than in a
simple mixture of the two populations.

8. In a population with overlapping generations, in which the males are initially in
Hardy-Weinberg proportions at gene frequency pm, and females are in Hardy-
Weinberg proportions at gene frequency p f ,

(i) What are the equations for change in pm and p f ?

(ii) What will be the departure from Hardy-Weinberg proportions in the whole
population at time t?

9. If we have a two-allele locus and two populations, one at Hardy-Weinberg propor-
tions with gene frequency p1 and the other at Hardy-Weinberg proportions at gene
frequency p2,

What is the frequency of Aa heterozygotes
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(i) in a simple 50:50 mixture of individuals from population 1 and population 2?

(ii) in a offspring of a cross between males of population 1 and females of popula-
tion 2?

(iii) in offspring produced by random mating of those offspring?

What is the algebraic relationship between these three quantities (i.e., can one of
them be predicted given only the other two and not the gene frequencies)?

10. Suppose that a chromosome has been duplicated so that where there was once one
locus, there are now two unlinked loci, each with two alleles A and a. We cannot
distinguish which locus contributed an A or an a to a genotype. The two loci are
each diploid and they are in linkage equilibrium with each other. At the first locus
the gene frequency of A is p1, and at the second locus the gene frequency of A is p2.
In terms of those two quantities, what are the expected frequencies of genotypes
with 4, 3, 2, 1 and 0 A’s? Note that we cannot tell the difference between, for
example, AAaa and AaAa, so that they both contribute to the genotypes that have
2 A’s.

11. Suppose that we have partial sex-linkage in a diploid organism, with a sex locus
with two alleles (X and Y), and a nearby locus with two alleles (A and a) which has
recombination fraction r with the sex locus (gene copies at this locus are present
on both the X and the Y), what will be the equation of change of frequencies from
one generation to the next? (Hint: you will need to follow two gene frequencies). Do
you need to assume random mating for this calculation?

12. With a recessive sex-linked gene (in an ordinary XX-XY system) with gene fre-
quency p, what fraction of affected individuals (homozygous AA females or hem-
izygous AY males) are female? (Assume random mating, and that the population
has reached an equilibrium genetic state and has 1:1 sex ratio).

13. In an autosomal locus with an allele a whose frequency is p, what fraction of
all extant copies of the a allele in a random mating population are located in aa
homozygotes?

14. For an autosomal locus in a random-mating population, where aa individuals are
affected and the gene frequency is p, what fraction of aa individuals have both of
their parents affected? One affected? Neither affected?

15. Suppose that we have two unlinked autosomal loci with two alleles each, so that
their recombination fraction is r = 0.5. Suppose that the initial population con-
sists entirely of AB/ab double heterozygotes and thereafter reproduces by random
mating.
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What will DAB be in the initial population? In its offspring? How does this com-
pare with what we expect from the formula DAB(t) = (1− r)tDAB(0)? Why the
discrepancy?

16. With three loci, each with two alleles, see if you can find a set of gamete frequencies
(there are 8 possible gametes) which has DAB = 0, DBC = 0, and DAC = 0, but
where the gametes are not in linkage equilibrium, in that, for example, PABC �=
pA pB pC. Can we completely determine the gamete frequencies by specifying pA,
pB, pC, DAB, DBC, and DAC? Show by examples whether or not this is possible.

17. Suppose that we have two autosomal loci, with no gene or gamete frequency dif-
ferences between the sexes, but with different recombination fractions r f and rm,
in the two sexes. Assuming random mating, how will DAB change with t?

18. (Harder) What are the equations for the decline of linkage disequilibrium at a sex-
linked locus, if we have the same initial gamete frequencies in all X-bearing ga-
metes, whether male or female (assume that there is no crossing-over between X
and Y chromosomes, and that the genes are not present on the Y chromosome) ?

19. If we have two populations each at linkage equilibrium with gene frequencies (re-
spectively) of pA, pB, and pA′ , pB′ , what will DAB be in the gametes arising from
cross between males from one population and females from another, in terms of
the recombination fraction?

20. Take a population of gametes segregating for two alleles at each of two loci. For
each gamete compute two numbers, x and y, where

x = 0 if the gamete is a, 1 if it is A.
y = 0 if the gamete is b, 1 if it is B.

In terms of pA, pB, and DAB, what is the variance (over gametes) of x? of y? What
is the covariance of x and y? The correlation between x and y?

21. If we have two loci, one with n1 alleles and the other with n2 alleles, there are n1 n2
different pairs of alleles, and there will be a linkage disequilibrium parameter for
each such pair. In view of the fact that the frequencies of the haplotypes containing
each allele must sum to the frequency of the allele, and in view of the fact that the
frequencies of all haplotypes must sum to 1, how many of these n1 n2 linkage
disequilibrium parameters can really be varied independently. (Hint: make sure
your logic works for the two-allele case).

22. In a population with N haploid individuals, suppose that at a locus there is one
copy of allele A, the rest of the copies being of allele a. At another locus, there is
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only one copy of of allele B, the rest being allele b. If allele B is placed on one of
the haploid genomes at random,

• What is the probability that the linkage disequilibrium value D is positive?
What is its value in that case?

• What is the probability that the linkage disequilibrium value D is negative?
What is its value in that case?

• Can D be zero?

• What is the average value of D (weighting the positive and negative values by
their probabilities).

• What is the variance of D?

23. For three loci, each with two alleles possible, can we find a set of four (out of
the eight possible) haplotypes, such that when these four are equally frequent all
three pairwise values of D (namely DAB, DAC and DBC) are zero. Compare this to
the case where all eight haplotypes are equally frequent. Do these differ in gene
frequencies? In values of D? In view of the answers to these, is it possible to write
a formula for a haplotype frequency in terms of the gene frequencies at the three
loci, together with the values of D for the three pairs of loci?

24. In a case with 10 two-allele loci, there are 1024 different possible haplotypes. If

• the frequencies of all of these sum to 1, and

• for each of the ten loci, we can add up the frequencies of all haplotypes that
contain one allele (at that locus) and it will sum to the gene frequency, and

• For each of the 45 pairs of two loci, we can add up the frequencies of all of
the haplotypes that have the one given allele at each of the two loci (such as
A and g), and this will be predicted by an equation analogous to (I-56).

How many quantities does that give us to predict the 1024 haplotype frequencies?
By counting “degrees of freedom”, how many more quantities (in fact, higher-
order linkage disequilibrium parameters) will we need to predict them all? How
does this compare to the sum of the number of triples of 10 loci, plus the number
of quadruples, plus the number of quintuples, and so on up to 10-tuples?

25. Suppose we take a sample from a random-mating population, where we can detect
a recessive phenotype, so that there are two phenotypes, which we can call A-
and aa. We find naa individuals with the aa phenotype, and nA− individuals of
the A- phenotype. What is the maximum likelihood estimate of pa? What are the
equations we would use to estimate pa by the gene counting technique? Do they
lead to the maximum likelihood estimate?
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26. Show that the likelihood ratio test of the hypothesis that the genotypes at a two-
allele locus are in Hardy-Weinberg proportions is in fact identical to the G statistic
of goodness of fit (I-73).

27. How would we construct a likelihood ratio test of Hardy-Weinberg proportions at
the ABO blood group locus? How many degrees of freedom would the test have?

28. Given the numbers of the nine genotypes in a sample from a diploid population
with two two-allele loci, and assuming that the two loci are unlinked, so that the the
recombination fraction is r = 0.5, what are the frequencies of the four gamete types
among the haploid gametes produced by this sample? Compute DAB for these
gametes in terms of the nine genotype numbers. If the genotypes were sampled
from a population produced by random mating, with an unknown true value of
DAB, what is the expectation of this estimate of DAB in terms of the true unknown
value? If we try to estimate DAB in the population of gametes that gave rise to our
diploid individuals by doubling the DAB in the gametic output of our sample, will
we be making a biased or an unbiased estimate?
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Chapter II

NATURAL SELECTION

II.1 Introduction

Natural selection can be viewed either narrowly or broadly. Narrowly conceived, it is
simply one class of violations of the assumptions of the Hardy-Weinberg Laws, namely
the cases in which viability or fertility depends on genotype. Broadly conceived, it is
the primary force which causes evolution to be adaptive, the creative and progressive
element in the evolutionary process. A comprehensive theory of evolution, one which
does not yet exist, would integrate ecological processes (which determine the range of
environments and the fitnesses of phenotypes), developmental processes (which deter-
mine the effect of genotype on phenotype), and population genetics (which tells us the
changes in genetic composition of a population when the fitnesses of the genotypes are
known). Lacking the other elements of this future theory, we concentrate here on the
population genetics.

We first examine the mathematics of gene frequency change, to see how much change
of gene frequency is caused by a given pattern of differential viability and fertility, to
see what the pattern of gene frequency change through time will be, and to see how
selection acting on diploid genotypes affects gene frequencies. There are nontrivial evo-
lutionary questions which are addressed by this part of the chapter. It is not obvious
in advance how to quantitate fitness, nor how effective small differences in fitness can
be. Diploidy is a major complication whose effects are also not obvious, and much of
the effort in this part of the chapter is devoted to explaining its effects. The second part
of the chapter discusses situations in which selection with constant fitnesses causes an
equilibrium genetic composition to be maintained. The third part concerns the effect of
natural selection on the mean fitness of individuals in the population. It was a central
tenet of Darwin’s thinking that natural selection had an average tendency to increase
adaptedness, but it is a nontrivial matter to investigate whether or not it actually does
so in simple model situations.
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All of this development takes place under the assumption that fitnesses are constants
which do not change either as a function of time or asn a function of the composition
of the population. The final part of the chapter examines frequency-dependent selection
(including cases of fitnesses based on social interaction among genotypes), temporally-
varying fitnesses, and fitnesses depending on population density. These cause interest-
ing alterations to the rules concerning the adaptive effects of natural selection.

Some important situations are deferred until later in this book. The effects of spatial
variation in fitness are covered in the chapter on migration, the effect of mutation on
fitness in the chapter on mutation, and the effects of linkage on selection are given a
separate chapter. The more realistic situation in which the phenotype under selection is
controlled by many loci is covered in a very rough and approximate fashion in the final
chapter.

II.2 Selection in Asexuals - Discrete Generations

Let us consider a population consisting of two asexual strains, A and a. The numbers
of the two strains in generation t are NA(t) and Na(t). We are interested in computing
the numbers of the two strains in the next generation. For this we need to know how
many offspring individuals of each genotype will have. If an individual of strain A
has probability vA of surviving to adulthood, and if each survivor has an average of
fA offspring, then the expected number of offspring left by a newborn A individual is
vA fA. This quantity, a composite of viability (vA) and fertility ( fA), is the absolute fitness
(or Darwinian fitness) of genotype A. We call it WA, and its counterpart for a is Wa.
Throughout this chapter, we will assume that the numbers of individuals NA(t) and
Na(t), and their counterparts in other cases, are sufficiently large that we can ignore the
random fluctuations which will arise from the randomness of birth and death. Thus
we will have a completely deterministic mathematical system, in which NA(t) newborn
individuals of genotype A are assumed to leave exactly WANA(t) offspring.

In the next generation, the numbers of newborn A and a individuals are given by

NA(t + 1) = WA NA(t)
Na(t + 1) = Wa Na(t). (II-1)

We will also be interested in the relative frequencies of the two genotypes. These are
defined in straightforward fashion to be

p(t)A = NA(t)
NA(t)+Na(t)

and
p(t)a = Na(t)

NA(t)+Na(t)
,

(II-2)
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the fractions of all individuals who are A (or a). Taking the definitions II-2 in generation
t + 1, and substituting from II-1 for the quantities NA(t + 1) and Na(t + 1), we find that

p(t+1)
A =

NA(t + 1)
NA(t + 1) + Na(t + 1)

=
NA(t)WA

NA(t)WA + Na(t)Wa
. (II-3)

The total number of individuals in the population is N(t) = NA(t) + Na(t). Dividing
each of the N’s in the fraction on the right-hand side of (II-3) by N(t), and using (II-2),
we find that

p(t+1)
A =

p(t)A WA

p(t)A WA + p(t)a Wa
, (II-4)

and correspondingly

p(t+1)
a = 1− p(t+1)

A =
p(t)a Wa

p(t)A WA + p(t)a Wa

. (II-5)

The denominator of both of these fractions is p(t)A WA + p(t)a Wa. This is the weighted
average

NA(t)WA + Na(t)Wa

NA(t) + Na(t)
=

N(t + 1)
N(t)

, (II-6)

the average absolute fitness of all newborn individuals at the beginning of generation t.
Thus this mean absolute fitness, which we denote Ŵ, also tells us the factor by which
the population increases from this generation to the next. W̄ is dependent on t through
the numbers NA(t) and Na(t), but from here on we will not indicate this explicitly.

Equation (II-4) can therefore be rewritten as

p(t+1)
A =

p(t)A WA

W̄
. (II-7)

and there is a similar equation for p(t+1)
a ,

p(t+1)
a =

p(t)a Wa

W̄
. (II-8)

Taking the ratio of these equations (or alternatively taking the ratio of the two equa-
tions in (II-1),

p(t+1)
A

p(t+1)
a

=
WA

Wa

p(t)A

p(t)a

(II-9)
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The ratio of pA to pa gives us the same information as does pA alone, for we can
obtain the one from the other.

p(t)A =
p(t)A

p(t)A + p(t)a

=

(
p(t)A /p(t)a

)
(

p(t)A /p(t)a

)
+ 1

(II-10)

We will frequently pass back and forth between equations which compute frequency,
such as (II-7), and those which compute frequency ratios.

FITNESS AND POPULATION DENSITY. We can make use of the frequency ratio
equation (II-9) to reveal an important property of natural selection. If we are interested
in population composition, as reflected by p(t)A and p(t)a (or by their ratio), and if we are
not interested in population size or population density, as reflected by NA(t) and Na(t),
then (II-9) shows that the changes in composition of the population depend on WA and
Wa only through their ratio. This is also true in equations (II-7) and (II-8), though it is
less transparent from the way they are written. This dependence on WA/Wa can have
dramatic implications.

The effects of selection in changing population composition depend on the relative
sizes of the fitnesses of different genotypes, not on their absolute sizes. For instance, if
WA = 1.01 and Wa = 1, then equation (II-9) is

p(t+1)
A

p(t+1)
a

=
1.01

1
p(t)A

p(t)a

(II-11)

so that the ratio of A to a is multiplied by 1.01 every generation. In this example, the
A population is growing very slowly (by 1% per generation), while the a population is
remaining constant in size. Now consider another case: WA = 101 and Wa = 100. In that
case both A and a populations are growing very rapidly, with the A population growing
1% more each generation than the a population. Equation (II-9) becomes

p(t+1)
A

p(t+1)
a

=
101
100

p(t)A

p(t)a

(II-12)

which is exactly the same as (II-11), the ratio of A to a being multiplied by 1.01 per gen-
eration. Of course, in the latter case, the numbers of A and a individuals around will
be growing very rapidly, and if we concentrate on population numbers the two cases
will look very different. But as long as we are interested only in population composition
rather than population size, we will find that the genetic composition of the two popu-
lations undergoes the same changes in both cases. In general, if we take WA and Wa and
multiply them by the same number, we will obtain a case which will still show the same
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sequence of changes in p(t)A and p(t)a . This should be clear from (II-9), where WA and Wa
enter only through their ratio.

The same property can be seen in (II-4), though less easily. If we (say) double both
WA and Wa, we will double Ŵ, doubling both terms in the denominator. So both the
numerators (involving WA) and the denominator (involving WA and Wa) are doubled,
and the fraction is left unchanged. There is then no effect on p(t+1)

A . We have the same
property whether we consider the effects of selection on the frequency pA or on the ratio
of pA to pa, so all is as it should be.

Relative and abolute fitness. Since we will only be interested in the ratios of the
absolute fitnesses, we can pick some particular genotype as our standard, and measure
the ratios of the fitnesses of other genotypes to the fitness of the standard. These ratios
we call the relative fitnesses of the genotypes. Hereafter when the word “fitness” is used,
it will mean relative fitness. We denote the relative fitnesses by wA and wa. If we take a
to be the standard, then wa = 1. If WA = 101 and Wa = 100, then wA = 1.01 and wa = 1.
In both numerical examples given above, wA = 1.01.

The biologically relevant aspect of relative fitnesses is that an extra source of mortality
or fertility may change absolute fitnesses, but may leave relative fitnesses unaltered,
provided that it falls on all genotypes equally. If it does not change the relative fitnesses,
it will not change the ratio of WA to Wa. Thus it will have an effect on population size
without in any way affecting population composition. This is particularly important
when we consider population size regulation. Suppose that the population’s size is
regulated naturally by a drop in fertility under crowded conditions. When population
density (or equivalently, size) was low we might have:

Genotype A a
Viability as larva 0.5 0.4
Fertility as adult 6 6
Absolute fitness (viability × fertility) 3 2.4
Relative fitness 1.25 1

while when the population has reached a high density and is crowded:

Genotype A a
Viability as larva 0.5 0.4
Fertility as adult 2.2 2.2
Absolute fitness (viability × fertility) 1.1 0.88
Relative fitness 1.25 1

The drop in fertility affected both genotypes equally, and the relative fitnesses are
unaffected by the population density regulation. This is enormously convenient for the
algebraic treatment of the consequences of natural selection: even though the density
regulation means that absolute fitnesses will not remain constant through time, in this
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case the relative fitnesses will, so that we can simply ignore all considerations of popu-
lation density in our treatment.

The same phenomenon appears if we were instead to have genotypes which differed
in fertility, and had viability be affected by population density:

Low Density High Density
Genotype A a A a
Viability 0.5 0.5 0.1 0.1
Fertility 6 5 6 5
Absolute Fitness 3.0 2.5 0.6 0.5
Relative Fitness 1.2 1 1.2 1

Things are not quite so simple when the population density affects the same life stage
as the selection. Suppose that at low population density the situation is

Genotype A a
Viability 0.5 0.4
Fertility 6 6
Absolute Fitness 3.0 2.4
Relative Fitness 1.25 1

If high population density imposes an extra mortality on the population, we must
specify how the viabilities (0.5 and 0.4) are affected. A natural, but hardly inevitable,
assumption is to specify that after the individuals have passed the life stage at which they
are at risk of dying as a consequence of their genotype, a completely independent source
of mortality occurs. This mortality does not depend on genotype, so that the organisms
have a probability (say) 0.25 of surviving this mortality irrespective of genotype. There
is an overall chance 0.5× 0.25 that an A survives to adulthood, and 0.4× 0.25 for an a.
The resulting fitness table is then at high population density:

Genotype A a
Viability 0.125 0.1
Fertility 6 6
Absolute Fitness 0.75 0.6
Relative Fitness 1.25 l

You may wish to draw up the corresponding tables for the case where both genotype
and population density affect fertility. The conclusion is similar: the relative fitnesses
remain constant provided that population density multiplies all the fertilities by the
same factor. In general, if population density multiplies both viabilities by a factor V,
and both fertilities by a factor F, then the absolute fitnesses will be multiplied by VF and
the relative fitnesses will be unaffected.

Multiplicative combination of forces affecting fertility is not as reasonable a null hy-
pothesis as is multiplication of viabilities. It is not obvious why having a high population
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density must decrease the number of offspring per adult by 20% instead of decreasing
it by a fixed amount (say 2). This latter will not keep relative fitnesses constant, but
will reduce the relative fitness of genotypes whose relative fitness is low to start with.
Even with viabilities, physiologically independent forces may act nonmultiplicatively. If
the survivors of a genotype which has viability 0.4 are weaker and less vigorous than
survivors of a genotype whose viability is 0.5, then the population-density-dependent
effects would be expected to take a greater toll of the weaker genotype. Such models are
not by any means irrelevant. For the moment, we assume that relative fitnesses remain
constant, but it should be kept in mind that this may not be the case at all.

SELECTION COEFFICIENTS. Rather than representing relative fitnesses as wA : wa,
it is frequently convenient to write them as 1 + s : 1. The quantity s will be zero when
there is no natural selection, and is referred to as the selection coefficient favoring A. It can
take any value from -1 to ∞. Equation (II-9) becomes

p(t+1)
A

p(t+1)
a

= (1 + s)
p(t)A

p(t)a

(II-13)

Alternatively, we could take the relative fitnesses wA : wa to be 1 : 1− s, so that the
standard genotype is A. Then s would be the selection coefficient against a. It can take
any value from −∞ to 1. The exact meaning of s will thus depend on which genotype
is taken as the standard, and whether the selection coefficient measures selection for or
against the genotype. Note particularly that the ratio 1 + s : 1 is not the same as 1 : 1− s
unless s is zero. A selection coefficient of 0.01 in favor of A is not exactly the same as a
selection coefficient of 0.01 against a. In fact, it is equivalent to a selection coefficient of
0.00990099. . . against a. When s is small this is not a great difference, but it is well to be
aware of it.

Equation (II-7) can also be rewritten in terms of s. The relative fitnesses wA and wa
can be used in place of the absolute fitnesses WA and Wa, as we have seen. In the present
case wA and wa are 1 + s and 1, so that we can replace w̄ by

w̄ = (1 + s) p(t)A + p(t)a . (II-14)

If we replace p(t)A by pt for simplicity of notation, and note that p(t)a = 1− pt, we have

w̄ = 1 + s pt, (II-15)

so that

pt+1 =
pt (1 + s)
1 + s pt

. (II-16)

The relative fitnesses of A and a are in the ratio 1 + s : 1. We might think that this
will be the same as taking A as the standard genotype, and using fitnesses 1 : 1 − s.
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After all, isn’t having a selection coefficient s in favor of A the same thing as having a
selection coefficient of s against a? No, it isn’t. The quantities (1 + s)/1 and 1/(1 − s)
are not the same. For a dramatic example, try s = 1.

CHANGE OF GENOTYPE (OR GENE) FREQUENCY. Using relative fitnesses in place
of absolute fitnesses in equations (II-7) and (II-8), we can easily write formulas for the
change in the frequency of A. Using primes for the next generation, (II-7) and (II-8) are

p′A =
pA wA

w̄
(II-17)

and
p′a =

pa wa

w̄
(II-18)

From (II-17), if we drop the subscript A from pA, and replace pa by 1− p, we can
calculate Δp, the change in p:

Δp = p′ − p

= p wA/w̄− p

= p (wA − w̄)/w̄

(II-19)

Alternatively, since w̄ = p wA + (1− p)wa,

Δp = p [wA − p wA − (1− p) wa]/w̄

= p [(1− p)wA − (1− p)wa]

= p(1− p) (wA −wa)/w̄

(II-20)

We will use close analogues of these equations for Δp when we consider diploids.

HAPLOIDS. We have been discussing cases of asexual inheritance. The results are no
different if we consider sexual haploids. Suppose that selection precedes meiosis. Selec-
tion will change the proportions of genotypes (and in this case, of genes) from p(t)A and

p(t)a to p(t+1)
A and p(t+1)

a in exactly the same way as in asexuals, following equations (II-7)
or (II-9) exactly. The subsequent fertilization, followed by a meiosis, will not alter the
gene frequencies of A and a, provided that both genotypes are equally able to partici-
pate in meiosis and provided there is no violation of the Mendelian rules. In this case, a
sexual haploid behaves exactly like an asexual. Only when we consider more than one
locus will we find asexuals and haploids behaving differently.
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HISTORY. The basic equations of this section are due to J. B. S. Haldane (1924), in
the first of his classic series of papers which outlined the deterministic theory of gene
frequency changes due to selection. Despite early numerical computations of Castle
(1903), analysis of cases of complete selection by Warren (1917), Punnett (1917), Norton
(1915, 1928), and Robbins (1922), as well as analysis of gene frequency equilibria under
selection by Fisher (1922), Haldane’s work forms the basis of modern selection theory.
His series of papers covered a great many cases of interest. His work is summarized
in the Appendix to his 1932 book, The Causes of Evolution, which has been reprinted in
paperback by two different publishers.

II.3 Selection in Asexuals - Continuous Reproduction

When generations overlap, we must take a somewhat different route to obtain the effects
of selection. The most extreme model of continuous reproduction is the one we used in
the previous chapter, one in which the probabilities of birth and death do not depend at
all on age. This model is not only the polar opposite of the discrete-generations model,
but also is mathematically simple.

Suppose that in a very short time interval of length Δt, the probability that a partic-
ular individual of genotype A dies is dAΔt, and the probability that it gives birth to a
single offspring is bAΔt. The corresponding probabilities for genotype a are daΔt and
baΔt. The number of individuals of genotype A at time t is nA(t), and the number of
individuals of genotype a is na(t). For genotype A we obtain the number of individuals
expected to exist at the end of the time interval by adding the births and subtracting the
deaths:

nA(t + Δt) = nA(t) + nA(t) bA Δt − nA(t) dA Δt (II-21)

with a similar equation for a. Equation (II-21) can be rearranged to give

nA(t + Δt)− nA(t)
Δt

= nA(t) (bA − dA) . (II-22)

This equation is approximate rather than exact, because in (II-21) we have ignored the
effects of births early in the interval Δt on the number of deaths later in that interval, and
of the number of deaths early in the interval on the number of births later in it. However
this error is proportional in size to (Δt)2, and as we shrink Δt these terms disappear
faster than the terms in Δt and the equation becomes more exact. As Δt → 0, the left
side of equation (II-22) becomes a derivative and we have (dropping the argument (t) of
nA to simplify the appearance of the expressions):

dnA

dt
= nA (bA − dA) . (II-23)
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If we let rA = bA − dA this is the familiar exponential growth equation

dnA

dt
= rA nA. (II-24)

There is an exactly similar equation for a, with ra = ba − da. The quantity r for a
genotype is sometimes called the “Malthusian parameter” of a population consisting
only of that genotype. We are interested in following the frequency of genotype A,
p = nA/(nA + na). We can simply differentiate p with respect to time:

dp
dt

=
d
dt

[
nA

nA + na

]
=

[
(nA + na)

dnA

dt
− nA

d(nA + na)

dt

]/
(nA + na)

2

=
1

(nA + na)

dnA

dt
− nA

(nA + na)2

[
dnA

dt
+

dna

dt

]
.

(II-25)

We can substitute into this equation (II-24) and the analogous equation for a, and get

dp
dt

=
nA

(nA + na)
ra − nA

(nA + na)

[
nA rA + na ra

nA + na

]
, (II-26)

which can be rewritten as

dp
dt

= p rA − p (p rA + (1− p) ra)

= p (rA − r̄) ,
(II-27)

where r̄ = p rA + (1− p) ra is the average growth rate of the whole population. We could
alternatively rewrite (II-27), by collecting terms differently, as

dp
dt

= (rA − ra) p(1− p). (II-28)

Note that equation (II-27) shows a similar structure to equation (II-19 in the discrete-
generations case, with r playing the role of w and without any denominator like w̄ being
present. Equation (II-28) is analogous to equation (II-20) in the same way.

These continuous-time equations for the change of p will show an independence of
population density effects similar to that invoked in the previous section, but relative
fitnesses must be defined differently. In equation (II-28) we can see that the dependence
of p on the birth and death rates bA, ba, dA, and da is entirely through the quantity

rA − ra = bA − ba − dA + da. (II-29)

If density effects act by adding the same amount to dA and to da, and/or by subtract-
ing equal amounts from bA and ba, they will affect the growth rate of the population
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without altering the value of rA − ra. Thus the counterpart to ratios of fitnesses in this
model is differences of the intrinsic rates of increase rA and ra. The counterpart to stan-
dardizing wa = 1 is to set ra = 0 and to set rA so that the difference rA− ra is the correct
value. If two genotypes have growth rates 2.7 and 2.5, then the standardization makes
their relative growth rates 0.2 and 0. A population density effect which subtracted (say)
2.6 from both growth rates would leave the relative growth rates, and the formulas for
genotype frequency change, unaltered.

The analysis in this section has depended heavily on the assumption that the number
of births expected (say bAnAΔt) is exactly the number seen. As in the case of discrete-
generations model, this implicitly assumes that nA and na are such large numbers that
random fluctuations of births and deaths are averaged out. If they are not, then the
phenomenon of genetic drift occurs. The analysis of genetic drift is far more difficult,
and will be taken up in a later chapter. For the time being, we continue to treat our
models as deterministic.

II.4 Selection in Diploids

The results for asexual or haploid models are inherently simple, because each genotype’s
offspring are of the same genotype (if mutation is ignored). In an outcrossing diploid
population matters are strikingly different. An AA parent may have either AA or Aa
offspring, and even in the simplest models the relative numbers of these two types of
offspring will depend on the composition of the rest of the population. Nevertheless
the complexities introduced by diploidy are generally manageable. We first examine the
model with discrete generations.

VIABILITIES AND FERTILITIES. In this section, we obtain formulas for the change of
gene frequency in simple diploid selection models. To do so, we make a simple model
of the life history of the organism. We assume a discrete-generations model and a single
locus with two alleles. All of the standard Hardy-Weinberg assumptions apply, with
two exceptions. The viabilities of individuals are assumed to depend on their genotype,
and also their fertilities depend on their genotype. With respect to fertilities a very
particular assumption is being made. Suppose that in a particular generation AA has a
fertility of 2, and Aa a fertility of 1. It is reasonable to suppose from these numbers that
an AA × Aa mating has on average twice as many offspring as an Aa × Aa offspring.
Since we will be considering an effectively unisexual population, it seems reasonable to
suppose that Aa × AA matings have the same expected number of offspring as AA × Aa
matings. But what about AA × AA? Does the presence of two AA parents lead to two,
three, or four times the number of offspring? In order to have the mathematics come
out simply, we will obtain the fertility of each mating from the products of the fertilities
of the genotypes of the two individuals. This requires that, in the present case, AA ×
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AA have a fertility four times that of Aa × Aa. Various models involving this and other
ways fertilities could combine have been examined by Bodmer (1965), who was first to
call attention to this assumption of standard diploid selection models.

If we start a generation with a population of N newly formed zygotes in Hardy-
Weinberg proportions, we will have Np2 individuals of genotype AA. If the viability of
individuals of genotype AA is vAA and their fertility is fAA, then the contribution of AA
individuals to the gamete pool which forms the next generation will be Np2vAA fAA. We
continue to assume that N is sufficiently large that stochastic effects average out, so that
we can use a deterministic treatment. In letting the contribution of AA to the gamete
pool be Np2vAA fAA, and in assuming random mating, we are specifying that when
gametes combine at random the number of resulting zygotes which come from two AA
parents is proportional to (Np2vAA fAA)

2. Since there are Np2vAA adults of genotype
AA and these mate at random, the number of AA × AA matings which occur will be
proportional to the product (Np2vAA)(Np2vAA). Each of these matings must then have
fAA fAA offspring. Thus our assumption that f is a factor which affects a genotype’s
contribution to a gamete pool is precisely equivalent to a product rule for the fertilities
of matings. The product rule is also what allows us to have Hardy-Weinberg proportions
among the newborns, and we will assume that.

THE BASIC TWO-ALLELE SELECTION FORMULA. If we define the absolute fitness
of genotype AA as WAA = 1

2 vAA fAA (half because a gamete contributed to the gamete
pool is only half an offspring), then since the numbers of gametes coming from AA, Aa,
and aa parents will be (respectively) Np2vAA fAA, N2p(1− p)vAa fAa, and N(1− p)2vaa faa,
these can also be written as 1

2 Np2WAA, 1
2 N2p(1− p)WAa, and 1

2 N(1− p)2Waa. The A ga-
metes will be coming from AA parents, plus half those from Aa parents. Thus (dropping
the factors of 1

2 from every term) the gene frequency of A among these gametes which
form the next generation will be:

p′ =
Np2 WAA + Np(1− p)WAa

Np2 WAA + 2Np(1− p)WAa + N(1− p)2 Waa
(II-30)

Note that every term in both the numerator and denominator of (II-30) has an N and
a W in it. The Ns are all the same, so that we can cancel out the Ns top and bottom. If we
divide WAA, WAa, and Waa by the same number, we will leave the fraction unchanged.
This means we can put relative fitnesses in place of the absolute fitnesses. Doing this:

p′ =
p2 wAA + p(1− p) wAa

p2 wAA + 2p(1− p) wAa + (1− p)2 waa
(II-31)

The denominator is the average relative fitness of a randomly chosen individual. We
will call it w̄. This equation gives the frequency of A in the gametes which make up
the next generation. Since those gametes in effect combine at random (as a result of
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random mating), the resulting newly formed zygotes will again be in Hardy-Weinberg
proportions at the new gene frequency p′. The full Hardy-Weinberg law will not apply,
in that the new gene frequency p′ will not necessarily be the same as the old, but the
newly fertilized zygotes in each generation are in Hardy-Weinberg proportions, except
possibly for the initial population which may not have been produced by this process.

Other forms of the equation. Three alternate forms of (II-31) will be of use. The
first is the parallel to (II-9):

p′

1− p′
=

p
1− p

× p wAA + (1− p) wAa

p wAa + (1− p) waa
(II-32)

which can be obtained from (II-31) and the corresponding expression for 1 − p′. The
second form factors p out of the numerator of (II-31) to obtain:

p′ =
p (pwAA + (1− p)wAa)

w̄
=

p w̄A

w̄
(II-33)

where w̄A is the mean relative fitness of those individuals which carry A genes, weighted
by the number of A genes they carry.

That this is so is seen by computing that in a population of size N, there are 2Np2

A genes contained in AA individuals, and 2Np(1− p) contained in Aa heterozygotes. It
follows that a fraction p of all A genes are in AA’s, and (1− p) in Aa’s. The denominator
of (II-33) is the mean relative fitness of the population, so (II-33) shows p being multiplied
by a factor which is the ratio of the mean fitness of individuals carrying A to the mean
fitness of all individuals in the population.

The third form of (II-31) expresses the change in gene frequency, Δp, as a function of
p. Subtracting p from both sides of (II-31):

Δp = p′ − p

=
(

p2wAA + p(1− p)wAa − p [p2wAA + 2p(1− p)wAa + (1− p)2waa]
)

/ (
p2wAA + 2p(1− p)wAa + (1− p)2waa

)
=

(
(p2 − p3)wAA + p(1− p)(1− 2p)wAa − p(1− p)2waa

) /
w̄

=
(

p2(1− p)wAA + p(1− p)((1− p)− p)wAa − p(1− p)2waa

) /
w̄

= p(1− p) [ p(wAA −wAa) + (1− p)(wAa − waa) ]
/

w̄
= p(1− p)(w̄A − w̄a)

/
w̄. (II-34)
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Alternatively you can do it more simply as

Δp = p′ − p

=
p2 wAA + p(1− p) wAa − p w̄

w̄

=
p (p wAA + (1− p)wAa)− p w̄

w̄

=
p (w̄A − w̄)

w̄
. (II-35)

Note the close analogies between the diploid and the asexual (or haploid) cases.
Equation (II-35) is the analogue of (II-19), equation (II-34) of (II-20), and (II-33) of (II-17).
Equation (II-32) can be rewritten as

p′

1− p′
=

p
1− p

w̄A

w̄a
(II-36)

in which form it is closely analogous to the relative fitness version of equation (II-9). In
each case the analogy is the same: replacing wA by w̄A and wa by w̄a converts asexual
or haploid equations into diploid equations. But note that w̄A and w̄a are not constant
– they change with gene frequency. Thus we cannot simply take their ratio at the start
and keep multiplying by that ratio, so that we raise it to the power of the number of
generations.

We are now in a position to examine some special cases of importance:

MULTIPLICATIVE (GEOMETRIC) FITNESSES. Suppose that the fitnesses are:

AA Aa aa
(1 + s)2 1 + s 1

In this case when we alter a genotype by replacing one a by an A, we multiply the fitness
by 1 + s. Then

w̄A = (1 + s)2 p + (1 + s) (1− p)
= (1 + s) [ p(1 + s) + 1− p ]
= (1 + s) [1 + s p], (II-37)

w̄a = 1 + sp, (II-38)

and

w̄ = p2(1 + s)2 + 2p(1− p)(1 + s) + (1− p)2

= [p(1 + s) + 1− p]2

= (1 + sp)2.

(II-39)
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The equations for gene frequencies in the next generation become

p′ =
p(1 + s)(1 + sp)

(1 + sp)2

=
p(1 + s)
1 + sp

, (II-40)

p′

1− p′
=

p
1− p

(1 + s)(1 + sp)
1 + sp

=
p

1− p
(1 + s), (II-41)

and

Δp =
p(1− p) [(1 + s)(1 + sp)− (1 + sp)]

(1 + sp)2

=
s p(1− p)

1 + sp
. (II-42)

A comparison of these equations with the asexual case will show that (II-41) is pre-
cisely the same as (II-13). This is the particular utility of the multiplicative case: it is the
counterpart to the asexual case. In both cases replacement of an a gene by an A gene
multiplies fitness by 1 + s, and in both cases the change in gene frequency is the same,
provided we are willing to consider cases with equal values of the selection coefficient s.

As in the haploid case, a selection coefficient of s in favor of A is not exactly the same
as a selection coefficient of s against a. So switching alleles while replacing s by −s does
not result in exactly the same changes of gene frequency.

ADDITIVE FITNESSES. Many people have a dogmatic belief that additivity is always
simpler than multiplicativity. When fitnesses are additive:

AA Aa aa
1 + 2s 1 + s 1

the heterozygote fitness is the arithmetic mean of the fitnesses of the two homozygotes
(in the multiplicative case it was the geometric mean). Now

w̄A = p(1 + 2s) + (1− p)(1 + s)

= 1 + s + sp,
(II-43)
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w̄a = p(1 + s) + (1− p)

= 1 + sp,
(II-44)

and
w̄ = 1 + 2sp, (II-45)

so that

p′ =
p (1 + s + sp)

1 + 2sp
. (II-46)

and

Δp =
s p(1− p)

1 + 2sp
. (II-47)

This last equation has a relatively simple numerator and denominator, but unlike
(II-42) it is not identical to the haploid case. If s is taken to be small, both additive and
multiplicative cases will behave similarly, as we will see later in this chapter. For the
moment we need only note that the numerators of the first line of equation (II-42) and
of (II-47) are the same, and the denominators 1 + 2sp + s2p2 and 1 + 2sp are nearly the
same if s is small. But the two cases are not identical.

A RECESSIVE GENE. If the A allele is recessive, so that fitnesses are:

AA Aa aa
1 + s 1 1

then
w̄A = p(1 + s) + (1− p)× 1 (II-48)

while w̄a is simply 1, so that, collecting terms,

w̄A = 1 + sp, (II-49)

w̄a = 1, (II-50)

and
w̄ = 1 + sp2. (II-51)

The formulas for change of gene frequency are

p′ =
p (1 + sp)
1 + s p2 , (II-52)

Δp =
s p2 (1− p)

1 + s p2 , (II-53)
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and
p′

1− p′
= (1 + sp)

p
1− p

. (II-54)

One can see from these formulas, especially the latter two, that selection will be
relatively weak if the recessive allele is rare. This follows from the p2 term in (II-53), and
(II-54) shows directly that the effective selection coefficient of allele A is not s but sp. To
see this, compare (II-54) with (II-13).

A DOMINANT GENE. When the A allele is dominant, so that fitnesses are:

AA Aa aa
1 + s 1 + s 1

then

w̄A = 1 + s, (II-55)

w̄a = 1 + sp (II-56)

and
w̄ = 1 + 2sp(1− p) + sp2, (II-57)

so that

p′ =
p(1 + s)

1 + 2sp(1− p) + sp2 (II-58)

and

Δp =
sp(1− p)2

1 + 2sp(1− p) + sp2 . (II-59)

The counterpart to (II-54) is:

p′

1− p′
=

(1 + s)
(1 + sp)

p
1− p

. (II-60)

Again the effective selection coefficient depends on p. When p is small the selection
coefficient for A is s, but when p is nearly 1 there will be hardly any selection.

OVERDOMINANCE AND UNDERDOMINANCE. Two cases of particular interest
will be those in which the fitness of the heterozygote exceeds that of either homozygote,
and in which the fitness of the heterozygote is lower than that of either homozygote. A
particularly convenient parameterization of the fitnesses is:
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AA Aa aa

1− s 1 1− t

For the case of overdominance s and t are both taken to be positive, so that the
heterozygote fitness is highest. For underdominance, s and t are taken to be negative.

In this case,

w̄A = 1− s p, (II-61)

w̄a = 1− t (1− p), (II-62)

and
w̄ = 1 − s p2 − t (1− p)2, (II-63)

so that, from equation (II-33) and from equation (II-34),

p′ =
p(1− s p)

1 − s p2 − t (1− p)2 , (II-64)

Δp =
p(1− p) [ t− (s + t)p ]

1− s p2 − t (1− p)2 , (II-65)

and
p′

1− p′
=

(
1− s p

1− t (1− p)

)
p

1− p
. (II-66)

In later sections of this chapter we will return to each of these cases to develop the
implications of all of the formulas just given. First, however, we investigate whether there
is an analogous model in which gene and genotype frequencies change in continuous
time.

II.5 Diploid models with continuous time

We saw a continuous-time model for asexual or haploid organisms. Are there such
models for diploid organisms? There are, but one has to be very careful in defining and
using them. There are serious potential problems with getting out of Hardy-Weinberg
proportions.

A simple continuous-time model has adult genotype frequencies that are possibly not
in Hardy-Weinberg proportions. In each small increment of time of length Δt, a fraction
Δt of the population is replaced by offspring. The members of the population produce
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a cloud of gametes, and those combine at random, to produce diploid individuals in
Hardy-Weinberg proportions. Those immediately are subject to viability selection, with
individuals of some genotypes surviving better than others. The survivors are then
added to the population of adults.

In that model, the gene frequency in the cloud of gametes at time t is p(t), the gene
frequency in the adult genotypes. The genotype frequencies in the diploids formed by
the cloud of gametes are simply the Hardy-Weinberg proportions implied by the gene
frequency p. The gene frequency p∗ among the survivors is then given by the discrete-
generations formula, such as

p∗A = pA w̄A / w̄. (II-67)

The resulting population of adults after a time Δt is a mixture of a fraction Δt of individ-
uals who have gene frequency p∗ and 1− Δt who have gene frequency p. That mixture
is the weighted average

p(t + Δt) = (Δt) p∗(t) + (1− Δt) p(t). (II-68)

rearranging,
p(t + Δt)− p(t) = Δt (p∗(t)− p(t)) (II-69)

so that, dividing by Δt, in the limit of small Δt, the left-hand side becomes the derivative
of p(t) so that

dp(t)
dt

= p∗(t)− p(t) (II-70)

This will be a function of p(t) as in equations (II-34) or (II-35). The formula for Δp for a
discrete generations model becomes the derivative of p for this continuous-generations
model.

LIMITATIONS OF THE CONTINUOUS DIPLOID MODEL.
It all seems very straightforward, but it really isn’t. First, note that the population of

adults is now a mixture of populations, each of which is itself possibly not in Hardy-
Weinberg proportions, and we have seen that when we mix populations, the result is
usually out of Hardy-Weinberg proportions. So we cannot rely on the adults being in
Hardy-Weinberg proportions.

We have also invoked viability selection, but how could we also take differential
fertilities into account? That would require us to assign fertilities to the different diploid
genotypes in the adults, and calculate the gene frequency in the cloud of gametes by
weighting each adult genotype by its genotype frequency, times its fertility. But we
don’t know those genotype frequencies. A similar problem arises if we allow different
adult genotypes to have different rates of mortality, instead of having all death occur
in the newborn individuals formed from the cloud of gametes. There is also the issue
of whether the weights in the mixture would depend, not only on Δt, but on the mean
fertilities and mean death rates.
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Even if we don’t allow fertilities and viabilities to depend on individuals’ ages, we
could only keep track of all this by writing equations for the genotype frequencies,
not just the gene frequencies. A conventional discrete-generations model has the great
advantage that there are Hardy-Weinberg proportions at the start of each generation. The
continuous-time model does not have this advantage. We will not develop this model
further. Charlesworth (1980) has written a particularly well-thought-out monograph on
the complications that arise in age-dependent selection, which is an even worse case. For
now, we go back to the case of discrete generations.

II.6 Rates of Change of Gene Frequency

When the relative fitnesses of the genotypes do not change from generation to gener-
ation, we can use the formulas for change in gene frequency to examine the speed to
gene frequency change. Among the questions which can be answered this way is: how
effective will weak selection be?

ASEXUALS AND HAPLOIDS. Gene frequency change through time is easiest to follow
in the asexual (or haploid) case. Here time will always be measured in generations.
Equation (II-13) shows us immediately that

p(t)A

p(t)a

= (1 + s)t p(0)A

p(0)a

, (II-71)

since the ratio of gene frequencies is multiplied by the same amount (1 + s) in each
generation. We can take this equation and solve it for t, given the value of s and the
initial and final gene frequencies. We obtain, taking natural logarithms of both sides in
(II-71):

t =

[
ln

(
p(t)A

p(t)a

)
− ln

(
p(0)A

p(0)a

)]
/ ln(1 + s). (II-72)

(As I mentioned before, in this book I will use ln rather than loge for the natural loga-
rithm).

This allows us to calculate how many generations it will take for a given gene fre-
quency change. For example, if a population starts at gene frequency 0.01 for A and
ends at 0.99, with s = 0.01, then we can substitute into (II-72), keeping in mind that
pa = 1− pA

t =

[
ln
(

0.99
0.01

)
− ln

(
0.01
0.99

)]/
ln(1.01)

= [ln 99− ln(1/99)]/ ln(1.01)

= 923.6115 generations

(II-73)
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Table 2.1: Time required to change gene frequency of A from 0.01 to 0.99
when the relative fitness of A is 1 + s.

s time (generations)
1.0 13.26
0.5 22.67
0.2 50.41
0.1 96.42

0.05 188.36
0.02 464.09
0.01 923.61

0.001 9194.83

We do not get a whole number of generations in this case, which simply means that
the gene frequency pA will be below 0.99 after 923 generations, but above 0.99 after 924
generations.

An interesting comparison is obtained by doubling the selection coefficient s to 0.02.
Then the same gene frequency change (from 0.01 to 0.99) requires 464.09 generations, a
bit more than half the time required before. Table 2.1 shows this calculation for a variety
of selection coefficients. Roughly speaking, the time required for a given change of
gene frequency is inversely proportional to the selection coefficient. This proportionality
is particularly accurate when the selection coefficients are small. The comparison of
s = 0.01 with s = 0.001 shows that with a small selection coefficient one-tenth the
size, it will take about ten times as long to make a given change of gene frequency. In
fact, if we note that (1.01)2 = 1.0201, Equation (II-71) shows that two generations of
change at s = 0.01 will cause the same shift of gene frequency as one generation at
s = 0.0201. This reflects both the fact that the proportionality between time required for
a change and 1/s is not exact, and that when s is small it is nearly exact. This reflects
an evolutionary principle of some significance: in a totally deterministic system (an
infinitely large population under constant selection), a very small selection coefficient
will still be effective in causing gene frequency changes. If s is reduced by a factor of
(say) 1,000, the same gene frequency changes will still occur, but will take about 1,000
times as long.

Another important kind of information we can get from this calculation is about
the time course of gene frequency changes, the amount of time necessary to change
through different gene frequency ranges. We can obtain the gene frequency in any given
generation by noting that p(t)a = 1− p(t)A , substituting this into (II-71), and solving it for
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Figure 2.1: Course of gene frequency change in haploid selection with initial
gene frequency p0 = 0.01 and relative fitness 1.2 of the A genotype.

p(t)A . We find that

p(t)A =
p(0)A (1 + s)t

p(0)A (1 + s)t + p(0)a

(II-74)

which gives the full course of gene frequency change when p(0)A = 0.01 and s = 0.25.
Note that when it is plotted (in Figure 2.1) the curve is symmetrical about the point
where it passes through pA = 0.5

The same phenomenon can be seen using Equation (II-72) to compute the time
needed to change the gene frequency through various ranges. Table 2.2 demonstrates
this: it takes exactly as much time to change the gene frequency of A from p to 0.5 as it
does to change it from 0.5 to 1− p.

This table also illustrates another feature of gene frequency changes: it takes far
longer for natural selection to change the gene frequency by a given amount when the
gene frequency is extreme than it does when the gene frequency is intermediate. This
is the counterpart of the observation that the curve in Figure 2.1 rises slowly at first,
then rapidly through the intermediate gene frequencies, then slowly again when gene
frequencies are extreme.
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ASEXUALS AND HAPLOIDS - CONTINUOUS GENERATIONS. We can do the same
sort of calculations when generations overlap. In the model of continuous reproduction
used in section II.4, things are particularly simple. Equation (II-28) can be solved for p
as a function of t (and vice versa) in the following way: dividing both sides of (II-28) by
p(1− p) and multiplying both by dt, which is illegal but not immoral,

dp
p(1− p)

= (rA − ra) dt. (II-75)

Noting that 1/[p(1− p)] = 1/p + 1/(1− p), we can integrate both sides to obtain

ln p − ln(1− p) = (rA − ra) t + C, (II-76)

where C is the constant of integration which depends on the initial conditions. Initially,
t = 0 and p = p0, so that

ln p0 − ln(1− p0) = C (II-77)

from which
ln pt − ln(1− pt) = (rA − ra) t + ln p0 − ln(1− p0). (II-78)

We can obtain t as a function of p0 and pt by rearranging this to give

t =

[
ln
(

pt

1− pt

)
− ln

(
p0

1− p0

)]/
(rA − ra) (II-79)

Comparison of this equation with (II-72) shows immediately that ln(1 + s) has been
replaced by rA − ra. Table 2.1 is replaced by Table 2.3. It shows the property that when
rA − ra is halved, a given gene frequency change takes exactly twice as long. This comes
from the appearance of rA − ra in the denominator of (II-79). Thus in this respect the
continuous-generations case is simpler than the discrete-generations case.

We can also proceed from (II-78) to solve for pt as a function of p0 and t. Taking the
exponential (the antilogarithm) of both sides of (II-78) and solving for pt:

pt =
p0 e(rA−ra)t

p0 e(rA−ra)t + (1− p0)
(II-80)

Table 2.2: Times needed for various gene frequency changes.

s 0.01 - 0.1 0.1 - 0.5 0.5 - 0.9 0.9 - 0.9
1.0 3.46 3.17 3.17 3.46
0.1 25.16 23.05 23.05 25.16

0.01 240.99 220.82 220.82 240.99
0.001 2399.09 2198.32 2198.32 2399.09
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Table 2.3: Time required to change gene frequency from 0.01 to 0.99 in a
continuous-generations model.

rA − ra time (generations)
1.0 9.19
0.5 18.38
0.2 45.95
0.1 91.90

0.05 183.80
0.02 459.51
0.01 919.02

0.001 9190.24

Table 2.4: Times required for various gene frequency changes in the case of
continuous reproduction.

rA − ra 0.01 - 0.1 0.1 - 0.5 0.5 - 0.9 0.9 - 0.99
1.0 2.40 2.20 2.20 2.40
0.1 23.98 21.97 21.97 23.98

0.01 239.79 219.72 219.72 239.79
0.001 2397.90 2197.22 2197.22 2397.90

This also has a direct analogy to the corresponding expression for discrete generations:
if 1 + s is replaced by exp(rA − ra) in equation (II-74) we obtain (II-80). This is in effect
the same substitution we use to compare (II-72) and (II-79). Equation (II-80) is a logistic
growth curve whose limits are 0 and 1. It will show the same symmetry around p = 0.5
as in the discrete-generations case. The correspondence of discrete and continuous cases
allows us to use Figure 2.1: instead of s = 0.2 if we assume rA − ra = ln(1 + s) = 0.182
we will have exactly the same Figure, except that the curve of gene frequency change
will be a continuous curve rather than a discrete set of points. But this continuous curve
will pass through the discrete points shown in Figure 2.1.

Using equation (II-79) we once again find that rates of gene frequency change are
slower near the extremes of gene frequency than at intermediate frequencies, but now
the approximate inverse proportionality between the strength of selection and the time
required for gene frequency change is an exact inverse proportionality. It is well not to be
blinded by the analogies between the discrete and continuous cases. There is no sense in
which rA− ra “is” ln(1+ s): these are different models. One has gene frequencies which
change in discrete jumps, the other continuously.
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MULTIPLICATIVE FITNESSES. We have already seen that when fitnesses of the three
diploid genotypes are (1 + s)2 : 1 + s : 1 we have exactly the same gene frequency
change as in the haploid case. It follows that equations (II-71), (II-72), and (II-74) can all
be directly applied. Once again the gene frequency follows a sigmoid logistic curve, or
more properly a discrete set of points which is interpolated by such a curve. Once again,
gene frequency change is slowest when p is near zero or near 1. Once again, there is an
approximate inverse proportionality between s and the time taken for a gene frequency
change. The ease with which this multiplicative case can be solved is one of the most
compelling reasons for studying it.

ADDITIVE FITNESSES. It may come as a surprise that when we have the additive
fitnesses 1 + 2s : 1 + s : 1 there is no explicit formula for pt as a function of p0 and
t. We cannot compute the gene frequency in a future generation except by the strong
arm method of repeatedly evaluating the iteration (II-46) t times. There is no simple
formula for evaluating the number of generations needed to change from one given
gene frequency to another. With the advent of desktop or hand-held computers, this
direct approach has become feasible.

Aside from the trivial case s = 0, there is one case in which we can obtain an exact
solution. When s = −1/2, so that the fitnesses are 0 : 1/2 : 1, substitution in (II-46) will
give

p′ = p/2, (II-81)

from which, taking natural logarithms, we can see that ln(p) decreases by ln 2 each
generation, from which it is easy to show that

t = ( ln(p0)− ln(pt) )/ ln 2. (II-82)

This equation is not correct for p = 1, which is a degenerate case because then the
relative fitnesses of all existing individuals are zero! Note that we can never have s be
more negative than s = −1/2, since that would imply a negative fitness for AA.

AN APPROXIMATION. Although we cannot solve the additive case exactly, there is
an approximation which can be used when s is small. Equation (II-47) has w̄ = 1+ 2sp
in its denominator. We can expand 1/(1 + 2sp) as a geometric power series in s:

1/(1 + 2sp) = 1− 2sp + 4s2p2 − . . . . (II-83)

This series will converge if |2sp| < 1. We are interested in small values of s. Using this
series, equation (II-47) becomes

Δp = s p(1− p) (1− 2sp + terms in s2)

= s p(1− p) − terms in s2 (II-84)
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Our approach will be to approximate the discrete process of gene frequency change
by a continuous process. This will be a good approximation if s is small. We replace
the difference Δp by a derivative, and since s is assumed small, we ignore the terms
involving s2 and higher powers. The result is the approximation

dp
dt

= s p(1− p). (II-85)

This differential equation is really the same as (II-28), with rA − ra replaced by s. So its
solution is given by (II-80), which becomes

p =
p0 est

p0 est + (1− p0)
, (II-86)

and of course the time for a gene frequency change is

t =

[
ln
(

pt

1− pt

)
− ln

(
p0

1− p0

)]/
s. (II-87)

Suppose that we try the same approximation for the multiplicative case. The denom-
inator 1 + sp in (II-42) yields

1
(1 + sp)

= 1− sp + s2p2 − . . . (II-88)

which once again results in

dp
dt

= s p(1− p). (II-89)

We immediately see that, at this level of approximation, the additive and multiplicative
cases have the same approximation. Equations (II-86) and (II-87) apply to the multiplicative
case as well. That is one for which we also have an exact solution, so we can use it to
test the adequacy of this approximation technique. Comparing (II-86) and (II-87) to the
exact solutions (II-74) and (II-72), we find that they differ only in replacing 1+ s by es (or,
correspondingly, ln(1 + s) by s). As seen in Table 2.5, these are approximations which
will be quite good if s is small.

The approximations are good to within 10% when s is as high as 0.2. We can therefore
have some confidence in the results for small s, and we can also be confident that the
additive and multiplicative cases give nearly the same results. We have already discussed
the pattern and speed of gene frequency change, and we can simply note that those
patterns will be nearly exactly applicable to the case of additive fitnesses.

THE RECESSIVE CASE. For the case where A is recessive (recall that the size of the
letter means nothing), there is no general solution of the recurrence equation (II-52),
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Table 2.5: Accuracy of approximations for ln(1 + s) and es.

s ln(1 + s) es 1 + s
0.001 0.0009995 1.0010005 1.001
0.01 0.0099503 1.01005 1.01
0.1 0.09531 1.10517 1.1
0.2 0.18232 1.2214 1.2
0.5 0.4054 1.648 1.5
1.0 0.693 2.718 2

which gives p′ as a function of p. There is one specific case which can be exactly solved,
and that is the case of a recessive lethal, where s = −1. Then (II-53) becomes

p′ =
p(1− p)
1− p2

=
p

1 + p
. (II-90)

This may not look promising, but if we take 1/p′, we get

1/p′ = 1/p + 1. (II-91)

This tells us that the reciprocal of the gene frequency increases by one each generation.
Then

1/pt = 1/p0 + t (II-92)

so that
pt =

p0

1 + p0 t
. (II-93)

The time needed to change from p0 to pt will, from (II-92) be simply

t = 1/pt − 1/p0. (II-94)

An interesting subcase is when, for some n, p = 1/n. Then, from (II-52),

p′ =
1/n

1/n + 1
=

1
n + 1

(II-95)

Thus if p0 = 1/2, then p1 = 1/3, p2 = 1/4, etc. When p = 1/1000, in the next generation
p = 1/1001. The successive gene frequencies form a harmonic progression. Table 2.6
shows the times needed to change through various gene frequency ranges.

For comparison, in a case of multiplicative diploid selection with s = −0.2 (so that
fitnesses are 0.64 : 0.8 : 1) it takes 9.85 generations to reduce the gene frequency from 0.5
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Table 2.6: Time needed to make various changes of gene frequency in the case
of a recessive lethal.

From To Time (generations)
0.5 0.1 8
0.1 0.01 90
0.01 0.001 900
0.001 0.0001 9000
0.0001 0.00001 90000

to 0.1. But to reduce it from there to 0.01 takes only another 10.75 generations, and to
reduce it to 0.001 takes another 10.35 generations. Thereafter each reduction by a factor
of ten takes only an additional 10.32 generations. In fact, in multiplicative selection
with negative s, when gene frequency is low each reduction by a factor of 10 takes
ln 0.1/ ln(1+ s) � −2.3/s generations. In contrast, Table 2.6 shows that selection against
a deleterious recessive allele gets progressively less effective as the gene becomes rare.
This occurs for a straightforward reason: the lethal allele is only lethal in homozygotes.
As the allele becomes rare, a progressively smaller fraction of the extant copies of the
allele are found in homozygotes (in fact, p of them). Only this fraction of the deleterious
allele is eliminated by selection, so that the fractional decrease of the gene frequency
becomes smaller and smaller. The result is that it can take an astronomical amount of
time to eliminate a recessive: 999,998 generations to reduce the gene frequency from 0.5
to 0.000001. By contrast, with multiplicative fitnesses and s as weak as s = −0.01, this
would take only 1375 generations!

I am not aware of any other exact solutions to equations (II-52), (II-53), or (II-54). To
gain further insight into the behavior of the recessive case, we must resort to approxima-
tions. Jarle Tufto (personal communication) has pointed out that we can start from the
difference equation (II-54) and replace the Δp by dp/dt, getting

dp
dt

=
s p2(1− p)

1 + s p2 . (II-96)

This differential equation can be solved by separating the variables:

1 + s p2

p2(1− p)
dp = s dt, (II-97)

and then integrating. The left side can be integrated by partial fractions since

1 + s p2

p2(1− p)
=

1
p
+

1
p2 +

1 + s
1− p

. (II-98)
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Doing the integrals and removing the constant of integration by requiring that p = p0
when t = 0, we finally obtain for the time required for a gene frequency change:

t =
1
s

[
− 1

pt
+ ln

(
pt

1− pt

)
+

1
p0
− ln

(
p0

1− p0

)
− s ln

(
1− pt

1− p0

)]
(II-99)

There remains only to solve for pt as a function of p0 and t. Alas, this turns out to be
impossible. Of course, numerical iteration of the basic recurrence equation (II-52) will
give considerable insight. For the moment we defer examining numerical values from
(II-99) until we can compare multiplicative, recessive, and dominant cases.

THE DOMINANT CASE. When the fitnesses of AA, Aa, and aa are respectively 1 + s,
1 + s, and 1, so that A is dominant, there are two cases for which we can solve exactly
the relationship between gene frequency and time. One is trivial: it is the case of s = −1,
where A is a dominant lethal. Consideration of the gene frequency recursion formula
(II-58), or for that matter simple common sense, will show that p′ = 0, since all the A’s
are killed in one generation. The other case that can be solved is s = ∞ . If we divide the
fitnesses 1 + s : 1 + s : 1 by 1 + s we get 1 : 1 : 1/(1 + s), and s = ∞ can then be seen to
be the case where A is the dominant wild-type allele and a is a recessive lethal. We have
already solved this case. We can take equation (II-90), which gives the frequency of the
recessive lethal allele, and substitute 1− p for p to follow the fate of the dominant allele.
This gives us

p′ =
1

2− p
(II-100)

p now being the frequency of the dominant normal allele A. The equation (II-93) which
relates gene frequency to generation number can similarly be altered to follow the fate
of the dominant allele.

All other cases of complete dominance cannot be solved exactly. The approximation
method can be employed, and in fact the mathematics is exactly that of the recessive
case with p and 1− p substituted for each other. So the time taken to change from p0 to
pt in the dominant case is exactly the time taken to change from 1− pt to 1− p0 in the
recessive case. As before, this cannot be solved for pt as a function of p0 and t. But it can
be solved numerically by holding p0 and t constant and adjusting pt until the equation
is satisfied.

DOMINANCE, RECESSIVENESS, AND GENE FREQUENCY CHANGE. We now
have approximate formulas for the times taken to change through gene frequency ranges
for the recessive and dominant cases, and we have an exact formula for the multiplica-
tive case. Table 2.7 shows the times to change through various gene frequency ranges,
calculated from these formulas. We can use it to get a feel for the effects of the degree of
dominance:
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Table 2.7: Times required to change through various gene frequency ranges
when s = 0.01. The recessive and dominant cases are approximate values
from equation (II-99).

Favored Allele
From To Dominant Multiplicative Recessive
0.001 0.01 234.38 231.32 90,231.2
0.01 0.1 252.19 240.99 9,239.89
0.1 0.5 310.22 220.82 1,020.31
0.5 0.9 1,020.31 220.82 310.22
0.9 0.99 9,239.89 240.89 252.19

0.99 0.999 90,231.2 231.32 234.38

This table shows times for only one value of s, 0.01, but from it we can easily find the
times for other values of s. The approximation formula (II-99) shows an approximate
inverse relationship between s and t. When s is cut by a factor of ten, t will increase
by almost the same factor. If s = 0.001, it will take approximately 2320.7 generations
to change from p = 0.001 to p = 0.01 instead of the 232.07 generations shown in the
table. Although this exact inverse proportionality holds only for the approximations,
they are good approximations, and the proportionality is nearly exact for small s. For
the multiplicative case, the numbers shown in the table are exact. While formula (II-72)
does not show an exact inverse proportionality of s and t, we have already seen that the
closeness of ln(1 + s) to s when s is small makes the proportionality nearly exact. Thus
for the dominant and recessive cases we have exact proportionality in an approximate
formula, and for the multiplicative case we have approximate proportionality in an exact
formula. In short, the times are nearly proportional to 1/s.

Two properties of the numbers in Table 2.7 are immediately noticeable. First, we can
see that it takes a very long time to change the gene frequency of a rare recessive allele.
This is true irrespective of whether that allele is advantageous or deleterious. The top
part of the Recessive column shows the long times needed to increase the frequency
of the advantageous recessive A allele. The numbers at the bottom of the Dominant
column show a similar phenomenon. The a allele is now the recessive allele, and it is
deleterious and in the process of being eliminated. The slowness of change is associated
with rareness of the recessive allele rather than whether it is advantageous or deleterious.

The second feature of Table 2.7 which is striking is the similarity of the top ends of
the Dominant and Multiplicative columns, and the similarity of the bottom ends of the
Multiplicative and Recessive columns. This is no mere numerical accident. The fitnesses
of the genotypes are:
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AA Aa aa
Dominant 1 + s 1 + s 1
Multiplicative (1 + s)2 1 + s 1

These differ only in the fitness of AA. When A is rare, almost all the A genes in the
population will occur in Aa heterozygotes, and almost all a genes in aa homozygotes.
This is guaranteed by the fact that in each generation the zygotes start out in Hardy-
Weinberg proportions. The relative mean fitnesses of A- and a- bearing individuals will
be nearly 1 + s : 1 in both cases. As long as A is rare, we expect the course of gene
frequency change to be nearly the same in both cases, and this is precisely what Table
2.7 shows.

It is less easy to see why the Multiplicative and Recessive cases behave similarly, but
the same principle is involved. Superficially, the genotypic fitnesses look different:

AA Aa aa
Multiplicative (1 + s)2 1 + s 1
Recessive 1 + s 1 1

We are interested in the case when a is rare, so we want to compare the fitnesses of
AA and Aa. Since these are relative fitnesses, we can use Aa as the standard genotype
whose fitness we set to 1. Now the Multiplicative case changes to

AA Aa aa
1 + s 1 1/(1 + s)

which differs from the Recessive case only in the fitness of the very rare aa genotype.
Thus when A is common we expect the Recessive and Multiplicative cases to behave
similarly, as in fact is the case in Table 2.7.

These two phenomena stem from the same cause. The extreme rareness of the ho-
mozygote when one allele is rare means that only the fitnesses of the other two geno-
types are relevant to the rate of gene frequency change. That in turn means that fitness
schemes which differ only in the fitness of the rare homozygote are nearly identical in
their consequences as long as the homozygotes remain rare. The slowness of change of
the rare allele when it is recessive is because the fitness scheme is

AA Aa aa
1 1 something else

Then if a is rare, the fitnesses of individuals carrying A and those carrying a are
both nearly 1, except that a very few of the individuals carrying a are aa. The rarer a
is, the more similar are the fitnesses of A-bearing and a-bearing genotypes, so response
to selection will slow down as a is made rarer. This is not the case if a is not recessive.
When fitnesses are multiplicative, then no matter how rare a is, the fitnesses of A-bearing
and a-bearing genotypes are in the ratio 1 + s : 1.

While we have relied on approximations for the numbers in Table 2.7, the same
pattern appears when exact changes of gene frequency, Δp, are computed from equations
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Figure 2.2: Change of the gene frequency plotted against gene frequency of A
for cases in which the favored allele is dominant (D), multiplicative (M) and
recessive (R). Fitnesses of AA : Aa : aa genotypes were respectively 2.3 : 2.3 :
1, 5.29 : 2.3 : 1, and 2.3 : 1 : 1.

(II-42), (II-53), and (II-59). Figure 2.2 shows Δp as a function of p for the three cases
considered above when s = 1.3. We can see both phenomena: when p is small, the Δp
for the recessive case is much closer to zero than the Δp for the other cases, and in this
same region the Dominant and Multiplicative curves are nearly the same. Figure 2.3
shows the resulting course of gene frequency change for the two cases:

AA Aa aa
Dominant 2.3 2.3 1
Recessive 2.3 1 1

where the initial gene frequency is 0.1. The slowness with which A increases when it
is recessive (squares) and rare, and the slowness with which a is eliminated when it is
recessive (circles) and rare, are both evident. The fundamental principle behind all this
is simple: to get a qualitative idea of how selection is operating when one allele is rare,
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Initial frequency of A is 0.02.

compare the fitness of heterozygotes for the rare allele with the fitness of homozygotes
for the common allele.

HISTORY. The harmonic series and the general method of calculation for recessive
lethals appear to have been known to Castle (1903). Norton (1915) introduced the slow
selection approximation and pioneered the analysis of overlapping generations, though
the details of his work were not available until later (1928). Jennings (1916) and Went-
worth and Remick (1916) examined the elimination of recessive lethals. Punnett (1917)
used the harmonic series for recessive lethals as a powerful argument for the ineffective-
ness of negative eugenics measures. This was ignored for decades by public advocates
for eugenics. Warren (1917) obtained gene frequency recursions for a case where fit-
nesses depend on the gene frequency. Though it is evident that Fisher and Wright were
familiar with the mathematics of natural selection (see especially Fisher, 1922), most of
the modern work on this subject is descended from the extensive work of Haldane (1924,
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1926a, 1927, 1932) who considered dozens of cases by exact, approximate, and numer-
ical methods. He was the first author to convey a fairly comprehensive picture of the
quantitative effects of natural selection. The case of overlapping generations was first
treated by Norton (1915, 1928) and Haldane (1926b), who were primarily interested in
the more general case in which the genotypes have different age-specific birth and death
schedules.

II.7 Overdominance and Underdominance

In all cases considered in the previous section, we were dealing with patterns of fitness
which resulted in the substitution of one allele for another, so that the only questions
of interest are the rates of change of gene frequency through various ranges. When
the fitness of the heterozygote lies outside the range of the homozygote fitnesses, the
situation is altered dramatically. When the heterozygote fitness exceeds that of either
homozygote, selection can maintain a stable polymorphism, and when the heterozygote
has the lowest fitness, the outcome of selection can depend on the initial composition of
the population. Both of these behaviors are of great biological interest.

With a few trivial exceptions, we cannot solve exactly for future gene frequencies in
either of these cases, but we can gain much insight by looking at the change Δp of gene
frequency as a function of the gene frequency, p. When the fitnesses are

AA Aa aa
1− s 1 1− t

we may recall that the change in gene frequency is

Δp =
p(1− p) [ t− (s + t)p ]
1 − s p2 − t (1− p)2 (II-101)

which we have already seen as equation (II-65). We can start by inquiring whether there
are any gene frequencies p for which Δp is zero. There are four possible ways Δp could
be zero:

1. The denominator 1− sp2 − t(1− p)2 could be infinite,
2. p could be zero,
3. 1− p could be zero,
4. t− (s + t)p could be zero.

The first is impossible, as t and s are finite and are not larger than 1. The second
and third represent the cases where A or a are absent from the population. They reflect
the rather obvious fact that, in the absence of mutation or immigration, selection acting
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by itself cannot re-introduce an allele which has been lost. The fourth possibility is of
interest. It establishes that Δp = 0 when p has the value

pe =
t

s + t
. (II-102)

This value of the gene frequency will represent an equilibrium gene frequency, in that if
the population achieves that gene frequency it will not be expected to change further as
a result of this natural selection. Our interest is in two cases, both of which have t/(s+ t)
a realistic gene frequency, in the sense that it lies between zero and one. The cases are
the one in which s and t are both positive, and the one in which they are both negative.

OVERDOMINANCE. When s and t are both positive, the heterozygote has the highest
fitness. This is known as overdominance. It is sometimes miscalled heterosis, a term which
refers to the observation that a cross between two populations yields offspring whose
average phenotype lies above the average of either parent population. As we will see in
the chapter on quantitative genetics, heterosis may or may not be due to overdominance.

When we have a case of overdominance, we have an equilibrium gene frequency at
the value t/(s+ t). But will this equilibrium be achieved? Will it be a stable equilibrium?
Some insight can be gained by noting the sign of the quantity Δp for various gene
frequencies. The terms p and 1− p in the numerator of (II-101) are always positive, and
the denominator is always positive. The sign of Δp will therefore always be the same
as that of the term t− (s + t)p. For the case of overdominance, this will be the same as
the sign of pe − p. When p < pe, Δp will be positive. When p > pe, it will be negative.
The change of gene frequency is thus always pushing the gene frequency back towards
its equilibrium value. This would seem to show that the equilibrium at pe is a stable
equilibrium, that whenever the gene frequency is perturbed from this value it returns
to it. But this is a hasty conclusion. We have ignored the possibility that each change
in p is so great as to overshoot the equilibrium, and by such a large amount that the
gene frequency oscillates wildly and gets farther and farther from the equilibrium. The
process which then resemble a drunken golfer who is trying to make a small putt, but
succeeds only in getting farther and farther from the hole.

ANALYZING STABILITY. When we are faced with a dynamic system which changes
in discrete jumps, there is a way of determining whether an equilibrium is stable which
takes the possibility of oscillation into account. The logic behind it is easily seen when,
as in the present case, there is only one variable, p, changing. Suppose that we have a
formula, f (p), for the gene frequency in the next generation, so that

pt+1 = f (pt), (II-103)

and from this we can obtain another formula, Δp, which gives the change in p as a
function of p:

Δp = f (p)− p. (II-104)
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There are two types of stability which we could investigate. An equilibrium will be
globally stable if, no matter how far from the equilibrium we move the gene frequency,
it always ultimately returns to that equilibrium. Global stability is quite difficult to
investigate. We will concentrate instead on determining whether or not the equilibrium
is locally stable. It is locally stable if there is some region, however small, enclosing the
equilibrium, such that any perturbation which keeps the equilibrium within that region
resulted in the gene frequency returning to the equilibrium. Thus if the gene frequency
will return to its equilibrium when changed by less than (say) 1%, we describe the
equilibrium as locally stable. If a perturbation of (say) 20% would result in no return
to the equilibrium, then this equilibrium is not globally stable. If an equilibrium is not
locally stable, we say that it is unstable.

To investigate local stability, it is sufficient to consider what happens when the gene
frequency is moved an infinitesimal amount. If it always returns, it is necessarily locally
stable, if not it is unstable. At the equilibrium point, Δp = 0. Figure 2.4 shows a plot
of Δp against p for an overdominant case in which fitnesses are 0.85 : 1 : 0.7. There
are three equilibrium points, at p = 0, p = 1, and p = 0.667. It seems that p = 0 and
p = 1 must be unstable equilibria. When p is perturbed just above p = 0, Δp is positive
in that region. Thus p will continue to increase away from the equilibrium. By much
the same reasoning p = 1 also seems unstable. Any change of gene frequency which
makes p a bit less than 1 puts it in a region where p continues to decrease away from 1.
The equilibrium at p = 0.333 looks locally stable, but a casual glance is not enough to
determine its stability.

If we assume (as is true in our example) that f (p), and hence also Δp, are continuous
functions of p, we can make a simple algebraic analysis of local stability. In the vicinity
of an equilibrium let us assume that the Δp curve can be approximated by a straight
line. If x is the distance between p and pe, so that p = pe + x, then we will approximate
Δp by ax. The quantity a will be the slope of the Δp curve as it passes through p = pe.
In the next generation, the deviation x′ from the equilibrium will be

x′ = p + Δp− pe = pe + x + Δp− pe

= x + Δp � x + a x = x (1 + a)
(II-105)

When we are close to the equilibrium, the value of x is thus multiplied by 1 + a each
generation. After t generations, it will be (1 + a)t times its current value.

When a is positive (1 + a)t is a positive number greater than 1, and it will grow with
t. This is the situation near the equilibria p = 0 and p = 1, where the slope a of the
Δp curve is positive. Any movement of p from p = 0 to a very small positive quantity
will create a positive deviation x which then grows until p leaves the immediate vicinity
of p = 0. Near p = 1, if p is set just below 1, this is a negative value of x which also
becomes steadily more negative until p departs from the region near 1. Thus the algebra
confirms our suspicions about the lack of stability of p = 0 and p = 1.
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Figure 2.4: The change in gene frequency (Δp) plotted against the gene fre-
quency in a case of overdominance where fitnesses of AA : Aa : aa are 0.85 : 1
: 0.7.

When −1 < a < 0, 1 + a lies between 0 and 1. Raising 1 + a to the t-th power
makes it approach zero without ever becoming negative. This is the case in which p
approaches the equilibrium smoothly without ever overshooting. Whatever the initial
sign of the deviation x, it remains of the same sign but goes to zero.

When −2 < a < −1, 1 + a lies between -1 and 0. Multiplying x by 1 + a will
change its sign but reduce its magnitude. That corresponds to the case where there is
overshooting of the equilibrium, but the overshoot leaves the gene frequency each time
closer to the equilibrium than it was. The gene frequency oscillates, but with decreasing
amplitude, and ultimately converges to the equilibrium.

Finally, when a < −2, 1 + a < −1 so that the deviation x changes sign each genera-
tion and grows in amplitude. The overshoot is so great as to leave the population farther
from the equilibrium each time. It oscillates away from the equilibrium. Extrapolation
of this behavior would lead to an absurdity: the gene frequency would ultimately be
greater than 1 or less than 0. This need not trouble us, since the multiplier (1+ a) is only
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relevant in a region small enough to allow us to approximate the Δp curve as a straight
line. Farther from the equilibrium the higher-order derivatives of Δp become relevant,
inevitably in such a way as to keep the gene frequency between 0 and 1.

Our criterion for local stability is this:

−2 <

[
d(Δp)

dp

]
p=pe

< 0, (II-106)

the brackets indicating evaluation at p = pe. There are two sorts of qualification of this
picture necessary. We have not investigated what will happen when a is exactly equal
to 0, -1, or -2. In each case the exact behavior depends on the higher-order terms in Δp.
The results do not modify (II-106) in any essential way. The second qualification is a
more serious one. When generations are continuous instead of discrete, oscillation is no
longer a possibility. In that case the stability is simply determined by the sign of dp/dt
(the quantity analogous to Δp). If it is positive below the equilibrium and negative above
it, the equilibrium is stable, and not otherwise. Overshooting is impossible because the
gene frequency would have to pass smoothly through pe in order to overshoot, and once
it reached pe it would not change further. There is an analogous damping of oscillations
in discrete-time overlapping-generation models, but their analysis requires more than
one variable x.

Analyzing stability is more difficult when a = 0. In that case second-order terms will
determine the stability. For general theorems for such cases see the paper by Lessard
and Karlin (1982).

STABILITY OF OVERDOMINANT EQUILIBRIA. We can now apply the local stability
criterion to overdominance. After tedious algebra, the derivative of Δp at p = pe turns
out to be [

d(Δp)
dp

]
p = t/s(s+t)

=
−s t

s + t− s t
. (II-107)

Since in overdominant cases s and t are both positive and necessarily < 1, it is easy to
show that expression (II-107) is negative and never smaller than -1. This puts all cases
of overdominance in the category which do not overshoot, but approach the equilibrium
smoothly from one side. In fact, unless p = 0 or p = 1 the equilibrium is always
globally stable as well, never overshooting the equilibrium.

Figure 2.5 shows the course of gene frequency change starting from p = 0.01 and
from p = 0.99 and proceeding to near the equilibrium when the fitnesses are

AA Aa aa
0.85 1 0.70

The gene frequencies converge relatively smoothly on the equilibrium value pA =
0.30/(0.15 + 0.30) = 0.667.
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Figure 2.5: Convergence of initial gene frequencies from pA = 0.99 and pa =
0.01 to equilibrium when the fitnesses of AA, Aa, and aa are 0.85 : 1 : 0.70

.

UNDERDOMINANCE. When s and t are both negative, the heterozygote has the lowest
fitness of the three genotypes, and we refer to these cases as exhibiting underdominance.
Once again, we have an equilibrium at p = t/(s + t). The sign of Δp will be the same as
that of t− (s+ t)p, which is the same as the sign of p − pe. Above pe, Δp will be positive,
and below pe it will be negative. The change of gene frequency is now always away from
the equilibrium. The equilibrium is unstable (the slope of Δp is positive). Both of the
terminal equilibria at p = 0 and p = 1 are now stable. Though these conclusions are
based on local arguments, they give a correct indication of the global pattern, which is
that any initial departure from pe = t/(s + t) is amplified by selection until the gene
frequency reaches 0 or 1. Figure 2.6 shows the course of gene frequency change in such
a case, when the fitnesses are

AA Aa aa
1.15 1 1.3

which has s = −0.15 and t = −0.3. The small initial departures from the equilibrium
gene frequency are amplified by selection until A is fixed or is lost.
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Figure 2.6: Gene frequencies in successive generations when fitnesses of AA,
Aa, and aa are underdominant (1.15 : 1 : 1.3) and the initial gene frequency
is 0.65 (circles) or 0.68 (squares).

The case of underdominance is relevant for two reasons. Practical examples are
known, since chromosome rearrangements will show underdominance if there is a loss
of fertility in the inversion (or translocation) heterozygote. Underdominance is also the
simplest case in which the outcome of natural selection depends strongly on the initial
composition of the population. In the case of Figure 2.6, an initial gene frequency were
0.67, A becomes fixed in the population. If it were 0.66, A becomes lost. This is rather
dramatic behavior, and we shall see that it provides a counterexample to a widely-used
biological principle.

PROTECTED POLYMORPHISM. We can get a rough but useful idea of the behavior
of gene frequencies in over- or underdominant cases by examining what happens when
one allele or the other is rare. We make use of the rule that rare alleles appear mostly
in heterozygotes, common alleles mostly in homozygotes. Consider overdominance. If
A is rare, it will appear mostly in Aa heterozygotes. The common allele a occurs mostly
in aa homozygotes, which are less fit. We can immediately see that A will increase in
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frequency when rare. The terminal equilibrium point (p = 0) is therefore unstable. A
completely analogous argument applies when A is common. Then a occurs mostly in
heterozygotes and A in homozygotes, so a increases in frequency. So p = 1 is also an
unstable equilibrium. We have a situation like this:

−→ ←−

0 gene frequency of A 1

The quantity Δp is a continuous function of p, one which by the above simple ar-
guments is positive near p = 0 and negative near p = 1. It must therefore be zero at
some point in between. Although strictly speaking we have not excluded various strange
kinds of instability and cycling, it turns out that the crude qualitative picture we get from
these rough arguments gives us the correct impression: there is one equilibrium gene
frequency, and it is stable.

For the case of underdominance, Aa is less fit than either AA or aa. The same rough
argument applied to the situations where A is rare or A is common give us the picture.

←− −→

0 gene frequency of A 1

which once again conveys the correct information: that there is an equilibrium gene
frequency between 0 and 1, and that it is unstable.

In more complex patterns of selection, this kind of analysis-by-endpoints is often all
that can be done. It often enables us to establish that both alleles will increase when rare.
This establishes that there is a protected polymorphism. Whatever the behavior of the gene
frequency when it is in the interior of the 0-1 scale, having a protected polymorphism
guarantees that it will return to the interior of the scale. Only if the gene frequency
is pushed all the way to 0 or 1 will it fail to rebound. Strictly speaking, we have not
ruled out oscillations of increasing amplitude, but in most cases the slowness of gene
frequency change will guarantee that this behavior cannot occur. In cases of constant
relative fitnesses at one locus such as the overdominant cases we have been discussing,
growing oscillations are impossible.

While the one case we have seen (overdominance) which has a locally stable polymor-
phic equilibrium of gene frequency is a case in which the polymorphism is protected,
this will not always be the case with other, more complicated patterns of selection. Fig-
ure 2.7 shows a physical analogy to illustrate this possibility. In the case of protected
polymorphism the ball will always return to the center, but when the polymorphism is
unprotected, it may be locally stable, but cannot be globally stable to sufficiently large
perturbations in the right direction. There are two aspects of the physical analogy which
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Figure 2.7: Physical analogy to protected and unprotected polymorphisms,
using balls rolling on surfaces.

can be misleading. One is momentum, which has no analogue in biology. A ball which
rapidly rolls to the equilibrium will continue beyond it as a result of its momentum - the
gene frequency will not. The other misleading aspect of these pictures is the behavior at
the two walls. When a gene frequency reaches 0 or 1 it becomes stuck and cannot change
further until the other allele is reintroduced by mutation or by migration. A ball placed
at one of the walls depicted in the Figure simply rolls away if the local slope leads away
downhill.

HISTORY. The equilibrium gene frequencies in an overdominant polymorphism were
first derived by Fisher (1922), and more detail on the dynamics in over- and underdom-
inance was provided by Haldane (1926b). Muller (1918) had previously pointed out the
properties of balanced lethal factors, when only the heterozygote can survive selection.

II.8 Selection and Fitness

This is a convenient point at which to undertake an examination of the effects of selec-
tion on the average fitness of the population. We would like to know whether natural
selection does, as expected, increase the adaptedness of the population. In the scheme
we have developed in this chapter, the only available measure of the extent of adaptation
is the mean fitness. It would be nice if we could show that the mean absolute fitness of
the population increased under natural selection, but a moment’s reflection will show
that this cannot be so. The absolute (Darwinian) fitness of each genotype depends on the
population density. Generally, it will fall as population density rises. If the population
reaches a stable size, at that point the mean absolute fitness must be 1, so that in this
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sense natural selection will make no progress, since it will always result in a population
which has a mean fitness of unity. There are two senses in which the population might
be making progress. It may come to its equilibrium at higher and higher population den-
sity. It may come to consist of those genotypes whose fitness, relative to some standard
genotype, is higher. In this section we will explore this latter suggestion.

ASEXUALS AND HAPLOIDS. In the asexual (or the one-locus haploid) case, matters
are particularly simple and general results easy to obtain. Suppose that we have k
different genotypes, the relative fitness of the i-th of these being wi. Suppose that in
some generation the proportions of these genotypes are p1 : p2 : · · · : pk. After selection
the genotypes will be in proportions p1w1 : p2w2 : · · · : pkwk. The frequency of the i-th
genotype will be

p′i =
pi wi

w̄
. (II-108)

This is the k-genotype (or in the haploid case, k-allele) version of (II-17). The mean
relative fitness of the initial population is

w̄ =
k

∑
i=1

pi wi, (II-109)

the weighted average of the fitnesses. After selection, at the start of the next generation,
the mean relative fitness of the population is

w̄′ =
k

∑
i=1

p′i wi. (II-110)

Substituting the right-hand side of (II-108) for p′i, we get

w̄′ =
k

∑
i=1

pi w2
i

w̄
. (II-111)

The question of immediate interest is whether w̄′ > w̄, and if so, how quickly w̄
increases. The difference between w̄ in successive generations is

w̄′ − w̄ =
1
w̄

[
k

∑
i=1

pi w2
i

]
− w̄. (II-112)

Now note that ∑ piw2
i is the weighted mean of w2 over genotypes in the initial generation.

The variance of w over genotypes will be the difference between this mean square and
the square of the mean, w̄2, so that

w̄′ − w̄ =
1
w̄

[
∑ pi w2

i − w̄2
]

=
Var (w)

w̄
. (II-113)
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Thus the increment of the mean population relative fitness is the ratio of the genetic
variance in fitness (the variance among genotypes) to the mean fitness. This has two
immediate implications. Since the variance can never be negative, the mean relative fitness
will never decrease as a result of natural selection. This is a fairly reassuring result. Natural
selection seems to be doing what it is supposed to - make the organisms better adapted.

The second implication of (II-113) is that the rate of progress in fitness is proportional
to the square of the selection coefficient. If we double the differences in relative fitness
between genotypes, increasing some fitnesses and decreasing others so as to keep w̄
constant, the genotypic variance in fitness will not double, but will quadruple. The rate
of change of the genotype frequencies will roughly double, but we will also be doubling
the effect of those changes on w̄, so that the net change in that quantity quadruples.

The tendency of natural selection to increase mean relative fitness is simple enough
to explain: the more fit genotypes are increasing in frequency, so that ultimately only
the single most fit genotype will exist in the population. This may seem entirely auto-
matic and somewhat trivial. It is not: in only one other, more complex case - multiple
alleles in diploids - does mean relative fitness necessarily increase. Beyond that, when
we involve multiple loci, mean fitness can actually decrease as a net result of natural
selection and recombination, as it can also with a single locus when fitnesses depend on
gene frequency.

THE FUNDAMENTAL THEOREM OF NATURAL SELECTION. The haploid result
tempts us to think that a general maximization principle must be possible. R. A. Fisher
(1930) proposed what he called the Fundamental Theorem of Natural Selection accord-
ing to which mean fitness would increase at a rate determined by the additive genetic
variance of fitness (for more on additive genetic variances, see Chapter IX). There was
also a term for deterioration of the environment. The model was of change in continuous
time, leading to the suspicion that it was an approximation. In addition, there is some
ambiguity about exactly which measure of fitness was the one which would increase. As
will be seen below, mean fitness often, but not always, increases in population-genetic
models. As a result of careful algebraic work the meaning of Fisher’s formula has been
made clear, but at the same time it has been made clear that it is not-so-fundamental. For
more on close analysis of Fisher’s results, papers by Edwards (1967, 1990, 1994, 2014),
Price (1972b), Ewens (1989), and Lessard (1997) will be a good starting point.

WHERE FITNESS IS MAXIMIZED. We cannot be absolutely certain that mean pop-
ulation fitness is always maximized by natural selection in each generation. Computer
simulations show that the net change in fitness over many generations is frequently pos-
itive when relative fitnesses of genotypes are constant. But the mathematics of change of
fitness in the asexual case does establish one principle – that the mean fitness increases
within the generation. When viabilities differ, if we compare the newborns in one gener-
ation with the survivors, the mean fitness of the survivors will have increased according
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to equation (II-113). If there are also differences in fertility, we can get the same result
if we weight genotypes by their contributions to the next generation instead of simply
counting survivors. Fitness is changing as Darwin expected.

But then, alas, Gregor Mendel intervenes, the genes segregate, and the matter is cast
in doubt. When we are not dealing with asexual clones, offspring are no longer of the
same genotype as their parents. We cannot then use equation (II-113) to establish a net
increase of fitness. It turns out that there the genetic system is not optimized to result
in increase of fitness by natural selection. We would only expect such optimization of
the genetic system if multiple genetic systems had competed, with choice among them
according to their results. The system of inheritance that we have need only be good
enough that there is a net increase if fitness most of the time. We are fit enough to sit
here and read this book, but not we are not optimal organisms.

DIPLOIDY: TWO ALLELES. For the case of two alleles, there is a simple result which
is suggestive. We can show that the gene frequency will always move in the direction of
the peak in the plot of w̄ versus gene frequency. Consider the general expression (II-34)
for gene frequency change. In particular, consider p(wAA − wAa) + (1− p)(wAa − waa),
the quantity in brackets. Suppose that we were to plot w̄ against gene frequency, and
consider the slope of the resulting curve. This would be the derivative dw̄/dp. Since

w̄ = p2 wAA + 2p(1− p)wAa + (1− p)2 waa (II-114)

we can take the derivative with respect to p and obtain

dw̄
dp

= 2p wAA + 2(1− p)wAa − 2p wAa − 2(1− p)waa

= 2[ p (wAA − wAa) + (1− p)(wAa − waa) ]. (II-115)

The quantity in brackets in (II-115) is precisely the quantity in brackets in the next-
to-last line of(II-34). Substituting from (II-115) in (II-34) we obtain

Δp =
p(1− p)

2w̄
dw̄
dp

. (II-116)

Of the factors on the right-hand side of this equation, p, (1− p), and w̄ can never be
negative. The sign of Δp will be controlled by the sign of dw̄/dp. When that slope is
positive, w̄ is rising as p is increased, and in that situation p increases. When w̄ rises
with a decrease in p, equation (II-116) shows us that p will decrease.

The equilibria of the system are the values of p at which Δp = 0. These occur when
p = 0, 1− p = 0, or dw̄/dp = 0. This establishes that dw̄/dp = 0 at the polymorphic
equilibrium points in overdominant and underdominant cases. This can be verified by
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taking the expression for dw̄/dp in (II-115), equating it to zero, and solving for p. The
value of p obtained is

pe =
wAa −waa

(wAa −wAA) + (wAa −waa)
(II-117)

which is precisely the equilibrium gene frequency with over- or underdominance. This
gene frequency is also a stationary point (a maximum or a minimum) of the curve
relating w̄ to p. In a continuous curve, such a point is either a relative maximum or
a relative minimum. In fact, the curve is a quadratic function of p, which immediately
tells us that pe is either the overall maximum or the overall minimum. Taking the second
derivative by further differentiating (II-115),

d2w̄
dp2 = 2[wAA − 2wAa + waa]. (II-118)

We can immediately see that the curvature of w̄ is a constant, not depending on p.
If wAa > wAA, waa this constant is negative, and if wAa < wAA, waa it is positive. This
establishes that in the overdominant case, the w̄ curve has a maximum at p = pe, and in
the underdominant case it has a minimum there. Figure 2.8 shows w̄ plotted against p
for the case

AA Aa aa
0.55 1 0.25

Adaptive topography. Looking at Figure (2.8), we see that it is a hill: we can think
of it as “fitness surface”, “fitness landscape”, or “adaptive topography”. The maximum
of w̄ at the equilibrium gene frequency pe = 0.75/(0.45 + 0.75) = 0.625 is evident.
Equation (II-116) establishes that the gene frequency always moves in that direction
which is uphill on the fitness surface, the curve relating w̄ to the gene frequency. In cases
of directional selection, where the peak pe lies outside the (0, 1) interval, this establishes
that each change of p moves the population higher on the w̄ curve. In the underdominant
case there is also a continual increase of w̄ as the population gene frequency moves away
from p = pe. However, we must be careful in interpreting the meaning of (II-116) in the
case of overdominance. It shows us that change is in the uphill direction, but it does not,
of itself, allow us to rule out the possibility that p overshoots the equilibrium, possibly
even by so much as to end up farther down from the w̄ peak than it started. As we have
seen, this is not the case. There is in fact a continual increase of w̄ until the population
comes to rest on the peak of the adaptive surface, but (II-116) alone is not sufficient to
establish this.

FITNESS OPTIMIZATION. We now have the pleasing picture of the population chang-
ing so as to continually increase w̄, until it comes to rest at a peak of the adaptive surface.
This would seem to provide a basis for the use of “fitness optimization” arguments in
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Figure 2.8: Mean fitness plotted as a function of gene frequency when fit-
nesses are: AA 0.55, Aa 1, aa 0.25.

ecology and animal behavior. In those arguments it is assumed that the population will
evolve to that collection of phenotypes which maximizes the mean fitness. The picture
we have developed above is only partly consistent with this notion. In the first place,
genetic constraints may prevent the population from achieving this optimum configura-
tion. In a case of overdominance, the highest mean population fitness would be achieved
if all individuals were to be heterozygotes. Mendelian segregation makes this impossi-
ble: a population of heterozygotes will not be stable - it will immediately segregate out
some homozygous offspring. In the second place, the peak of mean fitness which is
achieved need not be the highest available peak.

When we have a case of underdominance, the final equilibrium achieved depends on
the initial gene frequencies. Since the mean fitness at the equilibrium will be either 1− s
or 1− t, depending on initial position, it is entirely possible that a population will fail to
find the best solution to its adaptive problems. Although its fitness cannot decrease, it
may be climbing the smaller of the two peaks of the adaptive surface. If it starts out at
the smaller peak, it will never find its way to the higher peak if natural selection is the
only force changing gene frequencies. Fitness optimization arguments implicitly assume
that a global optimization is carried out. The actual process of natural selection involves
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a very narrow view of the adaptive surface. As we have seen, the local slope of the
surface is all that the process of natural selection can “see” - it cannot know that there is
a higher peak in another direction. If the A allele occurs mostly in Aa heterozygotes and
these are not very fit, the frequency of A will decline, even though the AA homozygote
may be the best genotype. Setting out from your present location and proceeding always
uphill is perhaps a good recipe for escaping a small flood, but it is not the best route to
the top of Mt. Everest.

The analogy between the fitness curve and a landscape is due to Sewall Wright (1932,
1935a, b), who discussed forces other than selection, particularly genetic drift, as means
of moving a population across valleys in the surface.

SEGREGATIONAL LOAD. If the genetic system were asexual, reproducing by apomic-
tic parthenogenesis, then natural selection would result in the increase to fixation of the
most fit genotype. The failure of this to happen in outcrossing diploid populations is
a weakness of the Mendelian genetic system. If we consider only the portion of a gen-
eration from fertilization to meiosis, the effect of natural selection will be to increase
fitness by an amount which equals the genetic variance (variance among genotypes) of
fitness divided by the mean fitness. This follows from the argument which we gave for
asexuals, for in this portion of the generation even an outcrossing diploid population is
effectively asexual. Meiosis, by disrupting genotypic combinations and reshuffling the
genes, will lower the fitness, though we have seen that in the case of the two alleles it
can never lower it past its initial value.

A numerical example will be useful here. Suppose that we have a diploid population
with fitnesses

AA Aa aa
0.4 1 0.8

and a gene frequency of 0.2 in the population at the beginning of a generation. After
fertilization, when the genotype frequencies are in their Hardy-Weinberg proportions
0.04 : 0.32 : 0.64, the mean fitness will be

0.04× 0.4 + 0.32× 1 + 0.8× 0.64 = 0.848.

Natural selection (which in this example is most easily conceived of as differential
viability) will alter the genotype frequencies to

0.04× 0.4/0.848 : 0.32× 1/0.848 : 0.8× 0.64/0.848

or
0.0189 : 0.3774 : 0.6038

These genotype frequencies are not in Hardy-Weinberg proportions: there is an ex-
cess of heterozygotes as a result of their high viability. If the genetic system were asex-
ual, these would be the genotype frequencies at the start of the next generation. The
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mean fitness would then be 0.0188× 0.4 + 0.3774× 1 + 0.6038× 0.8 = 0.862, an in-
crease of 0.02 over the value before selection. However meiosis intervenes and makes
the next generation start in Hardy-Weinberg proportions at the new gene frequency of
0.0189+ 0.3774/2 = 0.2076. The genotype frequencies are then

0.0431 : 0.3290 : 0.6279

which gives a mean fitness at the start of that generation of 0.0431× 0.4 + 0.3290× 1 +
0.6279× 0.8 = 0.84856. This is considerably lower than 0.868 but still above the initial
mean fitness of 0.848. The increase of mean fitness by 0.02 due to natural selection has
been rolled back by meiosis to a net increase of 0.00056. The disruptive effect of meiosis
on genotypic combinations is apparent.

If the population lacked meiosis, how much higher could its fitness be? This question
was first posed by Morton, Crow, and Muller (1956), who defined and calculated the seg-
regational load. This they defined as the fractional reduction in the fitness of a population
as a result of the existence of Mendelian segregation. In the presence of overdominance,
an asexual population could come to consist entirely of heterozygotes. In our parameter-
ization, it would then have a mean fitness of 1. An outcrossing population would come
to equilibrium at a gene frequency of pe = t/(s + t) for allele A, which would result in
a mean fitness of

w̄ = 1 − sp2
e − t(1− pe)

2

= 1 − st2/(s + t)2 − ts2/(s + t)2

= 1 − st(s + t)/(s + t)2

= 1 − st/(s + t) (II-119)

The fraction by which fitness is reduced by the presence of segregation, relative to the
fitness of Aa, is st/(s + t). This is half the harmonic mean of s and t.

Is it a burden? The segregational load calculation is often misinterpreted as meaning
that a population segregating at an overdominant locus somehow suffers a loss in fitness.
Keep in mind that we have been calculating in terms of relative, not absolute fitnesses.
These depend on which genotype is taken as the standard. We have taken Aa as the
standard, so that w̄ is necessarily less than 1. To see that an overdominant polymorphism
need not impose a burden, imagine a population initially all aa, into which A alleles are
introduced. Initially, the mean relative fitness of the population is 1− t. As we have seen,
A will increase when rare, until it reaches the equilibrium frequency of p = t/(s + t). At
that point, the mean fitness will be, from (II-119),

1− st/(s + t) = 1− s pA > 1− s

= 1− t pa > 1− t
(II-120)
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so that the final mean fitness exceeds that in populations fixed for either a or A. The net
effect of introducing either allele into a population fixed for the other is to bring about
an increase in mean relative fitness. We can calculate a segregational load, but there is no
sign that this load causes any more difficulty to the population than it would experience
if it were all aa or all AA. In a purely technical sense there is no segregational load in a
population which is (say) all AA. This is because the standard of comparison in such a
population is the AA genotype, the genotype which would also comprise the population
if it had no Mendelian segregation (as there are no a alleles in the population). As soon as
we introduce Aa heterozygotes, the standard of comparison becomes Aa, the type which
would take over in the absence of segregation, and there is now a positive segregational
load. This increase in segregational load is purely a matter of changing the standard
from AA to Aa. As (II-120) shows, it poses no threat to the population, whose mean
relative fitness has increased.

It may be hard to imagine that introduction of an allele whose homozygote has low
fitness could increase mean population fitness. A numerical example may be useful.
Consider the sickle-cell hemoglobin polymorphism. Calling the two alleles A and S (not
the correct notation for hemoglobin variants but good enough for our purposes), the
relative fitnesses in the presence of falciparum malaria and inadequate medical care are
thought to be roughly:

AA AS SS
0.8 1 0

where the heterozygote is taken to be the standard. This gives an equilibrium gene
frequency for S of

pS =
(1− 0.8)

(1− 0.8) + (1− 0)

= 0.2/1.2 = 0.1667.

Before introduction of the S allele, the mean relative fitness of the population was 0.8.
After the polymorphism reaches its equilibrium frequency, the mean relative fitness is

0.8× (0.8333)2 + 1× 2× (0.8333)× (0.1667) + 0× (0.1667)2 = 0.8333,

for an increase of fitness of 0.0333. The introduction of AS homozygotes at a genotype
frequency of 28% has more than compensated for the accompanying presence of 3% of
SS individuals. You may want to verify that (II-119) correctly predicts the mean fitness
in this case. It was not the intention of Morton, Crow, and Muller to argue that a high
segregational load creates a problem for the population. Their computation was part
of a rather sophisticated attempt to determine whether natural variation in viability in
humans is maintained by recurrent mutation to deleterious alleles or by the presence of
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overdominant polymorphism. The segregational load computation is part of the analysis
of the so-called “B/A Ratio”. The results are equivocal, and this method has fallen from
use. The interested reader will find accounts of this controversy in Lewontin (1974, pp.
74-82) and two books by Wallace (1970, chap. 9; 1968, chap. 15).

II.9 Selection and Fitness : Multiple Alleles

When we have multiple alleles in an outcrossing diploid population with constant rel-
ative fitnesses, the principle that w̄ increases as a result of natural selection becomes
an essential part of predicting the equilibrium gene frequencies and analyzing the sta-
bility of these equilibria. We will only sketch the method in this section. We start by
formulating the equations of change of gene frequencies.

EFFECT OF SELECTION. We can directly generalize equations (II-31) and (II-35), the
basic equations for gene frequency change with two alleles. The extension is straight-
forward. The genotype frequency of the (ordered) genotype Ai Aj immediately after
fertilization is pi pj. This holds for all i and all j, including the case where i = j. The
contribution from these individuals to the pool of Ai gametes will be proportional to
1
2 pi pjwij, wij being the fitness of Ai Aj. The total frequency of Ai copies in the gene
pool, those Ai copies that come from the left-hand gene, is the sum over j of 1

2 pi pjwij.
Of course, an Ai in the gene pool could also have come from an individual of genotype
Aj Ai, from which it is a copy of the right-hand gene, so there is a similar sum of 1

2 pj piwij.
The total number of genes in the gamete pool is the sum of these expressions over all i
and j, so the gene frequency of Ai in the gene pool is:

p′i =

1
2

n
∑

j=1
pi pj wij + 1

2

n
∑

j=1
pj pi wij

2× 1
2 ∑

i
∑
j

pi pj wij

=

pi

(
∑
j

pj wij

)
w̄

, (II-121)

where w̄ = ∑i ∑j pi pjwij, the mean fitness of the population. In this equation ∑j pjwij is
a quite straightforward quantity: the mean fitness of the organisms in which Ai alleles
find themselves, weighted by the numbers of Ai alleles they contain. We call it w̄i. These
are direct parallels to the quantities w̄A and w̄a which we used in the two-allele argument
in section II.4. Equation (II-121) can now be rewritten as

p′i =
pi w̄i

w̄
(II-122)
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which also leads us directly to

Δpi = p′i − pi = pi
w̄i

w̄
− pi

= pi
(w̄i − w̄)

w̄
. (II-123)

The two-allele argument we presented earlier is a special case of this n-allele case.

EQUILIBRIUM. Either of these last equations readily yield the conditions for equilib-
rium. At equilibrium, for allele i either pi = 0 or w̄i = w̄. Thus if we want to find an
equilibrium at which, out of 8 alleles, p1 = p2 = p5 = p6 = 0, and p3, p4, p7, and p8
are non-zero, the conditions at equilibrium are w̄3 = w̄, w̄4 = w̄, w̄7 = w̄, and w̄8 = w̄.
Since w̄ is a quadratic expression in n variables, these seem unpromising candidates
for exact solution. However, we can eliminate w̄ from these equations, so that they be-
come: w̄3 = w̄4, w̄4 = w̄7, and w̄7 = w̄8. Each of these is a linear equation in the gene
frequencies, since

w̄i =
n

∑
j=1

pj wij. (II-124)

The equations are then, since p1 = p2 = p5 = p6 = 0,

p3 (w33 − w43) + p4 (w34 −w44) + p7 (w37 −w47) + p8 (w38 −w48) = 0,

p3 (w43 − w73) + p4 (w44 − w74) + p7 (w47 − w77) + p8(w48 − w78) = 0,

p3 (w73 − w83) + p4 (w74 − w84) + p7 (w77 − w87) + p8(w78 − w88) = 0.

(II-125)

These are three linear equations in four unknowns, but the four gene frequencies are
not independent variables, as they must add up to 1. We can add a fourth equation,

p3 + p4 + p7 + p8 = 1. (II-126)

We have four linear equations in four unknowns. These can be solved by standard matrix
methods. The solution can then be checked as to whether it has all four gene frequencies
positive, for if not the solution is irrelevant.

This pattern can be followed to find all equilibria of the n-allele system prescribed by
the fitnesses wij. For each subset of the alleles, we can set up the equations corresponding
to (II-125) and see whether there is an equilibrium containing only those alleles. This
works, but is a rather gloomy prospect. There are in all 2n− 1 subsets of a set of n alleles,
counting the set itself but not the empty set. All of these would have to be checked for
equilibria. Each equilibrium which is found would need to be checked to determine
stability. With large numbers of alleles, this can be a lot of work.
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STABILITY AND MEAN FITNESS. We are presumably interested in finding all stable
equilibria. Fortunately, there is a property of the population mean fitness which saves
most of this work and allows us to picture the matter relatively simply. It turns out that
the result of selection is always that w̄′ ≥ w̄. Mean population fitness never decreases.
This is not particularly easy to prove, and the proof will not be given here. It was
established in a series of papers by Scheuer and Mandel (1959), Atkinson, Watterson,
and Moran (1960) and Kingman (1961a,b). These papers contain successively simpler
proofs of the same basic result. The interested reader will also find Kingman’s proof in
the books by Ewens (2004, section 2.4) and Nagylaki (1977b), with a particularly detailed
presentation of stability conditions in the latter.

The nondecreasing nature of mean fitness immediately lets us prove that certain
points are stable equilibria. Among all combinations of gene frequencies, one will have
the highest value of w̄. (It is possible that the maxima of w̄ be a line or plane of points,
all with the same value of w̄, but in most cases this does not arise, and we ignore it).
Suppose that a point (p1, . . . , pn) is the maximum. In the immediate vicinity of this
point there is a region in which the fitness falls smoothly off as one moves away from
the equilibrium. If we perturb the gene frequencies to a point near the equilibrium, we
will find that w̄ has decreased slightly to a new value, w̄∗. Around the equilibrium is
an elliptical contour of height w̄∗. The population must move to a point within that
contour, since w̄ cannot decrease further. Thus it will climb back to the equilibrium. We
have not established this rigorously, but it is true. If a point is a local maximum of w̄,
or at least has higher w̄ than any nearby point with no negative gene frequencies, it will
be a stable equilibrium. All equilibria with more than one allele present are stationary
points (maxima, minima, or saddle points) with respect to variation in the frequencies
of the alleles present. Among those, the stable equilibria are the maxima. With respect
to the alleles not present, the stable equilibria (and only those) will have for each allele
k which is absent, w̄k < w̄. We can check the stability of an equilibrium by verifying
whether these conditions are true. Kimura (1956b) gave the conditions necessary to
determine stability of an equilibrium with respect to variation in the frequencies of the
alleles present, and Kingman (1961a) the condition for the alleles absent.

An example. Figure 2.9 shows an example with three alleles involving estimated
fitnesses in the human hemoglobin-β polymorphism with alleles A, S and C. Note how
much information can be gleaned from simply plotting the “fitness surface”, w̄ plotted
against the gene frequencies. It is convenient to plot the gene frequency as points in an
equilateral triangle, the distances from any point to the three sides being proportional
to the gene frequencies. Since the sum of these three altitudes of the triangle must be
equal, we can take this sum to be 1. In Figure 2.9, there are two equilibria. One is the
familiar polymorphism of hemoglobins A and S, the other fixation for hemoglobin C. To
which peak the population will climb depends on the starting gene frequencies.

Considerable insight is obtained by looking at the sides of the triangle. When only the

103



*
+

−
0.2

0.4

0.3

0.5

0.6

0.7

0.8

0.9

0.692

0.69

0.6920.69

C

S A

A S C

A
S
C

0.685 0.763 0.679

0.763 0.151 0.545

0.679 0.545 1.000

+

−

Figure 2.9: Contours of fitness plotted against allele frequencies in a three-
allele β-hemoglobin polymorphism. At any point, the frequency of each allele
is proportional to the attitude to the side opposite the corner labeled with that
allele’s symbol. Minima (-), Maxima (+) and a saddle-point (*) of the fitness
surface are indicated.

S and C alleles are present the fitnesses of SS : SC : CC are 0.151 : 0.545 : 1.0, predicting
an unstable equilibrium when S is fixed and a possibly stable equilibrium when C is
fixed. The side corresponding to A and C has fitnesses of AA : AC : CC of 0.685 : 0.679 :
1.0, which is underdominance. There will be an unstable equilibrium when pA = 0.982,
pC = 0.018, and pS = 0. The equilibria at either end of the A-C side have a chance to be
stable. In fact, knowing that the C corner of the triangle is indicated as possibly stable
on analysis of both the S-C and the A-C sides is sufficient to establish its stability in
general when all three alleles are considered. The A-S side shows fitnesses 0.685 : 0.763
: 0.151, the familiar sickle-cell overdominant polymorphism. This has an equilibrium at
pS = 0.113, pA = 0.887, pC = 0. The instability of fixation for A in the side is also proof
that fixation for A is unstable when all three alleles are considered: it is only necessary
to add a small frequency of S to move away from that equilibrium. We already know
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that the state of fixation for S is unstable, from our examination of the S-C side, but this
is confirmed by analysis of the A-S side.

It still remains to evaluate the stability of the polymorphism for alleles A and S.
For that equilibrium to be stable, we must know that C alleles introduced at low fre-
quency will not increase in frequency. The mean fitness of these alleles at this equilib-
rium will be pAwAC + pSwSC, which is (0.018)(0.545) + (0.982)(0.679) = 0.676, which
is to be compared with the mean fitness of the population at the equilibrium, which is
(0.113)2(0.151)+ 2(0.113)(0.887)(0.763)+ (0.887)2(0.685) = 0.6938. So the mean fitness
of C alleles is below the population average, and they will not increase in frequency. The
only part of the triangle not yet investigated for stable equilibria is the interior, where all
three alleles are present. There is an equilibrium there, as the appropriate linear equa-
tions show, but it is not stable. In fact, if there is a stable equilibrium with one fewer
allele (including stability to introduction of the missing allele), the interior equilibrium
must be unstable. This fact follows from the identification of peaks of w̄ with stable equi-
libria, and from the quadratic nature of w̄, though it will not be proven here. Since there
is a stable equilibrium with only alleles A and S, there cannot be a stable equilibrium
with all three alleles.

Note that the simple plotting of w̄ over the triangle, as done in Figure 2.9, imme-
diately shows the locations of the two peaks, and shows that there is an interior equi-
librium which is unstable, as it is a saddle of the fitness surface. Such a plot of w̄ will
always convey the full picture in multiple-allele cases, and is by far the easiest and most
accessible way of analyzing these situations. Of course, the plot must be done to suffi-
cient accuracy: both the saddle point and the A-S polymorphic equilibrium would have
been missed if only the contours 0.1 apart (the coarsely dashed curves) were plotted.

The small size of the peak for the A-S polymorphism would seem to indicate that
West African populations are proceeding to fixation for allele C. This is not necessarily
so, because these populations are starting from the vicinity of this small peak. There is a
lack of good information, but C is believed to have reached sufficient frequency in some
localities. You may care to consult the more extensive discussion of this example by
Cavalli-Sforza and Bodmer (1971). There have been many papers on the conditions for
maintaining multiple alleles at a locus. We will not explore this literature here because
overdominance seems to be very rare in nature.

II.10 Selection Dependent on Population Density

We have so far been assuming that relative fitnesses of genotypes are constant, so that
we need not consider absolute fitnesses or population sizes. This amounts to the as-
sumption that the absolute fitness of genotype Ai Aj is a product of two factors, so that
Wij = wij f , where wij is the relative fitness, which depends on the genotype, and f is a
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factor which is the same for all genotypes, though it may depend on population density,
gene frequency, or time. This constancy of relative fitnesses allowed us to make our
analysis purely in terms of them, provided we were only interested in knowing the gene
frequency, and not the population density. Although selection turned out to maximize
mean relative fitness, the presence of the factor f allows us to concoct situations in which
f is very sensitive to the gene frequency, declining rapidly as the gene frequency ap-
proaches its equilibrium. In this way one can even make a model in which a population
evolves its way to extinction. In the coming sections we relax the assumption that the
relative fitnesses are constant and allow them to depend on population density, time, or
gene frequency.

ASEXUALS AND HAPLOIDS. If the fitnesses are functions only of population density
(which we consider equivalent to population size), there are some regularities in the
outcome of natural selection which provide us with partial assurance that the population
does not evolve towards extinction. It is simplest to consider the absolute fitness is a
function of population size, N. Each genotype may have a different dependence of N,
but they all respond to the overall density N. It is important to realize that this is not
the case in which each genotype’s fitness responds only to its own numbers.

In the two-genotype (or two-allele) case, we have absolute fitnesses W1(N) and W2(N).
The numbers of the two genotypes follow the dynamics

N′1 = N1 W1(N)

N′2 = N2 W2(N),
(II-127)

where N = N1 + N2. Charlesworth (1971) has made a particularly penetrating analysis
of density-dependent selection. In the asexual case his argument works out particularly
simply, and is the basis for what is presented here. Suppose that each genotype’s abso-
lute fitness declines strictly monotonically as N increases. We can trace out curves of W1
and W2 as functions of N:

There will be particular points K1 and K2, the values of N at which w1 and w2,
respectively, reach unity:

W1(K1) = 1,

W2(K2) = 1.
(II-128)

Suppose (arbitrarily) that K2 < K1. If the population size N is below K2, then equations
(II-127) show that both subpopulations are growing. Which is growing faster is not
known without considering the exact shapes of the dependence of W1 and W2 on N,
but the total population size must continue increasing until it reaches K2. At that stage,
unless the genotype A1 has been completely eliminated, it will have the advantage, for
when N is above K2 but below K1, W1 > 1 > W2. The population of A1 genotypes
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continues increasing and that of A2 decreases. Ultimately A1 comes to constitute the
entire population, at which point the population size N has risen to K1. If the initial
population contains both types and has N > K1, a similar argument applies and the
population size falls into the range K2 < N < K1, after which type A1 will win out. A
similar argument applies with multiple strains (or multiple alleles).

We thus have some assurance that the genotype which will maintain the highest
equilibrium population size will be favored by natural selection. This would seem to
guarantee that natural selection will act so as to reduce the probability of extinction of
the population, but a moment’s reflection will show that this is not necessarily the case.
The W2(N) curve may pass through N = K2 at a very steep angle, while W1(N) passes
through N = K1 at a shallow angle:

W

1 N

W1

W2

K 1

K 2

If this happens to be the case, a population of A1 individuals may recover less quickly
from environmental fluctuations than would an A2 population. If a fluctuation of the
environment or a fluctuation due to the randomness of birth and of death events were
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to carry the population size below the point of intersection of the W1 and W2 curves, at
those low population sizes a population consisting of the A1 genotype will grow more
slowly than one consisting of A2. The favored A1 genotype will then be more susceptible
to extinction, provided that population size is sufficiently strongly fluctuating to carry it
often into this region.

DIPLOIDS. The diploid version of density-dependent selection has, for the two-allele
case, three curves, one for each genotype. The discussion here will assume that W = 1
is the value when the population exactly replaces itself (if it were actually W = 2 the
expressions and figures would have to be adjusted accordingly). In certain simple cases
the outcome is straightforward. If the three curves do not cross in the region between the
point where the lowest one reaches W = 1 and the point where the highest one reaches
W = 1, then the population is guaranteed to grow into this region, and the outcome of
natural selection can be qualitatively predicted from the ordering of the fitness curves.
If we have the heterozygote intermediate then natural selection will favor the A1 allele.

W

1 N

W11

W12

W22

K22

K12

K 11

As it reaches high frequencies the population will come to an equilibrium at N = K11.
When the curves are allowed to cross in the relevant region things can be rather

complicated. The exact equilibrium gene frequency depends on the population size,
whose growth rate in turn depends on the gene frequency. The equilibrium of the
two variables requires solution of two simultaneous equations. Charlesworth (1971) has
made a general examination of the matter. He proved that polymorphism can only be
maintained provided that there is overdominance in the Kij. He also showed that natural
selection maximizes the quantity N∗(p), where N∗(p) is the equilibrium population size
which would be achieved if p were held fixed, namely the root of

p2 W11(N) + 2p(1− p) W12(N) + (1− p)2 W22(N) = 1, (II-129)

where p is given and N is the quantity which we vary. In particular, if K11 > K12 >
K22, then allele A1 will be fixed. Natural selection acts as if it is trying to maximize

108



the equilibrium population size. This does not necessarily mean that the population
size increases steadily throughout the course of natural selection. Ultimately, natural
selection finds that value of p which allows it to reach the highest equilibrium population
size. Of course, this maximum is a local maximum - in underdominant cases the result
depends on the initial gene frequency and the global maximum need not be reached.

OSCILLATIONS AND CHAOS. The entire foregoing discussion rests on a premise
that the population settles down to a single equilibrium size. This will not be true if the
Wij(N) pass through 1 too rapidly. If population density regulation causes too great a
decrease in absolute fitness, the equilibrium population size can be unstable. The result
may be either cyclical oscillation of population size or a pattern known as “chaos,” in
which the population size remains within a fixed interval of sizes and fluctuates without
ever achieving the same size twice (May, 1974, 1976). In such cases the preceding analysis
fails to hold because we cannot argue that the population comes to rest at that size N at
which W̄(N) = 1.

SOME PARTICULAR GROWTH LAWS. Various workers have analyzed particular
functions W(N) which seem to do a good job of approximating biological reality, but
which allow some exact analysis. The simplest model has W(N) a linear function of N:

Wij(N) = 1 + rij − rijN/Kij, (II-130)

which is often referred to as the discrete logistic growth law. It was first worked on
in a genetic context by Roughgarden (1971). Roughgarden showed numerically, and
Charlesworth (1971) analytically, that natural selection acts as if trying to maximize K, in
that when K11 > K12 > K22 allele A1 is favored, with polymorphism only when there is
overdominance in K. This is only true when the equilibrium value of N is approached.
Where rij > 2, oscillations (r < 2.83) or chaos (r > 2.83) occurs, (May, 1976) and it is not
known what governs the outcome of natural selection. One of the disadvantages of the
growth law (II-130) is that when N is large the population can go negative. This tends
to occur if r > 3.

A second growth law,

Wij(N) =
1 + rij

1 + (1 + rij)N/Kij
(II-131)

cannot yield oscillation or chaos no matter how large is r. This growth pattern has
the advantage of never yielding a negative fitness. It has been introduced in a genetic
context by Clarke (1972). Roughgarden (1979) shows that the sequence of population
sizes for a population with a single genotype lie on a logistic growth curve, so that in
this sense this growth curve is a truer analog of the logistic growth law than (II-130).
Little explicit analysis of this growth curve has been done, but since it never yields
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oscillations or chaos, Charlesworth’s (1971) results predict that natural selection will
favor the genotype with the highest K if there is neither over- nor underdominance,
will bring about a stable polymorphism if there is overdominance in K, and an unstable
polymorphism if K is underdominant.

A third growth law,

Wij = exp

[
rij

(
1− N

Kij

)]
, (II-132)

has been extensively investigated by May (1972, 1974; May and Oster, 1976). In a popu-
lation consisting of a single genotype, there will be a stable equilibrium population size
if 0 < r < 2, cyclic behavior if 2 < r < 2.692, and chaos if r > 2.692. For r < 2
Charlesworth’s analysis predicts maximization of K. For the oscillating and chaotic
realm Michael Turelli and the late Timothy Prout, in unpublished work, have proven,
by applying rules similar to those we shall develop in the next section, that in that case
as well selection favors genotypes with high values of K.

In both of these last two cases there has been no tradeoff between r and K: the
outcome of selection is predicted qualitatively by the K values, although the r’s will
influence the exact position of a polymorphic equilibrium. On intuitive grounds, we
would expect that sometimes there would be a compromise between r- and K-selection,
the outcome depending on both parameters. I have analyzed (1979) a simple (if rather
extreme) model due to Williamson (1974) which shows effects of both r and K. It is

Wij =

{
R1,ij, if N ≤ Kij

R2,ij, if N > Kij
. (II-133)

This model is almost always chaotic, except for very special values of R1 and R2
which allow it to be cyclic. The outcome of selection is complex: if the genotypes differ
only in R’s, the effect of natural selection is to favor the genotype with the highest
value of (ln R1)/(− ln R2). When K alone varies, the genotype with the highest value
of K is favored. When both quantities differ among genotypes the outcome depends
on both. Interestingly enough, when r- and K selection are counterposed it is possible
in this growth model to have protected polymorphism under certain conditions even
in an asexual (or haploid) population. Roughgarden (1971) introduced a model in which
seasonality causes the population size to cycle, and in that case as well found that there
were effects of both r and K, with polymorphism possible when r- and K-selection were
appropriately counterposed.

ADDITIONAL WORK. The investigation of density-dependent selection was pioneered
by MacArthur (1962). Roughgarden has extended the conditions for maximization of
N∗(p) to multiple interacting species - an account of the results and further references
will be found in that book (1979). Other investigations of particular interest are those of
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Anderson (1971), León and Charlesworth (1978), Asmussen and Feldman (1979), As-
mussen (1979), and Hansen (1992). Turelli and Petry (1980) have made a thorough
analysis of a model which has both density-dependence and temporally-varying en-
vironments.

II.11 Temporal Variation in Fitnesses

It is unlikely that relative fitnesses of genotypes will remain constant through time, since
the environmental conditions, population density, and densities of other species will
fluctuate, and these will in many cases affect the strength of natural selection. There has
been a certain amount of work on cases in which fitnesses vary randomly or cyclically
from one generation to the next. It leads to surprisingly simple conclusions.

ASEXUALS AND HAPLOIDS. Dempster (1955) first considered a haploid case with
two alleles. If the fitnesses in generation t for alleles A and a are 1+ st : 1, we can invoke
equation (II-13), altering it only by subscripting s:

p(t+1)
A

p(t+1)
a

= (1 + st)
p(t)A

p(t)a

. (II-134)

The ratio pA/pa after t generations of selection will be (using ∏ as the symbol for re-
peated multiplication)

p(t)A

p(t)a

=

[
t−1

∏
u=0

(1 + su)

]
p(0)A

p(0)a

. (II-135)

in direct analogy to equation (II-71). We can immediately see what happens in the case
of cyclic selection. This is the case where there are T different values of s, which are
repeated cyclically, so that the fitnesses are 1 + s1, 1+ s2, 1+ s3, . . . , 1+ sT, 1+ s1, . . . , 1+
sT, . . . . If we follow the change of gene or genotype frequency over one cycle, we must
take the product of these fitnesses over the cycle. If that product (in square brackets
in the equation) is greater than one, the ratio of gene frequencies is increased by each
cycle of generations. If it is less than one, the ratio is decreased, and if it is exactly one, it
does not change. Whether the A allele increases to ultimate fixation depends on whether
this product of relative fitnesses exceeds one. Notice that if we take the T-th root of the
product, that is the geometric mean of the T quantities 1 + s1, . . . , 1 + sT. Taking the T-th
root of a quantity does not change the fact of whether it exceeds 1, since T is positive. We
can succinctly state the result by saying that the allele with higher geometric mean relative
fitness takes over. This follows because the geometric mean of 1 + st is the same as the
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ratio of the geometric means of w(t)
A and w(t)

a , since

[
∏

u
(1 + su)

]1/T

=

[
∏

u

(
w(u)

A

w(u)
a

)]1/T

=

[
∏u w(u)

A

∏u w(u)
a

]1/T

=

[
∏

u
w(u)

A

]1/T /[
∏

u
w(u)

a

]1/T

(II-136)

Randomly varying fitnesses. When the fitnesses do not go through an exact
cycle, but vary randomly with time, the mathematics is more complex but the result is
essentially the same. In the short run we may encounter a run of generations favorable
to A or to a, so we must look to the long run for more exact predictions. The result will
depend on the value of the product ∏(1 + su), that is on ∏(w(u)

A /w(u)
a ). Though there

is no simple generalization covering all cases, we need only place very mild restrictions
on the way in which fitnesses vary to get a simple result. If we can assume that there
is very little long-term correlation of fitnesses (if we cannot predict future fitnesses far
ahead of time) then we need only take the logarithm of this product and get a sum,

ln

[
∏

u
(1 + su)

]
= ∑

u
ln(1 + su) (II-137)

and we can apply the Strong Law of Large Numbers, from probability theory, to this
sum. As we consider large numbers of generations, this sum will approach t times its
expectation, and its variance will also rise proportionally to t.

If a number’s expectation rises with t, but its variance also rises similarly, that means
that its standard deviation rises as the square-root of t. So if we ask how many standard
deviations the number is from zero, this rises proportionately to t/

√
t, which is

√
t.

Sooner or later it will be 10 standard deviations above (or below) zero, so that we can be
certain that the net effect of selection is as expected.

Thus if the expectation of each term is positive, it will tend to ∞, and if the expectation
is negative, it will tend to −∞. The expectation of the logarithm of 1+ su will be positive
when the geometric mean of 1 + su exceeds 1. If the geometric mean relative fitness of
A exceeds that of a, the sum of logarithms becomes positive, and increasingly so. If the
geometric mean relative fitness of A is less than of a, the sum goes negative and becomes
increasingly so, without limit, as time passes. Since we are looking at the logarithm of
the original product of fitnesses, these correspond to the product becoming infinite or
going to zero.

After all the probability theory, we again have the result that the allele with higher
geometric mean fitness wins out. Within broad limits the pattern of correlation of fit-
nesses through time does not affect the ultimate outcome, a fact which is not obvious in
advance. The reader to whom numerical examples are more illuminating may care to
ponder these two sets of fitnesses:
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Type of year Genotype
A a

Wet 1.1 : 1
Dry 0.8 : 1

If wet and dry years occur in a cycle of two wet years followed by one dry year, in
regular succession, WWDWWDWWD. . . , then since 1.1× 1.1× 0.8 = 0.968 < 1 allele A
will decrease with each cycle of two generations. If instead we have some other (possibly
random) pattern of wet and dry years, with wet years 2/3 of the time and dry years 1/3
of the time, we can predict the outcome of natural selection by computing the geometric
means:

A : (1.1)2/3 (0.8)1/3 = 0.9681/3 = 0.989217

a : 1.0 2/3 1.0 1/3 = 1,

again predicting a long-run decrease in the frequency of A. The outcome essentially
does not depend on the pattern of correlations or the length of cycles. The short term
variation in fitnesses may be dramatically affected by whether dry years tend to come in
runs, but the long-term result depends only on the relative frequencies of wet and dry
years. This is perhaps counterintuitive.

Figure 2.10 shows a cyclic case and a random case. Other random sequences of
Wet and Dry may rise to higher frequencies or drop quickly to lower ones, but all will
ultimately lose the wet-adapted allele. Note that despite the continued variation in en-
vironments, there is no general principle that both wet-adapted and dry-adapted alleles
will persist in the long run.

Note also that the allele with higher geometric mean fitness wins out, but this is not
necessarily the allele with higher arithmetic mean fitness! In the numerical example, the
arithmetic mean relative fitness of A is (2× 1.1 + 1× 0.8)/3 = 1, which is tied with the
arithmetic mean of a’s relative fitness, which is 1. Nevertheless A, the allele with equal
mean fitness, is certain to ultimately be eliminated. In the case of temporal variation
in fitness, w̄ is not maximized. In the numerical example in Figure 2.10, the arithmetic
mean fitness of A is higher than that of a, and yet it is certain to ultimately be eliminated.
However, the dependence on the geometric mean does give us some assurance that
evolution will not be generally maladaptive. For example, if in all years wA < wa, it is
impossible that the frequency of A should ever increase.

DIPLOIDS. We have concentrated so much attention on the asexual or haploid case
because this is the key to the analysis of the diploid case. A complete analysis of the
diploid case is forbiddingly difficult, but if we confine attention to the conditions for
protected polymorphism, we can find these easily from the asexual conditions. We want
conditions under which both A and a increase when rare. We start with the effect of
selection on the ratio of gene frequencies. If we take equation (II-36) and put superscripts
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Figure 2.10: Course of gene frequency change in a haploid organism in a
numerical example of a case of alternating Wet and Dry years (lighter lines)
and when there are random Wet and Dry years, independently drawn with
equal probabilities. In the two cases the relative fitnesses of A are 1.5 and 0.6
in Wet and Dry years, respectively. The starting gene frequency in both cases
is 0.5.

on the fitnesses to indicate their dependence on the generation number, it becomes

p′

1− p′
=

p
1− p

× p w(t)
AA + (1− p) w(t)

Aa

p w(t)
Aa + (1− p) w(t)

aa

. (II-138)

One of the cases in which we are interested is when A is rare. Then p is near zero, so
that equation (II-138) is well approximated by

p′

1− p′
=

p
1− p

w(t)
Aa

w(t)
aa

. (II-139)

This is precisely the asexual or haploid formula, with w(t)
A and w(t)

a replaced by w(t)
Aa

and w(t)
aa . The reason for this concordance is straightforward. We are interested in the

behavior of A when it is rare. When it is, almost all A alleles occur in heterozygotes, and
almost all a alleles in aa homozygotes. The inheritance of the genotype is then effectively
haploid, since Aa× aa → 1/2 Aa + 1/2 aa, just as in haploids A× a → 1/2 A + 1/2 a.
Of course, an Aa × Aa mating does not follow the haploid analogy, but such matings
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essentially never occur if A is very rare. A rare allele can thus be treated as if haploid,
or even asexual. From (II-139) the conditions for ultimate increase of A are immediate: it
will increase if the geometric mean over time of wAa exceeds that of waa. This condition
is actually the condition for the product ∏(wAa/waa) to rise to infinity. As the gene
frequency of A increases away from zero, it leaves the region where the approximation
(II-139) holds. So we have obtained a condition for A to increase away from zero, not for
A to go to fixation.

A similar analysis can be carried out when a is rare, and the results are completely
analogous. The a allele increases when rare when the geometric mean of wAa exceeds
that of wAA. Putting these together, the condition for protected polymorphism is overdomi-
nance of geometric mean fitnesses of the genotypes. If Aa is the genotype with highest ge-
ometric mean fitness, we will have a protected polymorphism. As in the asexual or
haploid case, the pattern of correlations essentially does not affect this condition, which
holds for both cyclic and random variation in fitnesses. Of course, this geometric mean
overdominance condition is only part of the story. It tells us whether we have a protected
polymorphism, but not the distribution of gene frequencies over time or the amount of
short-term fluctuation in gene frequencies. These are affected by the pattern of temporal
correlation in fitnesses.

In the case of random temporal variation in fitnesses, the conditions for protected
polymorphism are also the conditions for existence of a polymorphism (except in the
case where one allele is exactly recessive in geometric mean fitness). The equivalence
of polymorphism and protected polymorphism is easily motivated. Random variation
of fitnesses will cause the frequency of each allele to occasionally wander close to zero.
When this occurs, to retain the polymorphism it must have probability one of returning
to the interior of the (0, 1) interval. The conditions for certainty of increase of a rare allele
thus are not only sufficient to ensure a polymorphism, but necessary for its maintenance
as well.

In the case of cyclic variation of fitness we cannot use this argument. It is possible to
have a stable cycle of gene frequencies in the interior of the (0, 1) interval, even though
one or both alleles will be lost if made rare. Since cyclic variation in fitness need not ever
cause either allele to become rare, a polymorphism need not be protected in order to exist
and be stable. An example is a two-generation cycle of fitnesses in which the fitnesses of
the genotypes are alternatively 0.9 : 1 : 0.9 and 1.115 : 1 : 1.115. It turns out that if the
gene frequency starts below about p = 0.18, A will be lost. If it starts above p = 0.82,
a will become lost and A fixed. The geometric means of the genotypes are 1.0017 : 1 :
1.0017, which is geometric mean underdominance, so that protected polymorphism is
not guaranteed. Yet there is a stable polymorphism, for any starting point between 0.18
and 0.82 results in the gene frequency converging to a stable equilibrium at p = 0.5. So
stable polymorphism can exist in the absence of protected polymorphism.

FITNESSES VARYING WITHIN A GENERATION. When fitnesses are different for
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different life stages, the result is the same - yet different. Strobeck (1975) considered this
case, and showed that there will be protected polymorphism if the fitnesses in different
life stages show geometric mean overdominance. In the random case this result is not
very simple, but in the “cyclic” case it is obvious. Suppose that the fitnesses (viabilities)
were 0.8 : 0.9 : 1 in the larval stage, and were 1 : 0.915 : 0.82 in the adult stage before
reproduction. As we saw when we first discussed fitness, the overall fitness involves
the product of these quantities, assuming that the causes of mortality act independently.
The result is fitnesses which show overdominance: 0.8 : 0.8235 : 0.82. If these sets of
viabilities repeat every generation, this is a case of simple overdominance, and causes a
stable polymorphism.

We can also treat this as a case of fitnesses cycling within a generation. At no single
life stage is there overdominance. The geometric mean fitnesses among life stages show
overdominance, being the square roots of the overall fitnesses: 0.81/2 : 0.82351/2 : 0.821/2

or 0.894 : 0.9075 : 0.906. So the results follow both the rules for constant fitnesses and
those for varying fitnesses. The mean fitness is maximized by selection, but this is the
mean of the overall fitness of each genotype. If we were misguided enough to average
fitnesses within each generation among life stages, we find arithmetic means of 0.9 :
0.9075 : 0.91, which do not show overdominance.

We can sum up the case of variation of fitness within a generation by saying that
there will be protected polymorphism if the geometric mean fitness among life stages is
overdominant. In the cyclic case, where the cycle repeats every generation, this is simply
the requirement that overall fitnesses be overdominant, in which case overdominance is
necessary as well as sufficient for stable polymorphism to exist.

There need not be overdominance in any life stage for there to be overdominance in
net fitness. In this sense conflicting directional selection in different parts of the life cycle
can cause polymorphism. It is important to note that it is the net overdominance which
is necessary: in the haploid or asexual case there is no pattern of conflicting directional
selection in different life stages which can cause polymorphism.

THE SAS-CFF MODEL. Gillespie and Langley (1974) have made temporal variation the
centerpiece of a general hypothesis for the maintenance of protein polymorphism. They
argue that geometric mean overdominance can arise from standard enzyme kinetics. If
the heterozygote has an enzyme activity which is the arithmetic mean of the activities
of the two homozygotes, and if the curve relating fitness to enzyme activity is concave
downwards, then sufficient variation in the enzyme activities of alleles over time can
result in geometric mean overdominance. This is biologically plausible, which is not the
same as saying that we know that it is important as a cause of real polymorphisms. For
further work generalizing the SAS-CFF model, see the papers by Gillespie (1978, 1979,
1982), and particularly his remarkable book The Causes of Molecular Evolution (1991).

REFERENCES. Haldane and Jayakar (1962) were the first to give the geometric mean
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overdominance condition. The necessary side conditions for stable polymorphism when
one allele is completely recessive were given by Haldane and Jayakar (1962) and, more
generally, by Hoekstra (1975). Gillespie (1973) developed the geometric mean conditions
further, and Norman (1975b) gave a general proof that if fitnesses vary independently
from generation to generation, overdominance of geometric means is both necessary and
sufficient for maintenance of a polymorphism.

For early work on varying selection, the reader may wish to consult my review article
(1976) or the reviews by Hedrick, Ginevan, and Ewing (1976) and Hedrick (1986). The
much more recent paper by Cvijović et al. (2015), on the fixation probability of a new
mutant in a fluctuating environment cites many more recent papers.

II.12 Frequency-Dependent Fitnesses

Fitnesses can also vary as a function of the genetic composition of the population. When
they depend on the gene frequencies or the genotype frequencies, various complex out-
comes are possible, including oscillation of the gene frequency and chaotic fluctuation.
We are most interested in a simpler outcome, stable polymorphism. A natural condition
to examine is frequency-dependent selection in which the rare allele is at an advantage.
There are a number of biological mechanisms which have been proposed which would
lead to frequency dependent selection:

1. Specialization on different limiting resources. If two genotypes eat different foods, then
an individual of the rare genotype will have a more abundant source of food, by
virtue of the rareness of other individuals who eat that food. The same argument
will hold for many other limiting nonfood resources, such as breeding sites.

2. Different diseases or parasites for different genotypes. If each genotype has its own
diseases and parasites, then whichever type is rarer will be less likely to come into
contact with carriers of its own particular pests.

3. Specialization of different predators on different genotypes. When each genotype has its
own predators, then the genotype which is rare will presumably sustain a lower
population density of predators, and hence might suffer a lower mortality rate
from predation.

4. Predator search images: apostatic selection. Many intelligent visual predators form
“search images” of the desired appearance of their prey. They tend to reject poten-
tial prey which do not fit this image. The search image depends on the last few
prey eaten. Thus the predators may tend to avoid taking the rare genotypes, which
they have not encountered recently.
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5. Rare male advantage. In some species, notably Drosophila melanogaster, males of a
rare genotype seem to have an advantage in mating simply because they are rare.
This pattern of female choice may be an adaptation to avoid inbreeding.

6. Social Interactions. In a social species, if the genotypes differ in their social behavior,
the fitness of a genotype may depend on the frequencies of the genotypes among
the individuals it encounters in the population.

The first four of these mechanisms involve ecological interactions, the last two be-
havioral interactions. In the first four, the interaction involves, in one way or another, a
limiting resource for the population, or the members of the population being themselves
a limiting resource for predators. This suggests that it may be difficult for many loci to
be simultaneously unders frequency-dependent selection. Even with rare male advan-
tage, if too many loci have their rare alleles being favored, the the preference for unusual
males runs the risk of being spread among too many loci, with almost all males being
judged as equally unusual.

In many of these scenarios the natural selection would be expected to be density-
dependent as well as frequency-dependent. For example, when population density is
low, the first mechanism (different resources) will not operate, since individuals of both
genotypes will find an abundance of food. When population density is high, the fitnesses
will depend on the genotype frequencies. To analyze the outcome of these kinds of
frequency-dependent selection requires a model of the specific case, including variables
for the numbers of predators or parasites, or the amount of each kind of food resource
available. The details of the model will be strongly dependent on the specific biology
involved. In this section, we will examine frequency-dependent selection without this
biological specificity. We will allow the fitnesses to be arbitrarily chosen functions of the
gene frequency, in order to see what types of evolutionary outcome are possible, and
what the implications of frequency-dependence are for the mean population fitness.

ASEXUALS AND HAPLOIDS. that we have two genotypes, A and a, with the relative
fitness of A depending on the genotype (or gene) frequency, p, in a simple linear fashion.
Let

wA = 1 + t− s p

wa = 1.
(II-140)

The equations for the evolution of genotype frequencies then become

p′

1− p′
= (1 + t− s p)

p
1− p

(II-141)

and

p′ =
p (1 + t− s p)
1 + (t− s p) p

. (II-142)
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Figure 2.11: Δp as a function of p for a case of frequency-dependent selection.
The relative fitness of genotype A is 1.6− p.

When we compute the change of gene frequency; it is, from (II-142)

Δp = p′ − p =
(

p (1 + t− s p) − p [1 + (t− s p) p]
)/(

1 + (t− s p) p
)

= p(1− p) (t− s p)
/ (

1 + (t− s p) p
)
.

(II-143)

The equilibria of the genotype frequency are the values of p at which Δp = 0. For
this to occur, either the denominator of (II-143) must be infinite, which is not possible,
or the numerator must be zero. The equilibria then occur at p = 0, p = 1, and p =
t/s. This last equilibrium will lie in the [0, 1] interval if s > t > 0 or if 0 > t > s.
Otherwise wA will always be greater than (less than) wa, and although selection will be
frequency-dependent, it will nevertheless always be directional selection which leads to
the substitution of one genotype for another.

Figure 2.11 shows Δp plotted for particular values of s and t. These values lead the
relative fitness of A to be higher when it is rare and lower when a is rare. It would seem
on intuitive grounds that this should lead to a stable polymorphism. The graph shows
that Δp is positive below the equilibrium point and negative above it. This shows that
p = 0 and p = 1 are both unstable equilibria. The equilibrium p = t/s will be a stable
one provided that (by the stability criterion developed above)

−2 <

[
d(Δp)

dp

]
p = t/s

< 0. (II-144)
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After differentiating (II-143), substituting in p = t/s, and doing some tedious collec-
tion of terms we find that [

d(Δp)
dp

]
p = t/s

= −t
(

1− t
s

)
. (II-145)

The equilibrium is only a relevant one if t/s is between zero and one. If t is negative,
the equilibrium is unstable. This corresponds to frequency-dependent fitnesses in which
wA < wa when A is rare, and the opposite when A is common. It should be obvious
that this will lead to an unstable equilibrium at the gene frequency at which wA = wa,
with stable equilibria at p = 0 and p = 1. When t is positive, the quantity (II-145) will
be negative (if t/s < 1, which we assume). There is one further restriction on t and s.
It makes no sense to have negative fitnesses, so when t and s are positive we must have
1 + t− s > 0, so that s− t < 1. Consideration of the right-hand side of equation (II-145)
shows it to be −(t/s)(s − t), so that it will never be below -1 in biologically relevant
cases. In this case we always have a stable equilibrium with no overshooting. While it is
quite possible that there will be oscillations or chaos in frequency-dependent cases, the
particular linear dependence of wA on p which we have used here has ruled this out.

Does frequency-dependent selection necessarily maximize some measure of the mean
fitness? This is easily investigated in the present case. At the polymorphic equilibrium
p = t/s, wA = 1 = wa, so that the mean relative fitness is 1, since

w̄ = p wA + (1− p)wa = p + (1− p) = 1. (II-146)

The maximum value of w̄ can be found by writing

w̄ = p wA + (1− p)wa

= p (1 + t− s p) + (1− p)

= 1 + p(t− s p).

(II-147)

This is a quadratic function of p which can be maximized by equating its derivative
to zero:

dw̄
dp

= t− 2s p = 0, (II-148)

so that the maximum or minimum occurs at

p =
t

2s

where

w̄ = 1 +
t2

4s
. (II-149)
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If s is positive, which will be the case when we have a stable polymorphic equilibrium,
the quadratic has a negative coefficient of p2 so that the stationary point p = t/(2s) is the
maximum. There is thus no correspondence between the polymorphic equilibrium and
the value of p which maximizes the mean relative fitness. In fact, maximum occurs at half
the equilibrium gene frequency in this case. If the population approaches the equilibrium
from above, it will have a continually increasing w̄. But if instead it approaches from
below, w̄ at first increases, then decreases. For the particular example in the Figure,
t = 0.6 and s = 1, so that the equilibrium lies at pe = 0.6/1 = 0.6. The mean fitness there
is 1. The maximum mean fitness is achieved at pmax = 0.6/2 = 0.3, where w̄ = 1.09.

Why is w̄ not maximized? Since wA is a function of p, the current fitness of the A
genotype is not necessarily a good guide to its future fitness. Natural selection increases
the frequency of whichever genotype has the higher fitness. In doing so it alters the
fitness of A for the worse. Natural selection will maximize mean fitness only if current
fitness is a good guide to future fitness.

DIPLOIDS. All of the phenomena which we see in haploids and asexual cases of
frequency-dependence also occur in diploids.

When all three genotypes have fitnesses which are arbitrary functions of the gene
frequency, there is hardly any limit to the complexity of the behavior of the model. The
equations of change of the gene frequency are the usual ones, but now with the fitnesses
being functions of p. The equilibria of the model are at the points p = 0, p = 1, and

pe =
wAa(pe)−waa(pe)

[wAa(pe)−waa(pe)] + [wAa(pe)− wAA(pe)]
(II-150)

This equation may have many roots, depending on the way in which the w’s depend
on p. The principle at work here is that in any generation the gene frequency changes
according to the momentary fitnesses, so that a polymorphic equilibrium can only occur
if the fitnesses at the value of p yield an equilibrium at that value of p. However it is now
neither necessary nor sufficient for stability of a polymorphic equilibrium that s(pe) and
t(pe) be positive at the equilibrium. It is quite possible for there to be underdominance
of fitnesses at a stable polymorphic equilibrium!

REFERENCES. One of the early papers on selection, that of Warren (1917), described
a pattern of selection whose intensity was frequency-dependent, even though the di-
rection of selection was not. Haldane (1932) discussed the frequency-dependence of an
altruistic trait. Wright (Wright and Dobzhansky, 1946) gave a startlingly modern dis-
cussion of frequency-dependent selection. Only later was much attention been focused
on frequency-dependence. General discussions have been given by Lewontin (1958) and
Wright (1969). Some specific models of note have included the competition models of
Nei (1971), Mather (1969), Clarke and O’Donald (1964), Cockerham and Burrows (1971),
and Cockerham, Burrows, Young, and Prout (1972). Sacks (1967) presents a case in
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which selection leads to minimization of mean absolute fitness (which is not the same as
minimization of mean relative fitness). The reader will find many further references on
specific models of ecological interactions in the review of coevolution models by Slatkin
and Maynard Smith (1979).

FREQUENCY-DEPENDENCE AND EVOLUTIONARILY STABLE STRATEGIES. A
particularly important source of frequency-dependence is social interactions among un-
related members of a population. This has proven to be one of the best areas of ap-
plication of Game Theory in biology. In cases where population members engage in
ritual fighting and bluffing, as male birds and mammals do for access to mates, one can
model the interactions as a game and apply Game Theory. The reward is in fitness. The
interesting question is whether the resulting natural selection brings about a solution
consistent with Game Theory.

For interactions between unrelated members of a population, where kin selection is
not involved, Maynard Smith and Price (1973) introduced the concept of an evolutionar-
ily stable strategy (ESS), which is closely related to the Nash Equilibrium in game theory.
Maynard Smith (1974, 1982) developed the theory further. Maynard Smith (1981) and
Eshel (1982) showed that genetic models in such cases reach the same conclusions as
ESS methods. Nowak (1990) has criticized this conclusion as overly simple, and argued
that the models must be analyzed in each case, in order to show whether an ESS will be
achieved.

II.13 Kin selection: a case of frequency-dependence

.
One class of examples of frequency-dependent selection which has attracted wide

attention is kin selection, in view of its usefulness as an explanation for the evolution
of social behavior. Haldane (1932) pointed out that an altruistic behavior, one which
benefited the recipient but was disadvantageous to the donor, would be selected against
within populations, even though the existence of the trait benefited the population as
a whole. Haldane proposed that subdivision of the species into groups could result in
increase of the trait, if selection against the trait within groups were counterbalanced by
selection for it by differential increase of those groups having the highest frequencies of
the trait. Haldane’s mechanism is often referred to as group selection. While it is group
selection, it is also an example of a scheme proposed by Hamilton (1963, 1964a, 1964b),
known as kin selection.

In kin selection the impact of the selection falls not only on the individual but on
others who happen to be relatives. In the case of altruistic behavior these others are the
recipients of the behavior. If they are kin, they have some chance of also carrying the
alleles which caused the behavior in the original individual. If the increase in the fitness
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of the kin as a result of the behavior is great enough and their relationship to the indi-
vidual close enough, the resulting increase in the frequency of the alleles is enough to
more than counterbalance the selection against these alleles in the individual displaying
the altruistic behavior. Alternatively, the whole process may be viewed from the point
of view of individual selection. The alleles predisposing an individual towards the al-
truistic behavior have a net advantage because they also predispose its kin towards that
behavior. Thus they bring about a loss of fitness by causing an individual to engage
in the behavior, but a compensating gain in fitness by causing the individual to be sur-
rounded by altruistic relatives. This is the “personal fitness” approach to intuiting the
effects of kin selection (Hamilton, 1964a, b; Orlove, 1979). The other approach Hamilton
(1964a, b) involves computing an “inclusive fitness” which involves the effect of a gene
on the fitness of its bearer, plus a fraction of its effect on the fitness of each relative.

HAMILTON’S RULE. Hamilton’s rule is that an allele that incurs a cost (in fitness) c on
its bearers and also confers a total benefit b on a set of individuals related to it, whose
average coefficient of relatedness with the individual is r, will increase in the population
if

c < r b (II-151)

The coefficient of relatedness is the probability that a copy drawn at random from the
one individual is identical by descent to one of the copies in the other individual. (Note
that it is not IBD to a random copy drawn from the second individual, but to some copy).
It is also important to understand that the quantity b is not the benefit to one of the
beneficiaries, but the sum of benefits to all of them.

Hamilton’s Rule is sensible, if we consider a rare allele which is acting in heterozy-
gote. The behavior reduces the fitness of the actor by c, thus losing c copies of the allele.
But if it benefits enough recipients to increase their total of their fitnesses by b, and if a
fraction r of these recipients also contain copies of this allele, then r b copies who would
otherwise be lost are saved, at the cost of c copies lost in the altruist. If Hamilton’s
formula holds, there is then a net gain of copies.

This heuristic argument is forceful but not entirely convincing. Below we will see
that the rule can be derived more rigorously in the particular case of a model of pairwise
interactions.

KIN AND GROUP SELECTION. In the example used by Haldane (1932), different
groups were assumed to have different frequencies of the gene for the altruistic behavior.
This implies that each group contains individuals who are more related than average,
so that the increase of groups containing large numbers of altruists is as a result of the
benefit from each altruist tending to be conferred on its relatives. In such a case, kin and
group selection are the same phenomena, as pointed out by Price (1970, 1972a). If one
requires of group selection that it involve the mortality of whole groups, then one might
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not want to call this group selection if the survival of a group is simply a consequence
of the survival of individuals.

A MODEL OF PAIRWISE INTERACTION. The computation of inclusive fitnesses or
of personal fitnesses is a shorthand for more complete modeling which discloses more
precisely what is going on. Done properly, these heuristic methods provide a valuable
tool, but it must be understood that they are summaries of a more detailed account that
is done by conventional methods. Inclusive fitness is carried aloft by the humdrum of
population genetic modelling: it cannot fly on its own.

Hamilton (1971) has given a model of pairwise interaction which specifies more
clearly what is behind notions of inclusive fitness. The model presented below is an
altered version of his model. It is in no sense a canonical model of kin selection, but only
one of the simplest cases.

We consider a rare allele, A, in a diploid population, and ask for the conditions of
its increase when rare. Because of this rareness and because the population is outbred,
the AA genotype will be so rare that we ignore it (which amounts of ignoring terms of
order p2). Each generation, the individuals in the population are assumed to associate
in pairs, the two members of which play different roles. These are not mating pairs:
the two individuals dissociate before random mating ensues. In each associated pair of
individuals, there may or may not be a certain social interaction (perhaps an altruistic
behavior by the first individual). For the four possible ordered pairs: (Aa, Aa), (Aa, aa),
(aa, Aa), (aa, aa) there will be probabilities c11, c10, c01, and c00 that this behavior occurs.
If it does occur, the fitness of the individuals is respectively 1 + s and 1 + t. If it does
not, their fitnesses are both 1. Thus the fitness of an Aa individual which is the first
individual in the first sort of pair is

(1− c11)× 1 + c11 × (1 + s) = 1 + c11 s. (II-152)

This pattern of selection is frequency-dependent because the overall fitness of an Aa
individual depends not only on the frequency with which it assumes a certain role,
but the identity of its partner, which will depend on the genotype frequency in the
population. We are interested in the conditions for increase of the A allele when it is rare.
In that case the frequency of Aa heterozygotes in the population will be 2p(1− p) � 2p,
and the frequency of aa homozygotes will be (1− p)2 � 1− 2p. If each individual’s role
and partner were assigned at random, then the probability that a pair would be (Aa, Aa)
would be (2p)2. We are not going to make this assumption, but instead we will assume
that the members of a pair tend to be kin. In particular, the probability that an Aa has
a partner which also carries the rare A allele will be taken to be r, and we will examine
the effects of different values of r. If this occurs as a result of kinship between the two
individuals, r will be computed using the probabilities of identity by descent defined
below in Chapter V. It is a quantity first defined by Sewall Wright (1922), known as the
coefficient of relationship. Here are some values for various relatives:
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Relative r

self 1
full sib 1/2
parent 1/2
child 1/2
half-sib 1/4
aunt/uncle 1/4
niece/nephew 1/4
grandparent 1/4
grandchild 1/4

The model is summarized in Table 2.8. The frequencies of the four types of pair are
set by the definition of r and the requirement that the overall frequency of Aa be 2p.

Whether the A allele increases in frequency will be determined by the relative fit-
nesses of Aa and aa. A moment’s consideration will show that all but an infinitesimal
fraction of the aa individuals will find themselves in (aa, aa) pairs. The average fitness of
aa will then be

w̄aa = 1/2 (1 + c00 s) + 1/2 (1 + c00 t)

= 1 + c00 (s + t)/2.
(II-153)

Of the 2p of the population which are Aa, this can be divided into 2pr/2 individuals
playing the first role in an (Aa, Aa) pair, 2pr/2 playing the second role in such a pair,
2p(1− r)/2 playing the first role in an (Aa, aa) pair, and 2p(1− r)/2 playing the second

Table 2.8: The pairwise interaction model.

Probability
of interaction

Frequency of
this pair Fitness

of first partner of second partner

(Aa, Aa) c11 2p r 1 + c11 s 1 + c11 t

(Aa, aa) c10 2p (1− r) 1 + c10 s 1 + c10 t

(aa, Aa) c01 2p (1− r) 1 + c01 s 1 + c01 t

(aa, aa) c00 1− 4p + 2p r 1 + c00 s 1 + c00 t
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role in an (aa, Aa) pair. The mean fitness of Aa is then

w̄Aa = [ p r (1 + c11 s) + p r (1 + c11 t) + p (1− r) (1 + c10 s)
+ p (1− r) (1 + c01 t) ] / (2p)

= 1 + r c11 (s + t)/2 + (1− r) c10 s/2 + (1− r) c01 t/2.

(II-154)

These fitnesses do not contain the gene frequency p, which would seem to give the
lie to the assertion that the fitnesses are frequency-dependent. A more careful derivation
would show that wAA contains additional terms in p, but that these can be ignored since
we are only interested in cases in which p is very small. The quantities 2p and 1− 2p
are, as we have seen, also approximations ignoring terms in p2.

Allele A will increase if wAa > waa, or (discarding the constant 1 and a factor of 1/2)

r c11 (s + t) + (1− r) c10 s + (1− r) c01 t > c00 (s + t), (II-155)

which is easily rearranged as

r [c11 (s + t) − c10 s − c01 t] > c00 (s + t) − c10 s − c01 t. (II-156)

Some cases. We are now in a position to look at some particular cases of interest:

1. Altruistic behavior. Suppose that the occurrence of a behavior in the pair depends
only on the genotype of the first individual, and the behavior is deleterious to that
individual and advantageous to its partner. Then c11 = c10, and c01 = c00, s < 0
and t > 0 so that (II-156) becomes

r (c11 − c01) t > (c00 − c10) s. (II-157)

If allele A makes the behavior more likely, then c11 > c01. We already know that
c11 − c01 = c10 − c00 so that (II-157) becomes

r > (−s)/t. (II-158)

This is precisely Hamilton’s basic result. It shows that allele predisposing toward
the behavior will spread if the partners are sufficiently close kin. The greater the
benefit the less closely they need be related. The greater the loss to the individual
performing the behavior the more closely they need be related.

2. Mutualism. If the behavior is equally beneficial to both members of the pair, then
s = t > 0. Then the inequality (II-156) becomes, after cancellation of s and t:

r (2 c11 − c10 − c01) > (2 c00 − c10 − c01) (II-159)
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If the more A alleles a pair has the more likely it is to engage in mutualistic behav-
ior, c11 > c10 and c01 > c00 so that the expression on the left of (II-159) is always
positive and that on the right always negative. It is satisfied for all values of r (since
r cannot, by its definition as a conditional probability, be negative).

The result is straightforward: an allele predisposing toward a mutualistic behavior
will always spread, although consideration of the magnitudes of wAa and waa will
show that its spread will be faster the greater is r.

3. Complementary behaviors. If the two genotypes are predisposed toward different
behaviors which are complementary (e.g. in a cooperative hunting behavior, one
tends to chase prey, the other to wait in ambush for the prey being chased), we
would expect that c11 < c10 and c01 > c00, with s = t > 0. Inequality (II-159) then
becomes

r <
c10 + c01 − 2 c00

c10 + c01 − 2 c11
. (II-160)

The allele A can spread only if r is sufficiently small, if the individuals are not too
closely related! If c00 < c11 there is no restriction on r, since the right-hand side
of (II-160) is greater than 1. If c00 ≥ c11 the limit on r lies between 0 and 1 and is
a relevant limit. Consideration of the magnitudes of wAa and waa shows that the
increase of allele A is more rapid the lower is r.

4. Narrow selfishness. If the behavior is advantageous to the individual but harmful
to the other member of the pair, then s > 0 and t < 0. In that case the condition
is r < s/(−t), which implies that if the harm done to the partner is greater than
the gain to the individual, the partner ought not be too closely related, otherwise
the loss of alleles in the partner will more than counterbalance their gain in the
individual that shows the behavior.

The preceding ignores effects of the homozygote AA and is limited to consideration of
the fate of the A allele when it is rare. As the allele becomes common, the approximations
we have made, ignoring terms in p in the fitnesses, become invalid. The frequency-
dependence of the fitness becomes important, and terms involving the effects of AA
individuals enter as well. Some insight can be gained by considering the change of the
frequency of a when it is rare, using the above approximation.

It must be borne in mind that this is but one possible model of social interactions, and
that it is limited by its many assumptions (e.g., one pairwise interaction per generation,
between individuals of the same generation). There is no single canonical model of the
evolution of social behavior: this one is useful primarily for its simplicity.

PITFALLS. In making models of the evolution of social behavior, there are a number of
traps into which it is easy to fall:
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1. Requiring Conscious Recognition of Kin. In the above model, as in virtually every
other kin selection model, there is no requirement that individuals who are kin be
actively recognized from among the rest of the population. It need only be the case
that the association of individuals into an interacting pair be such that the result
is that the pairs have average coefficient of relationship r. The association could
be based on geographical proximity, with nearby individuals being closer relatives
than faraway individuals. The theory of kin selection does not necessarily presume
mental or physical adaptations for recognizing kin from nonkin.

2. Ignoring Mutualism. Kin selection of an altruistic trait is one of the ways of explain-
ing the spread of a behavior which is deleterious to the individual expressing it,
but advantageous to others. There may be many social behaviors which are advan-
tageous to both individuals. For these the mutualism mechanism mentioned above
is a viable explanation. As we have seen, in the evolution of a mutualistic trait there
is no strict requirement that the interacting individuals be close kin. Textbooks on
the evolution of animal behavior commonly ignore or understress mutualism as
an explanation for the evolution of social behaviors. This springs partly from a
fascination with the paradoxes inherent in altruism, and partly from an ideological
preference for “nature red in tooth and claw.” (However, mutualism does have the
weakness that there can easily be natural selection for one partner to cheat on the
other, and this can lead in turn for natural selection for various means of deterrence
or retaliation).

3. Ignoring Cultural Inheritance. In all of the above arguments, the trait spreads by the
differential death and reproduction of individuals. As some animals (in particular,
primates) evolved an ability to learn and to communicate learned information, it
became possible for “cultural” information to survive and be transmitted. Most of
the information we humans possess is culturally transmitted. The explanation of
the existence and spread of a human behavior is not necessarily genetic variation
or genetic transmission. Cultural information is evaluated subjectively by humans,
rather than objectively by their survival and reproduction. It does not necessar-
ily “mutate” in random directions, but can be consciously altered so as to solve a
problem. It can spread laterally within a generation, and information from differ-
ent sources can be chosen and recombined. As such, “cultural evolution” is capable
of enormously greater speed of change than is genetic evolution. The amount of
information transmitted culturally is enormous. This includes, among others, most
of the behavior affected by libraries, universities, mass media, government, busi-
ness, and religion (and it includes this book). The amount of recognizably cultur-
ally transmitted variations in human behavior is so great, compared to the amount
of recognizably genetically transmitted variations in human behavior, that cultural
transmission is a natural null hypothesis for any human behavior. To ignore it as a
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possible explanation of specific changes of human behavior is silly, though this is
often done by biologists who have a preference for genetic determinism of human
behavior.

REFERENCES. After the fundamental work of Haldane and of Hamilton just mentioned,
there has grown up a population genetic literature which has been in part dedicated to
verifying Hamilton’s inclusive fitness principle in specific, well analyzed genetic models.
Among the models of this genre are those of Levitt (1975), Matessi and Jayakar (1976),
Charlesworth (1978a), Wade (1978), and Cavalli-Sforza and Feldman (1978b). These are
all single-gene models with various assumptions. A polygenic model is presented by
Yokoyama and Felsenstein (1978). The mutualism mechanism for evolution of social be-
havior was advocated by Hamilton (1964a), Lin and Michener (1972) and West-Eberhard
(1975), though not in terms of a quantitative model. Engels (1983) considered the effects
of evolution of the cost/benefit ratio considered as a quantitative character.

A controversy of particular interest as an illustration of the usefulness of explicit pop-
ulation genetic models is that on conflict of parent and offspring, between Trivers (1972,
1974) and Alexander (1974). The quantitative model of Charlesworth (1978a) provided
substantial support for Alexander’s position that parents would win the conflict on a
evolutionary scale.

Group selection can be brought into the same framework, as was shown by Crow and
Aoki (1982), who showed that Hamilton’s condition also applied to it. Group selection
acts when this condition holds. Thus the same equation covers more than one level of
selection. There is some recent controversy over the connection between group and kin
selection, and whether group selection is of primary importance. A good entry into that
literature is the review by Kerr, Godfrey-Smith, and Feldman (2004).

Recently, a dramatic controversy erupted when Nowak, Tarnita, and Wilson (2010)
argued that group selection, rather then kin selection, explained the evolution of euso-
ciality. This led to a number of strongly-worded replies, one (Abbot et al., 2011) signed
by 137 authors. D. S. Wilson and E. O. Wilson, who are not related to each other, had
previously (2007) argued that group selection should replace kin selection as a general
explanation for the evolution of social behaviors. This argument is all the more surpris-
ing given the central role that E. O. Wilson played in popularizing kin selection, partic-
ularly in his 1975 book Sociobiology. The argument continues, with most researchers on
the evolution of behavior continuing to defend kin selection and reject its replacement
by group selection.

Exercises

1. Suppose that we have a haploid population with two alleles, and their absolute
fitnesses are WA = 4 and Wa = 2. If the initial frequency of A is 0.001, what will it
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be after 20 generations?

2. In a haploid or asexual population with continuous reproduction in which a indi-
viduals die instantly after birth, what are the values of rA and ra? What do these
imply about the change of gene frequencies?

3. In a haploid system with two alleles, A and a, with fitnesses 1+ s : 1, how long will
it take to change the frequency of A from 0.1 to 0.2 if s = 0.01? How long will it
take to change the frequency of A from 0.9 to 0.8 if s = −0.01? Explain why these
numbers are or are not the same.

4. How large must the selection coefficient favoring a dominant allele be in order to
change it from a gene frequency of 0.5 to 0.51 in one generation? Compute this
exactly. Compare the result with the proper approximation.

5. Suppose that we have a locus with 3 alleles in a haploid organism, and the three
alleles have relative fitnesses 1.5 : 1.2 : 1. If the initial gene frequencies (p1, p2, and
p3) are 0.01, 0.1, and 0.89, what will the gene frequencies be after 5, 10, 15, and 20
generations?

(How to do it.: Don’t just crank out the frequencies using a computer. Consider
the ratio p1/p2. Can you derive a formula for how it changes in one generation of
selection? You can just work out formulas for p′1 and for p′2, and take their ratio,
which will show a helpful cancellation. Show the work. From this figure out what
happens in 5 generations of selection Do the same for p2/p3. That should enable
you to get the ratios of gene frequencies in each of those generations. From that, it
is easy to work out the gene frequencies. Explain how you did that.)

Someone argues that for this kind of selection, the gene frequency of each allele
should either be continually rising or continually falling, because it will either be
favorable or unfavorable. Is that true? Why?

6. In consideration of mutation versus selection, one type of selection we will consider
is selection against a partially dominant allele. Let’s just consider one generation
of selection (with no mutation). Suppose we have three genotypes AA, Aa, and aa,
with an initial gene frequency of a of 0.0001. Starting at Hardy-Weinberg propor-
tions, if the viabilities of the genotypes are 1 : 0.99 : 0.1, then ...

... of all of the deaths from this selection, what fraction of all individuals are
aa individuals who die? What fraction are heterozygotes who die? Then what
fraction of all deaths are in heterozygotes? (This problem does not require any
algebra other than Hardy-Weinberg proportions, just calculation).

7. For a diploid population with absolute fitness 3 : 4 : 2 of genotypes AA, Aa and aa,
compute W̄ as a function of gene frequency.
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Find the maximum of this curve, and compare it to the equilibrium predicted from
the relative fitnesses. Is mean absolute fitness being maximized?

8. What is the segregational load in a system of two balanced lethal alleles (i.e., a
situation where both homozygotes are lethal, so only the heterozygotes survive)?

9. Suppose three genotypes A1A1, A1A2, and A2A2 have fitnesses 4, 0, and 3. What is
the equilibrium gene frequency? Is it stable? Why can’t we just use the formulas
for the fitnesses 1− s : 1 : 1− t?

10. Find all equilibria for the following three-allele case:

genotype fitness

A1A1 4
A1A2 0
A1A3 5
A2A2 3
A2A3 5
A3A3 2

What are the mean fitnesses at these equilibria? What does this imply about their
stability?

11. Suppose that we have three genotypes AA, Aa, and aa in a sexual population (where
an absolute fitness of 1 denotes exactly enough offspring to replace the population).
The fitnesses depend on population density (N) in the following way:

WAA = 2
/
(1 + 0.004N) ,

WAa = 1.9
/
(1 + 0.003N) ,

Waa = 1.8
/
(1 + 0.002N) ,

What will be the ultimate fate of the gene frequency if both alleles are initially
present in the population? (Hint: first compute what would be the equilibrium popula-
tion density for a completely asexual clone of each genotype if it were present alone).

12. Suppose that exactly once every ten years a haploid desert plant experiences a wet
year. If genotype A has, relative to a, fitness 2 during wet years and 0.92 during
dry ones,

(i) what is the arithmetic mean relative fitness of A? The geometric mean relative
fitness?

(ii) what will happen to the frequency of A over the long run?
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13. Suppose that in a diploid plant for which there is one chance in three that each
year will be wet, with an independent chance each year, the fitnesses of genotypes
are:

AA Aa aa
Wet 1 2 3
Dry 1 0.8 0.6

What will happen to the frequency of A if we watch it for many years: what kind
of behavior do we expect? Do we expect it to approach an equilibrium frequency?

14. An insect species has three genotypes at a locus AA, Aa, and aa. In the spring,
the probability that individuals of these three genotypes survive until summer are
0.9, 0.8, and 0.5. If they do, then in the summer these survivors have probability
of surviving until fall of 0.6, 0.7, and 0.8. After that they mate randomly and
reproduce, the offspring going into hibernation until spring. There are no fertility
differences of the genotypes.

(i) Start with gene frequency p of A, and derive an equation for the gene frequency
in the next generation (p′) in terms of these viabilities and p.

(ii) Suppose that after surviving the spring (or not), the insects mate randomly at
the start of the summer, and the summer viabilities are for that new summer
generation (which in turn then mate randomly in the fall, just as the previous
case did). Derive the equations for the change of gene frequencies over the
course of a year.

Are these two cases exactly equivalent? Check that by starting with some gene
frequency and seeing whether they reach exactly the same gene frequency in the
fall.

15. In case of a haploid frequency-dependent selection, suppose that the relative fitness
of A is 3.5− 3p. What are the equilibrium gene frequencies of A? Which ones are
or are not stable?

16. Suppose that we have a diploid frequency-dependent case of the following sort:

AA 1
/
(1/2 + p)2

Aa 1
/
(1/2 + p)

aa 1

What are the equilibria of such a system? Can you say anything about their stabil-
ity? What happens to A when it is rare?
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Complements/Problems

1. J. B. S. Haldane preferred to work with the variable u = ln(pA/pa), instead of the
gene frequencies or gene frequency ratios. Obtain the equation for ut in terms of
the fitnesses and u0 in a haploid or asexual case. What attracted Haldane to this
quantity?

2. Extend the approximation for change under selection in the additive model 1+ 2s :
1 + s : 1 by one more term, to terms in s2. Solve the resulting differential equation.
How does the result compare with the exact solution for the case s = −1/2?

3. Why aren’t the multiplicative and dominant cases the same in Figure 2.2 when p
is near 1?

4. For s = −1 in the case of a recessive lethal gene, obtain from the exact treatment in
II.6 the equation for the number of generations it takes to change gene frequency
from p0 to pt. Compare this to the continuous approximation formula for s = −1.

5. Can you obtain a set of equations similar to Section II.4 for diploids? Be sure to
check your equations by trying to predict gene frequency changes in the case of a
recessive lethal which dies as soon as it is born (so daa = ∞). Do your equations
appear to work, or do they predict that the gene frequency of a will go to zero
instantly? What is the main difficulty in setting up these equations? (Think).

6. Is the equilibrium p = 1 stable when the fitnesses of AA : Aa : aa are 1 : 1 : 1− s?
When p is displaced above 1? Mathematically stable? Biologically stable? Hint: you
will need to consider terms that are quadratic in the departure from the equilibrium gene
frequency.

7. For a haploid population with continuous reproduction define a meaningful mean
fitness. Obtain an equation for its value in an arbitrary generation t, given the
initial gene frequency and the values of bA, dA, ba, da in a two-allele case. Can the
mean relative fitness ever decrease?

8. Suppose that in one multi-allele haploid population the relative fitnesses are w1 :
w2 : · · · : wn, and in another they are w2

1 : w2
2 : . . . w2

n. Compare the change in
gene frequencies and in fitness in the first population in two generations to their
changes in the other population in one generation. In the case of weak selection,
what does this tell us about the effects of doubling the selection coefficients? For
this one it will help to use a haploid version of (II-122) and construct ratios of gene
frequencies and ask how they change.
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9. A researcher in experimental evolution has three haploid genotypes of yeast, which
we call A1, A2, and A3. She wants to estimate their fitnesses, which are called W1,
W2, and W3. She takes a mixture of strains of frequencies f1, f2, and f3 (these of
course add to 1).

After growing them in culture for one generation the frequencies are g1, g2, and g3
(which add to 1). They strains don’t mate and form diploids, they just reproduce
asexually.

(i) What are the equations for these in terms of the fi and the Wi? Also what
happens to ratios between the frequencies of two genotypes?

(ii) Do they allow us to make an estimate of the values of the absolute fitnesses,
the Wi? Of the relative fitnesses?

(iii) Show the calculations for estimating fitnesses if the fi are 0.1, 0.3, and 0.6 and
the gi turn out to be 0.18, 0.3, and 0.52.

10. The gametophytic system of self-incompatibility in plants has the property that there
is a multi-allele self-incompatibility locus, and if pollen falls on a plant that has al-
leles (say) A1A2 only pollen which is neither A1 nor A2 can fertilize the ovules.
Assume that there is a three-allele gametophytic self-incompatibility system. As-
sume that all ovules get fertilized – there is never a shortage of pollen. So an A1A2
plant gets all its ovules fertilized by A3 pollen. What are the equations for the
change of frequencies, from one generation to the next, of the three possible geno-
types (all are heterozygotes as homozygotes cannot form)? Do some numerical
calculations for a few generations, for a case where one allele starts out rare. What
do you think will happen if a fourth allele occurs by mutation?

11. In the above case, if we start out with two of the allele frequencies (say the frequen-
cies of A1 and A2) equal to each other, what will happen to those gene frequencies?
(A little staring at the equations should disclose the answer). If we start out with
alleles A1 through A3 equal in frequency, but a small frequency of A4, can you
derive equations for the change of A4?

12. Some plants reproduce by obligate self-fertilization, so that every offspring is the
result of a random pollen grain and a random ovule from the same plant. Suppose
that we have a locus with two alleles, A and a, in such a completely self-fertilizing
plant. What are the equations for change of the three genotype frequencies (note
that one cannot assume Hardy-Weinberg proportions so that we have to follow
the three genotype frequencies)? If there is an overdominant locus with fitnesses
1− s, 1, and 1− s what are the equations for the change of genotype frequencies
from one generation to the next when one observes the genotype frequencies im-
mediately after self-fertilization but before selection has had time to act? How
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large a value of s is needed to prevent the heterozygotes from disappearing from
the population?

13. For a sex-linked overdominant lethal whose fitnesses are:

females: males:
AA Aa aa A a
1 1 + h 0 1 0

work out the equations for the change of gene frequencies. What are the equi-
librium gene frequencies? For what values of h does a polymorphic equilibrium
exist? (It will help to compute the genotype and gene frequencies in the newborns,
immediately before the selection has had time to act).

14. Prove that in a two-allele diploid population the segregational load cannot be
greater than 1/2. Prove that in an n-allele diploid population it cannot be greater
than (n− 1)/n.

15. Prove that in two-allele diploid overdominant selection, gene frequency changes
will never overshoot the equilibrium.

16. For a two-allele case, prove that w̄ is never higher after selection and mating than
it is immediately after selection but before mating.

17. Use the principle that w̄′ ≥ w̄ to prove that (in cases of multiple alleles) a minimum
or a saddle point in the w̄ surface cannot be a stable equilibrium.

18. If w̄ is maximized with all alleles A1, . . . , Ak present, prove that there is no stable
equilibrium which has all but one of these alleles present.

19. Meiotic drive is a situation where, in a heterozygote, instead of A and a gametes
being produced in equal numbers, there are more of one allele (say 1

2(1 + α) are
A and 1

2(1− α) are a). Although most cases of meiotic drive have this happening
in one sex only, the mathematics is simpler if we assume it happens in both sexes.
For that case, derive a formula for the change of the gene frequency of A as a
function of its gene frequency and α. Does it look like the formula for the change
of gene frequency by a simple form of natural selection? What plays the role of the
selection coefficient? In what way is the formula not exactly similar to the one for
selection?

20. Suppose that in a diploid species, among gametes produced by females and among
gametes produced by males there is haploid selection with different fitnesses, so
that among female gametes the fitnesses are A and a are w f : 1 and among male
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gametes the fitnesses are wm : 1. What are the conditions for A to increase when
rare? Are there conditions on w f and wm that allow maintenance of polymorphism
by this selection, when the resulting diploid genotypes otherwise have no differ-
ences in fitness? Be careful – this case will not maintain Hardy-Weinberg proportions.
Nevertheless, you can follow just one variable, the gene frequency of A just before selection
acts. Why? For theory relevant to this see Gregorius (1982).

21. Suppose that a species has environmental sex determination, with 45% of indi-
viduals developing into females and 55% into males. Suppose that a rare allele A
changes that to a fraction F becoming females and a fraction 1− F becoming males.
Be careful to think about whether there will be Hardy-Weinberg proportions. For
what values of F will allele A increase in frequency when rare? (The verbal argu-
ment which this model validates is usually attributed to R. A. Fisher in his 1930
book, but that theory of sex ratio was actually first given by Carl Düsing in 1883
and 1884 and by Darwin in the first edition of The Descent of Man).

22. Suppose that in a haploid population the relative fitness of A (compared to a) is in
alternate generations 1 + s and 1− s. Which allele will increase in frequency?

23. Suppose that in a diploid population, fitnesses vary randomly and independently
each generation, being (in a two-allele case) for AA : Aa : aa 1 + s : 1 : 1− s half of
the time, and 1− s : 1 : 1 + s the other half of the time. What will happen to gene
frequencies? What will be the difference in behavior between cases with different
values of s?

24. What will happen in a diploid population if fitnesses are half of the time 1 : 1 : 1+ s
and half of the time 1 + s : 1 : 1? If these occur cyclically, in alternate generations?
If they occur randomly, drawn independently in each generation? How does this
behavior differ from having fitnesses (1 + s)1/2 : 1 : (1 + s)1/2 all of the time?

25. Suppose that in a diploid population with temporal variation in fitnesses, a reces-
sive allele a has relative fitness 1 + st in generation t. What are the conditions on
the selection coefficients st such that allele a will increase in the long run when it
is rare? (This case was treated by Haldane and Jayakar, 1963).

26. Suppose that we have the following case of haploid frequency-dependent selection:
every generation, a constant fraction f of the individuals are discarded by natural
selection, and fierce competition ensures that the individuals dying are never of
the competitively superior of two genotypes (A) as long as there are individuals of
the other genotype (a) available. Derive equations for change in gene frequency.
Do these correspond to your intuition as to what the results of selection ought to
be?
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27. Suppose that an asexual or haploid population has frequency dependent selection
with wA/wa = [p/(1− p)]B. What is the behavior of the model for different values
of B? (Hint - work in terms of p/(1− p) and take logs).

28. Suppose that a diploid population has two resources available to eat. Suppose that
each individual specializes on one or the other resource. All AA and half of the
Aa’s can eat only resource #1, all aa’s and half of the Aa’s will eat only resource
#2. Suppose that there are a total of N individuals in all, N1 of whom specialize on
resource 1, N2 on resource 2. Suppose that if there are N1 specialists on resource
1, the fraction of survivors among them is given by 1/(1 + 0.001N1), and that is
1/(1 + 0.001N2) for the N2 specialists on resource 2. This is a form of frequency-
dependent selection (note that N1 and N2 are functions of the frequency of the A
allele). What are the equilibrium points of this system? Are they stable?

29. Suppose that a tasty butterfly species has two color patterns, controlled by one
locus with a dominant allele B that makes a brown spot on the wing, and a recessive
allele b that has a red spot there instead, when the genotype is bb. The butterflies
are preyed on by birds, who form a “search image” which is based on the most
recent butterfly of this species that they have eaten: if it was brown-spotted, they
will be eager to eat the next brown-spotted butterfly they see, if it was red-spotted,
when they see a brown-spotted butterfly, they will eat it one 1/3 of the time. The
reverse is true too: a bird that has a red-spotted search image will eat a brown-
spotted butterfly only 1/3 of the time.

(i) If each bird eats many butterflies and a fraction F of all butterflies of that species
encountered have a brown spot, what will the fraction of birds that come to
have a brown-spotted search image? (Hint: Let Q be the fraction of birds with
a Brown search image, and find an expression for Q′, the fraction that will have a
Brown search image after they have seen, and possibly eaten, the next butterfly. Be
sure to include the cases of birds that have Brown and Red search images, see brown-
spotted or red-spotted butterflies, and do or do not eat them. The frequencies of the
two phenotypes of butterfly that they encounter depend on the current gene frequency
p. Then equate Q′ to Q and solve for Q.) We’re going to be assuming that each
bird sees many butterflies during the course of a single butterfly generation,
so that most bird/butterfly encounters will occur after the frequencies of the
two search images in the birds has settled down to this equilibrium.

(ii) Once you have Q (as a function of p), assume that each butterfly is seen by
exactly one bird in its lifetime, a bird which has probability Q of having the
Brown search image (and 1− Q of having the Red search image). What are
the fitnesses of the two butterfly phenotypes, as a function of p? What are the
fitnesses of the three butterfly genotypes (yes, this is easy)?
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(iii) To what gene frequency p does this form of frequency-dependent natural se-
lection lead? At that gene frequency, what are the fitnesses of the two pheno-
types?

30. Suppose that in a haploid population with two alleles, each individual occupies a
burrow with another chosen at random. Let the fitnesses of individuals depend on
their genotypes and that of their burrow-partners:

An individual of type whose partner is has fitness
A A wAA
A a wAa
a A waA
a a waa

What are the equations for change of gene frequency? Where are the equilibria of
this system? Are these formulas the same as for overdominance?
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Chapter III

MUTATION

III.1 Introduction

Natural selection is the evolutionary force responsible for the progressive adaptational
aspects of evolution - for the fact that organisms are as good as they are at surviving and
reproducing. If this were all there were to population genetics, it would be a dull subject
indeed. The independent existence of population genetics as a field (as contrasted with
evolutionary studies in general) comes from the interaction of the genetic system with
natural selection. The mating system and the mechanism of recombination distribute
genetic material in particular patterns which affect the rates and directions of responses
to evolutionary forces. As we shall see in future chapters, the fact that populations are
spread out in space affects the mating system so that migration may be considered as an
evolutionary force in its own right. The very finiteness of natural populations introduces
yet another force, called random genetic drift, which will be treated in chapters V, VI,
and VII. In the present chapter we treat mutation. These three evolutionary forces are not
responsible for creating the adaptive information content of living organisms. Rather,
they set the context within which natural selection takes place, and to some extent they
interfere with its operation.

Among these forces, mutation has a unique role. In a sense, it is a destructive force,
making random changes in the genetic material. In any highly adapted organism such
changes are overwhelmingly likely to be detrimental. The usual analogies we make in
such cases involve making random adjustments in a finely constructed watch, or making
random alterations of a carefully-written poem. While one will occasionally improve the
timing of the watch or the effectiveness of the poem by random changes, with much
greater probability one will make things worse. Migration may have a somewhat similar
effect, in moving organisms into regions to whose environments they are ill-adapted.
Genetic drift, which changes gene frequencies at random, may cause a favored allele to
be lost. Yet mutation holds a special place among these, for without it the whole process

139



of evolution would grind to a halt. For natural selection favoring genotype AA over Aa
and aa in the absence of any mutation will soon cause the gene frequency of A to reach
unity. At that point, the population has lost genetic variability at this locus. If at some
future time the fitness of aa were to rise (as a result of environmental changes) to exceed
that of AA there would be no way to reverse the gene substitution. In the very act of
altering of A alleles into a alleles, mutation both erodes contemporary adaptation and
creates the variability which is the basis of future adaptation.

This suggests that there is some need for mutation, that there might be some natural
selection favoring its existence in a species. But we do not need to explain its existence,
for mutation is a thermodynamic inevitability. There can be little question that natural
selection has acted to reduce rates of mutation. The very existence of a system of precise
genetic replication testifies to this, as mutation has its evolutionary effect as incorrect
replication. The question which remains to be answered by population geneticists is
whether there are limits set by natural selection to lowering the mutation rate. Would a
population having a very low mutation rate evolve to have a higher one? Or is the muta-
tion rate as low as selection can make it, awaiting only genetic variability (paradoxically
- awaiting the mutations) for further reduction of the amount of mutation.

The answer to this puzzle is not known. Existing models of selection for mutation
rates are too crude, and too little is known about the availability of genetic variability
which might allow a decrease in mutation rates.

III.2 Effect of Mutation on Gene Frequencies

One of the nicer aspects of mutation is that the mathematics of its effects on gene fre-
quencies are very simple. The main complications come from the model of mutation
itself. When the genetic scheme is simple, everything else comes easily.

TWO ALLELES.
The simplest possible mutational scheme has only two alleles. This is intended liter-

ally: there is imagined to be only one site at which the two alleles can differ, and only
two possible nucleotides at this site. We can denote the two possibilities by A and a and
the two types of mutational event which are possible by A → a and a → A. This is
obviously a wildly oversimplified model of mutation in a gene, but there is a large class
of circumstances in which it is a reasonable approximation to reality. Often we may be
considering a gene with a large number (say 500) of nucleotide sites, but we can only
detect two phenotypically different proteins, those that are active as enzymes and those
that are not. Thus mutation is in effect moving the gene back and forth between two
different categories of nucleotide sequences: those which form active enzyme and those
which do not. Of course, we are going to assume that all sequences in the A category
have equal probabilities of mutating to sequences in the a category, and similarly for the
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a sequences. This is at best only approximately true: some inactive sequences may be
many base pairs removed from the “nearest” active sequence, while others may be able
to mutate to an active sequence by several different routes, each involving only one base
pair change.

These considerations aside, the mathematics is a straightforward exercise in elemen-
tary probability. In an infinite random-mating diploid population with discrete nonover-
lapping generations, suppose that the gene frequency of A is p. We have two possible
mutational events, A → a and a → A. The rate of mutation for the first sort of event
will be u, and for the second sort of event v. Keep in mind that the probability of each
of these events is calculated per copy of that allele. A fraction u of all copies of A change
into a each generation, and a fraction v of all copies of a change into A.

Suppose that the current gene frequency of A is p. In the next generation, the genes
which are A will come from two sources. Some are copies of genes which were A in
the last generation and which did not mutate to a’s. Since p of the genes are A in this
generation, the fraction of all copies in the offspring generation that are unmutated A’s
will be p(1− u). The other source of A copies are genes which are mutated copies of a’s.
In the offspring generation there are expected to be a fraction (1− p)v of these. So

p′ = p (1− u) + (1− p) v. (III-1)

One can immediately see one characteristic of gene frequency change by mutation:
it is going to be very slow. Typical values of mutation rates for a single gene (summing
over all sites able to mutate so as to inactivate a gene) are 10−7. This means that 1− u
will very nearly be 1, and (1− p)v will be very small. So p will change little from one
generation to the next. This point is made more clearly by computing the change in p
from one generation to the next:

Δp = p′ − p = −u p + v (1− p). (III-2)

Note that every term on the right-hand side of (III-2) has a u or a v in it, so that the
whole right-hand side will be very small (in fact, it can be no larger than the larger of u
and v).

The direction of change contains a pattern of change which will be evident from (III-
2). When all genes are A, so that p = 1, Δp = −u. This reflects the obvious fact
that when all genes are A the gene frequency will decrease in the next generation by the
fraction of them which mutate to a. Likewise when p = 0 there are only a’s to mutate
to A’s, and the gene frequency increases by Δp = v. So the frequency of A decreases
when large (albeit by a very small amount) and increases (by a similarly small amount)
when small. In between somewhere lies an equilibrium.

The equilibrium point is easily found by using (III-2) to inquire when Δp = 0, or by
using (III-1) to ask when p′ = p. Either way, the result is

pe =
v

u + v
(III-3)
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At this mutational equilibrium the numbers of A’s being converted by mutation into a’s
equals the number of a’s being converted into A’s.

APPROACH TO EQUILIBRIUM.
The rate at which the population approaches this state is easily found from (III-1)

owing to the linear form of that equation. From (III-1), the equilibrium frequency must
satisfy

pe = (1− u) pe + v (1− pe) (III-4)

and subtracting (III-4) from (III-1)

p′ − pe = (1− u) p − (1− u) pe + v (1− p) − v(1 − pe)

= (1− u) (p− pe) + v (1 − p − 1 + pe) (III-5)
= (1 − u − v) (p − pe).

Thus the deviation of p from its mutational equilibrium value pe is multiplied by (1−u−
v) every generation. This is a number very near 1: a typical value might be 0.9999998.
The distance from the equilibrium will decline very slowly, at the rate at which the
powers of 1− u− v decline.

We can get some sense of exactly how slow is the approach to equilibrium by making
an approximation. Since u and v are both very small,

1− u− v ≈ e−(u+v), (III-6)

the error in this approximation being terms in u2, v2 or uv, all of which may be safely
ignored. After t generations, the original departure of the gene frequency from the
mutational equilibrium will have been multiplied by (1− u − v)t, which is nearly the
same (by III-6) as e−(u+v)t. If we ask at what generation the gene frequency will have
moved half of the way to the equilibrium, this will be given by solving for t in

e−(u+v) t = 0.5, (III-7)

the solution to which is
t0.5 = − ln 0.5

u + v
=

0.693147
u + v

. (III-8)

As a rough order of magnitude estimate, we can say that it takes about 1/(u + v) gener-
ations to move a substantial fraction of the way to the mutational equilibrium. Figure 3.1
illustrates this. It shows the whole course of approach of two populations, one started at
p = 1 and the other at p = 0, to mutational equilibrium. Note the horizontal time scale,
which is in millions of generations. All of which emphasizes just how weak a force mu-
tation is, how slowly it will change gene frequencies. We will see the implications of this
shortly. Figure 3.1 demonstrates the slowness of the approach to mutational equilibrium.
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Figure 3.1: Approach of gene frequency to equilibrium in a two-allele case
starting from fixation at either allele when u = 5v with u = 10−7. Note the
large number of generations on the horizontal time scale.

III.3 Mutation with Multiple Alleles

FORWARD AND BACK MUTATION. In the above analysis, we did not comment on
the relative sizes of u and v. There are good reasons for believing that u will commonly
be many times larger than v. Usually we will denote the functional enzyme as allele
A, and the nonfunctional enzyme as allele a. In that case, u is the rate of forward
mutation and v the rate of back mutation. Underlying the fiction of two alleles, there is
a reality of a very large number of possible base sequences, giving rise to a smaller, but
still astronomical, number of possible protein sequences. Of these, only a tiny fraction
could be functional enzymes (or structural proteins). While most changes in a functional
sequence may inactivate it, few changes in a nonfunctioning sequence will restore it
to function, particularly if it is a sequence far removed from the nearest functioning
sequence.

In these circumstances u will be far larger than v. In fact, it is often a reasonable
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approximation to let v be zero. We then have unidirectional mutation A → a. Equation
(III-1) is then simply

p′ = (1− u) p (III-9)

which predicts a mutational equilibrium at a zero frequency of A, and a slow approach
to this equilibrium, it taking about 1/u generations to move a substantial fraction of the
way to the equilibrium.

MULTIPLE ALLELES. For a more complete consideration of such a situation, we would
have to consider mutation back and forth among a large (a very large) number of possible
alleles. Suppose that there are n alleles A1, A2, . . . , An, and that the frequency of the i-
th allele is given by pi. Let uij give the frequency of mutation of an Ai allele into an Aj
allele. A simple counting-up of the possible origins of an Ai allele will give the equations
of change of gene frequencies:

p′i = pi

(
1−∑

j �=i
uij

)
+ ∑

j �=i
pjuji, i = 1, 2, . . . , n (III-10)

the prime indicating the next generation. At the equilibrium, p′i = pi, so that this gives

0 = −pi ∑
j �=i

uij + ∑
j �=i

pjuji i = 1, 2, . . . , n. (III-11)

This is a set of linear equations in the pi which can be solved for the mutational
equilibrium gene frequencies once the uij are known, and keeping in mind that the
pi must sum to unity. The general formulas (which will be in matrix form) are not
particularly enlightening, but in certain cases the results become simple. When all of the
mutation rates uij are assumed to be equal, the equilibrium can readily be shown to be
the situation

pi = 1/n, i = 1, 2, . . . , n (III-12)

in which all alleles are equally frequent. The rate of approach to this equilibrium will
depend on the total rate of mutation. Suppose that we define μ as the total rate of
mutation away from one allele. Then ∑j �=i uij = μ. It turns out that n

n−1μ is the fraction
of the distance toward the equilibrium that will be covered each generation, so that it will
take about 1/μ generations to go a substantial fraction of the way toward equilibrium.

This situation of total symmetry is not a particularly good model of mutation at a
protein locus. In a sequence with 500 sites, there are only 1500 among the 4500 possible
base sequences which can be reached by single point mutations.

Nevertheless, if the rate of mutation at each site is equal, and if the three possible
base changes which can occur have equal rates u (so that the probability that a C at a
given site will mutate to a G is u, and the probabilities that it will mutate to A or T
are also both u, for a total mutation rate of 3u), the equilibrium can be demonstrated
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to be the situation in which all 4500 base sequences occur with equal frequencies. This
number is far greater than the number of elementary particles in the known universe!
We can safely say that there is no population that has ever had that genetic composition.
The rate at which convergence to this mutational equilibrium occurs is not so simple to
discover, but will be the total mutation rate of the gene 3Su, where S is the number of
sites in the gene.

A DISTINCTION. The prospect of a population which has 4500 different alleles seg-
regating at equal frequencies raises the issue of how we are to regard mutation. Is it a
deterministic or a random force in evolution? In the mathematics above, mutation has
appeared as a deterministic force, pushing gene frequencies slowly toward a set equi-
librium gene frequency. In that view, mutation is not a force which will bring about
different results in different populations. Although it will often act to increase the ge-
netic variability within a population by reintroducing alleles which have become lost,
it will have the same effect in all populations and in all generations (assuming given
mutation rates).

But a population with 4500 equally frequent alleles is an impossibility in practice, as
it would require a population size of at least 10300. In an actual population at mutational
equilibrium, only a tiny fraction of all possible alleles would be present. Two different
populations at mutational equilibrium will contain different mixtures of DNA sequences.
The same population followed through time will vary in gene frequencies and in the
identities of the alleles present. Doesn’t this mean that mutation is actually a random
force acting to diversify populations? It does not. In such a situation the diversity is the
result of the finiteness of the population. This is an effect of random genetic drift, which
is an evolutionary force we will study in chapters V to VII. That the randomness occurs
through finiteness of the population is easily seen by a thought experiment. Consider the
mutational equilibrium in a series of populations of size N. The larger is N, the more
chance that the same mutant alleles will be in existence in different populations. The
amount of diversity between populations generated by mutation depends most critically
on their size. By moving the population towards a state in which there would be a great
number of alleles, mutation allows genetic drift to have a dramatic effect by eliminating
most of the possible alleles from the population. It is genetic drift, not mutation, that is
the random force. We shall see in Chapter VII a model which allows us to approximate
how many common alleles we expect to see in a population of finite size at mutational
equilibrium.

The above point may seem to be only a semantic distinction, but it is important to
have a correct intuitive understanding of evolutionary forces, and confusing a determin-
istic force with a random one is a matter of no small consequence.
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III.4 Mutation versus Selection: Haploids

All the above discussion has assumed that the genotypes are equally fit. Much of our in-
terest in the phenomenon of mutation stems from situations where the genotypes created
by mutation are less fit than normal genotypes. Mutation may be causing inactivation
of a functional protein. As we saw in the previous section, if there were no selection, the
population would move toward an equilibrium in which functional alleles would be the
exception rather than the rule. This would seem to pose a problem for the continued
existence of the organism, but the very differences in fitness which seem to threaten the
extinction of the population will also act to keep the functional alleles at high frequency.
This two-edged effect of selection results in a surprising cancellation of its two effects, a
cancellation known as the Haldane-Muller principle, which we shall discuss shortly.

First let us show the effects of selection when it acts in opposition to the effects of
mutation. The simplest case in which we can investigate this is a haploid population
with discrete generations and two alleles. We assume that one of the two alleles, A,
produces a functional protein, and the other, a, a nonfunctional protein. Here is the life
cycle:

Haploid
newborns

Selection−−−−→ Haploid
adults

Mating−−−→ Diploids Meiosis−−−→ Haploid
gametes

Mutation−−−−→ Haploid
Newborns

Suppose that the frequency of the A allele is p among newborns. If the fitnesses of
the two haploid genotypes A and a are respectively 1 and 1− s, then after selection

p∗ =
p

1 − (1− p) s
(III-13)

which is a version of equation (II-16) in the previous chapter.
This is a haploid organism, which we are treating as if it were asexual, since mating

and meiosis will have no effect on the gene frequency. So among “gametes” the gene
frequency will still be p∗. Mutation does have an effect, one which will depend on
the rates of forward and back mutation. In this case, we are primarily concerned with
forward mutation A → a. Let us take its rate to be u, setting the back mutation rate v
to zero. As we shall see, the results will be little affected by whether back mutation is
present or not. The effect of forward mutation on the gene frequency will be simple.
Equation (III-1) will give us the gene frequency of A after mutation in terms of that
before mutation:

p′ = p∗(1− u). (III-14)

Putting (III-13) and (III-14) together by using the former to substitute for p∗ in the
latter, we get the recursion formula for gene frequency from one generation to the next:

p′ =
p (1− u)

1 − s (1− p)
(III-15)
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We want to find the equilibrium of the population under the two forces of mutation
and selection. This is most readily done by setting p′ = p in (III-15) and solving for p.
Multiplying (III-15) by the denominator of its right-hand side after removing primes, we
obtain

p− s p(1− p) = p (1− u),

or
u p− s p(1− p) = 0,

which is
[u− s(1− p)] p = 0. (III-16)

The system will be in equilibrium if p = 0, which is simply the situation where the
normal allele has been lost. This will be an equilibrium because we have not allowed for
back mutation. This is not the equilibrium in which we are most interested. That is

u = s (1− p). (III-17)

Since we may prefer to follow the frequency of the nonfunctional mutants, we can replace
their frequency (1− p) by q and see that the mutant alleles at equilibrium have frequency

qe = u/s. (III-18)

We will discuss this simple result below, because it turns out that it can also be obtained
in a simple diploid case, and many of the organisms we are interested in are diploids.

III.5 Mutation versus selection: Diploids

The haploid results can easily be recycled to analyze the diploid case in which there are
multiplicate (geometric) fitnesses. Suppose that the life cycle is

Diploid
Newborns

Selection−−−−→ Diploid
Adults

Meiosis−−−−→ Haploid
Gametes

Mutation−−−−−→ Haploid
Gametes

Random
union−−−−→ Diploid

Newborns

and the fitnesses of genotypes AA, Aa, and aa are the geometric series 1 : 1− s : (1− s)2.
Then it is easy to show that equation (III-13) in the previous section gives the gene
frequency p∗ after selection. Mating and meiosis do not change the gene frequencies.
Mutation changes them in the same way that it does for haploids, since mutation acts
on single copies of the allele. Thus equation (III-13) also applies, and the mathematics
of the change of gene frequencies is exactly the same as in the haploid case. We get the
equilibrium gene frequency u/s (as in III-17) for the deleterious mutant allele.
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IMPLICATIONS. This is a fairly simple result. It shows us immediately that the
outcome of the interaction of mutation and natural selection is given by the ratio of their
coefficients u and s. In many cases, we will be able to assume that s  u. In particular,
we are often interested in specific loci at which there are mutations that cause a fairly
drastic change in the phenotype. Since values of u are likely to be so small, in almost
all such cases it is hard to imagine that s is not many orders of magnitude greater than
u. Whenever a phenotypic difference is large enough for us to see, it is hard to imagine
that it is not so large that s > 10−6. The exception is protein and DNA sequence data.
Molecular methods enable us to discern differences which may be so slight as to have
little or no selection acting on them. Only in those cases is it a reasonable expectation
that s and u are of the same order of magnitude. Even if s is not much greater than u,
there is only a small range of values of s for which the equilibrium frequency of mutants
is not small. If s u, qe is small. If s < u, qe is predicted by (III-18) to be greater than 1.
This is a strange result, to say the least. A closer examination of (III-15) will show that
in such a case it is always true that p′ > p, unless p = 0. So when s < u, the mutation to
a is always a stronger force than the selection which opposes it, and the mutant becomes
fixed in the population. The equilibrium with p = 0 is then the relevant one.

Except for a small range of values of s, we expect either that selection has little
influence or that it is far stronger a force than mutation, and holds the equilibrium gene
frequency of the mutant allele to a very low value. If the latter is the case, then back
mutation will be a force of little consequence. There will be few a genes available to
mutate back into A, even if the back mutation rate were as large as the forward mutation
rate. For example, when u = v = 10−7 and s = 0.001, qe = 0.0001. A crude examination
shows that, each generation, a fraction u(1 − q) = 0.9999× 10−7 of all copies mutate
from A to a. A fraction uq = 10−11 mutate from a to A. By far the strongest effect raising
the gene frequency of A is selection, which in this case causes the death (or reproductive
failure) of sq = 10−7 of the genes. A more careful analysis of the case of back mutation
will lead to a quadratic equation for qe instead of (III-17), and will give support to the
practice used here of ignoring back mutation.

A useful way of intuiting (III-18) is to note that rare mutant a has, in effect, a risk s
of being eliminated each generation. This leads to the prediction that each mutant will
remain in the population an average of 1/s generations (this is the average number of
tosses of a coin with probability s of Heads until Heads finally occurs). The population
should contain as many copies of a as accumulated by mutation during the last 1/s
generations. Since about a fraction u of mutants arises each generation, we should
expect that qe = u× 1/s = u/s. This argument ignores a number of terms, but those
terms are small and the resulting error is small. In fact, the resulting error is zero since
the various approximations used happen to cancel each other’s effects!
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III.6 Mutation vs. Selection: Effects of Dominance

It is natural to wonder whether diploidy, dominance and recessiveness in particular, alter
this picture in major ways. With diploidy the mathematics becomes slightly messier but
is still not very difficult if we are willing to make certain approximations.

RECESSIVE MUTANTS. If the mutant alleles are completely recessive, an exact result
is still possible. Once again the gene frequency among newborns will be taken to be
p. First we need to know how much the gene frequency is changed by selection. The
fitnesses are taken to be

AA Aa aa
1 1 1− s.

This does not fit easily into the scheme of section II.6 unless we exchange p for q
and change the sign of s. Rather than do that, we can fall back on the general formula
for gene frequency change in diploids, equation (II-31). When the above fitnesses are
substituted in, we get for the gene frequency after selection

p∗ =
p (p× 1 + (1− p)× 1)

p2 × 1 + 2p(1− p)× 1 + (1− p)2 × (1− s)
(III-19)

and after a little algebra in the denominator, this gives

p∗ =
p

1− s (1− p)2 (III-20)

We do not really need to know the genotype frequencies after selection, since all we
are interested in is the effect selection and mutation will have on the gene frequencies.
Mutation occurs to genes one at a time, without substantial regard to the identity of
their homologue. As a result, we can follow the effect of mutation on gene frequencies
without knowing how those gene frequencies are organized into genotypes. This was the
basis of section III.2 above, where we derived the mutational equilibrium without in any
way using the fact that the population was diploid. The same equations for mutational
effects on gene frequencies hold in diploids as in haploids.

Equation (III-20) shows the effect of selection on the frequency of the “normal” allele
A. If mutation is taken to be unidirectional A→ a at a rate u, its effect will simply be to
multiply p∗ by (1− u), as before. Then we will get for the gene frequency after mutation,

p′ =
p (1− u)

1− s (1− p)2 (III-21)

Equating p′ to p and solving for possible equilibrium values of p, we find that either
pe = 0, or

1− s(1− pe)
2 = 1− u (III-22)
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which gives
(1− pe)

2 = u/s (III-23)

so that the frequency qe of the mutant allele a at equilibrium is

qe = 1− pe =
√

u/s. (III-24)

As in the haploid case, if s < u the equilibrium frequency of the mutant exceeds 1.
This is simply the situation where selection is so weak that it is never able to stem the
increases in gene frequency caused by mutation, and in this case the other equilibrium
qe = 1− pe = 1 is the relevant one.

The gene frequency of the mutant allele is higher (for the same values of u and s) in
the recessive case than in the haploid case. This can be seen by using the values of u
and s from the numerical example in the previous section. If u = 10−7 and s = 10−3, we
obtain qe = 0.01, which is 100 times higher than in the haploid case. Note that a rather
small mutation rate has resulted in a far higher gene frequency at equilibrium.

That this result is a reasonable one is seen by making a more intuitive argument
along the same lines as in the haploid case. Each mutant has a probability sqe of being
eliminated in each generation. To be eliminated by natural selection, it must occur
in a homozygote (an event of probability qe given that we already know that the one
gamete carries the mutant), and natural selection must kill (or sterilize) the resulting
homozygote, an event with probability s. So the average mutant will persist in the
population for 1/(sqe) generations. The population will then contain 1/(sqe) generations
worth of mutants. Since a fraction u of the genes mutate each generation, the total
frequency of mutants will be roughly

qe = u× 1/(s qe), (III-25)

We can solve this for qe. When we do, we get exactly the result (III-23). It is re-
markable that an imprecise argument such as this happens to give us exactly the correct
result. It contains a number of approximations, such as the assertion that there are u
mutants each generation when in fact the number is closer to u(1 − qe), as we cannot
mutate copies which are already a. Apparently the different approximations we have
made in this intuitive argument just happen to cancel each other.

Note from (III-24) that the equilibrium frequency of the mutant is far higher in the
recessive case than in the haploid case, given that we compare cases with equal values
of u and s. This is primarily due to the weakness of selection in the recessive cases. A
mutant can only be eliminated by selection if it is in the company of another mutant. The
fraction of mutants eliminated each generation is sqe rather than s. With u = 10−7 and
s = 0.001, this means that in the haploid case 0.001 of all mutants are eliminated each
generation, while in the recessive case the corresponding number is 0.001× 0.01 = 10−5,
so that a given mutant will remain in the population 100 times longer. This slower rate
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of loss of mutants raises their frequency in the population by a large factor (100 times in
this case). This in turn compensates for the greater difficulty of forming the “affected”
phenotype, which now only appears in homozygotes. The result is that in both cases
we see exactly the same frequency, u/s, of affected individuals. We shall see later a
remarkable consequence of this fact.

TURNOVER OF ALLELES. These calculations give us a picture of how rapidly the pool
of deleterious mutant alleles at a locus “turns over”. In the case of partial dominance,
a fraction hs of the deleterious mutants are eliminated in each generation. They are
replaced by new deleterious mutants. Thus the pool of deleterious mutants turns over
on average every 1/(hs) generations. For a mutant with h = 0.02 and s = 1 this is
50 generations, or in humans about 1,250 years. At a locus with recessive deleterious
mutations, the fraction of copies of them that are eliminated in each generation is sqe,
which is

√
u s. For a locus with recessive lethal mutants which has mutation rate 10−6,

a fraction 0.001 of the mutants are thus eliminated each generation, and the pool turns
over on average every 1,000 generations, or in humans 25,000 years.

In chapter VII we will see that a simple calculation also allows us to predict how
many different mutational events contributed to the pool of deleterious mutations at one
locus in a finite population. Except in small populations, the pool will be surprisingly
diverse.

RATE OF APPROACH TO EQUILIBRIUM. This intuitive argument also tells us much
about the rate of approach of the system to equilibrium. If we were to start with no
mutants, and were to wait until the system were near its equilibrium, then since the new
mutants at equilibrium constitute a fraction sqe of the mutant pool, we would in effect
be waiting for there to be at least 1/(sqe) generations of mutation. Otherwise it would
be impossible for enough to have occurred. Let us call this number of generations G. In
a few multiples of G generations, almost all of the existing mutants are eliminated by
selection, and enough new mutants occur to replace them. So G is a natural time scale for
the equilibrium of gene frequencies, because it tells us about how many generations are
needed for selection to obliterate the history of the process. It takes about G generations
for the pool of mutants present to “turn over” about once.

This also allows us to get a rough idea of how rapidly a population will respond to
changes of mutation rate. If mutation were to suddenly cease, it would take a few multi-
ples of G generations for mutants to disappear from the population. On the other hand,
if mutation rates were suddenly to be doubled, it would take essentially the same length
of time for the mutant gene frequencies to approach their new equilibrium frequencies,
which in the recessive case will be

√
2 times their current equilibrium frequencies.

EFFECT OF BACK MUTATION. In all of the above, back mutation has been ignored.
It is possible to incorporate it into the analysis, by changing (III-21) so as to replace
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p∗(1− u) by p∗(1− u)+ (1− p∗)v, where p∗ is given by (III-20). The result is a quadratic
equation for the equilibrium gene frequency. When this is solved, it is found that, unless
the equilibrium frequency of the mutant allele is large, the presence of back mutation
makes hardly any difference to the equilibrium gene frequency of the mutant allele.
An intuitive rationale for this is easily constructed. Aside from our expectation that
back mutation rates will be smaller than forward mutation rates, the very rareness of a
alleles makes back mutation an infrequent phenomenon. At equilibrium in the absence
of back mutation, we may approximate by saying that a fraction u of genes mutate
from A to a, and about an equal fraction of all genes are a’s which are killed off by
selection. So the decrease in frequency of a by selection (a decrease balanced by its
increase from mutation) is about u. (Not fraction u of the a copies, but an absolute
decrease of u in the gene frequency of a). Back mutation will also decrease the frequency
of a, but by an absolute amount vq, that is, by converting to A a fraction v of the a copies.
This will be an insignificant change in the frequency of a compared to the changes
by selection or forward mutation. If the forward mutation rate is 10−7 and the back
mutation rate is 10−8, with an equilibrium gene frequency of 10−2, forward mutation
increases the gene frequency of a each generation by 10−7 (and selection decreases it by
about the same amount), while the change due to back mutation is only a reduction by
10−8× 0.01 = 10−10, three orders of magnitude smaller.

A COMPUTATIONAL EXAMPLE. It seems at least a reasonable approximation to
ignore back mutation in these calculations. The reader who is skeptical may wish to
state and solve the quadratic equations for p, and to see how much difference back
mutation makes in the equilibrium gene frequency of the mutant allele a.

The utility of the calculations of this section can be seen by consideration of the
disease cystic fibrosis. This is a recessive disease, which until very recently was almost
always fatal before reproductive age. The disease has an incidence at birth of about 1 in
2,500. If Hardy-Weinberg proportions are assumed to hold in the newborns (which will
be the case if there was random mating among their parents), the gene frequency for the
cystic fibrosis allele is 0.02. One hypothesis that can be made to explain the frequency
of cystic fibrosis is that the alleles are introduced by mutation and are currently in a
mutation-selection balance. If the selection is only on the affected homozygote and
amounts to complete lethality (s = 1), then equation (III-23) shows us that 0.02 =

√
u,

so that the mutation rate would have to be 0.0004 per gene per generation. This is
almost 1000 times higher than the admittedly imperfect estimates available to us of
mutation rates per cistron. This renders it unlikely that we can explain the prevalence of
cystic fibrosis as the equilibrium under a balance between mutation and selection. Either
there is some other pattern of natural selection (perhaps heterozygote superiority) or the
situation is not an equilibrium.

DOMINANCE. When the mutant allele is partially or completely dominant, exact
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algebraic solution is not so simple. The same sort of equations as before can be used, but
the counterpart to (III-21) now yields a quadratic equation of qe. While its solution is not
difficult, interpretation of the resulting formula is. Consequently we will limit ourselves
to approximate treatment of this case, since the approximations are quite good ones.

One case of partial dominance can be solved exactly: we have seen that the equa-
tions for multiplicate (geometric) fitnesses are the same as those for haploids, and the
equilibrium frequency can be obtained exactly in the case of mutation from A to a. It
is convenient to have this one diploid case which can be exactly solved, for this allows
us to compare the amount of selection which occurs in homozygotes and heterozygotes.
When the frequency of the mutant allele is q, the fraction of all genes which are a’s
killed off (or sterilized) by selection in heterozygotes is q(1− q)s, keeping in mind that
only half of the genes in heterozygotes are a. The fraction of all genes killed off as a’s
in homozygotes is q2[1− (1− s)2] or q2(2s − s2). The ratio of these two mortalities is
(1− q)/[q(2− s)], which will be somewhere between (1− q)/q and (1− q)/2q, depend-
ing on s. Since q is expected to be small at equilibrium, we can conclude that far more a
copies are killed off in heterozygotes than in homozygotes, simply because a rare allele
occurs far more frequently in heterozygotes than in homozygotes.

Partial dominance. Now we can apply this to construct an approximate argument
good for a wide range of dominance patterns. Suppose that the fitnesses of our three
genotypes are

AA Aa aa
1 1− hs 1− s

Since the gene frequency of a will be small at equilibrium (at least, it will be for small
u and larger s), we will be hard-pressed to distinguish between this pattern of selection
and the multiplicative or geometric pattern

AA Aa aa
1 1− hs (1− hs)2.

In both cases the selection against heterozygotes is hs, while homozygous aa geno-
types will account for hardly any of the mortality of a genes, as this genotype will be
very rare. So the equilibrium gene frequency should be quite close to the multiplicative
value, which would be

qe =
u
hs

. (III-26)

The intuitive interpretation of this result is straightforward. Since a mutant allele is ex-
posed each generation to a probability hs of elimination (except for the very unlikely
possibility that it will occur in a homozygote), it will be expected to remain in the pop-
ulation for 1/(hs) generations, and the current mutant frequency should be the fraction
of genes which mutate during that time, u/(hs).
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Table 3.1: Exact and approximate equilibrium gene frequencies with partial
dominance, u = 10−7 and s = 0.01.

h qe (approx.) qe (exact)
0.001 0.01 0.0027
0.002 0.005 0.00232
0.005 0.002 0.001534
0.01 0.001 0.0009175
0.02 0.0005 0.0004885
0.05 0.0002 0.0001993
0.10 0.0001 0.0000999
0.20 5.0× 10−5 5.00392× 10−5

0.50 2.0× 10−5 2.0× 10−5

0.75 1.33× 10−5 1.33179× 10−5

1.00 1.0× 10−5 1.00583× 10−5

From the way we have obtained the result, it is expected to be accurate only when
qe is small, i.e. when u � hs. In fact, a more complete consideration of the solution
of the full quadratic equation which we would get by using (II-33) together with (III-1)
verifies our intuition (the equation would be cubic if we allowed back mutation as well).
Here (in Table 3.1 and Figure 3.2) is a comparison of some values for s = 0.01 and u =
10−7. We may use these exact solutions to verify the unimportance of selection against
mutant homozygotes. When h = 0.2, we have qe = 5.00392× 10−5. The frequency of
heterozygotes in the population among newborns will be 2(0.99995)(0.00005) = 0.0001.
Mutant homozygotes will be much rarer, being only 2.5× 10−9 of all individuals. The
fraction of genes being lost as a result of selection against heterozygotes will be 0.2×
0.01× 0.0001 = 2× 10−7. The fraction of genes eliminated as a result of selection
against homozygotes is 0.01× 2.5 × 10−9 = 2.5 × 10−11. Even taking into account
the fact that two mutant alleles are lost when a homozygote dies but only one is lost
when a heterozygote dies, the loss of heterozygotes is by far the more severe effect on
mutant gene frequencies. This helps justify our approach, which is based on more or
less ignoring the selection which occurs in mutant homozygotes.

Note that the approximation u/(hs) is quite good, even for as little dominance as
h = 0.01, although it begins to degrade below that value. Even a very slight selection
against heterozygotes will have more impact than a much stronger selection against the
much rarer homozygotes. While this may seem a perfectly straightforward result, it is
less obvious when we look at rare disorders in human populations, for it tells us that
medically trivial effects in heterozygotes are likely to have more impact on gene frequen-

154



Degree of dominance (h)

Fr
eq

ue
nc

y 
of

 m
ut

an
t a

lle
le

10 −6 10 −5 10 −4 10 −3 10 −2 10 −1 10 0
10 −6

10 −5

10 −4

10 −3

10 −2

Figure 3.2: Equilibrium gene frequency as a function of h for a case in which
u = 10−7 and s = 0.01, with no back mutation. The horizontal and sloped
dashed lines, respectively, show the recessive and partial-dominant approxi-
mations, from equation (III-24) and equation (III-26). Note the transition from
the recessive case to the partial dominant case.

cies than the much better publicized effects which the gene may have in homozygotes.
Figure 3.2 shows the entire process of transition from validity of the partial-dominant

approximation to the validity of the recessive approximation, for the case of Table 3.1.

POLYPLOIDY. The same sort of logic will serve as well with higher ploidy levels. If
mutants are even partially dominant, most of the elimination of mutants will take place
in genotypes carrying only one mutant. For instance, in a tetraploid with mutant gene
frequency q, the frequency of AAAa heterozygotes will be approximately 4q. If q is
small, most copies of a will occur in such genotypes. If the fitness of AAAa is 1− h1s,
then the reduction of a frequency by selection will be about −h1sq, while the increase
due to mutation is about u (most genes being A and thus available for mutation to a) If
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we equate these, we find that

qe =
u

h1s
(III-27)

which is the same formula as in the diploid case. It will be valid under the same sort of
conditions, namely that u� hs so that qe is small and most elimination of mutants is in
heterozygotes which carry a single copy.

III.7 Mutational Load.

If there were no mutation in a population, there would be no source of new variation
allowing evolutionary progress, and the population would be worse off as a result. But
there would also be no deleterious mutants occurring. How much advantage would
accrue by the absence of mutation, owing to the lack of deleterious mutants? We are
now in position to answer this question, although not the more general question of the
effects of the absence of favorable mutants.

The simplest approach to this question, the one taken by J. B. S. Haldane in 1937
and by H. J. Muller in 1950, is to compute the effect of mutations on mean population
fitness. This is easily done using the results of the previous section, and it leads to a
rather surprising general result known as the Haldane-Muller principle. In the haploid
case, the mean fitness of the population will be

w̄ = (1− q)× 1 + q× (1− s). (III-28)

At equilibrium under mutation vs. selection, qe = u/s so that since

w̄ = 1− qe s,

w̄ = 1− (u/s) s = 1− u.
(III-29)

Without mutation, the gene frequency of the mutant allele will be zero, leading to
w̄ = 1. So the presence of mutation depresses the mean fitness of the population by an
amount equal to the rate of mutation to the deleterious allele. This is an unusual result,
since it predicts that the amount by which a deleterious allele affects population fitness
is independent of its fitness. So a mildly deleterious allele with s = 0.01. will have just
as much effect in depressing population mean fitness as will a lethal which has s = 1!

In diploids, closely similar results are obtained. For recessive mutants,

w̄ = (1− q)2 × 1 + 2 q(1− q)× 1 + q2 × (1− s)

= 1− q2 s
(III-30)
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and since qe =
√

u/s,
w̄ = 1 − (√

u/s
)2 s

= 1 − (u/s) s

= 1− u,

(III-31)

so that at a locus with recessive mutant allele, the depression of fitness is again equal to
the mutation rate and independent of the selective effect of the mutant.

A partially dominant mutant will have

w̄ = (1− q)2 × 1 + 2q(1− q)× (1− hs) + q2 × (1− s)

= 1 − 2 q(1− q) hs − q2 s.
(III-32)

Since we have to very good approximation that qe = u/hs,

w̄ = 1 − 2(u/hs) (1− u/hs) hs − (u/hs)2s

= 1 − 2u + 2u2/hs − u2/h2s

� 1 − 2u,

(III-33)

The approximation involving dropping terms of size q2s or q2hs, which are both expected
to be very small since q is itself small. Once again we see that the decrease in fitness is
dependent on u but not on either h or s (to the accuracy of the approximations used).

This reduction in fitness is known as the mutational load. Recall that we have com-
puted it for a single locus. If population mean fitness is the product of mean fitnesses
for the individual loci, as will be the case if there is multiplication of fitnesses between
loci and no linkage disequilibrium, then for n partially dominant loci

w̄ � (1− 2u)n � e−2nu. (III-34)

If there are (say) 20,000 loci, each of which can mutate to a partially dominant dele-
terious allele, and if the mutation rate is 10−6 per locus, then the total mutation rate
per diploid genome is 0.02. By (III-33) the fitness of the population is reduced to
e−0.02 = 0.9801986, so that in this case the reduction of fitness is nearly the same as
the total mutation rate per genome. If all mutations were instead recessive, the reduc-
tion in fitness would be only half as great. Figure 3.3 shows the full dependence of load
at a locus on h, computed with the same equations that were used for figure 3.2.

A HEURISTIC APPROACH. The mutational load can also be derived in a heuristic
fashion by a direct argument which does not utilize equilibrium gene frequencies. This
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Figure 3.3: The mutational load as a function of dominance when u = 10−7

and s = 0.01, for the case of no back mutation.

approach will make it a bit clearer why the load is the same for a weakly deleterious
allele as for a strongly deleterious allele. Consider a (very large) population of N indi-
viduals. Every generation 2Nu new mutants will occur, since there are about 2N copies
of the wild-type allele available to mutate. At equilibrium we require that the number of
mutants eliminated by natural selection equal the number added by mutation. Let L be
the fraction of individuals who die, so that L is our measure of the mutational load. If
the mutants are partially dominant, then each selective death (with rare exceptions) kills
one mutant. So requiring that the number of alleles killed equal the number that mutate
amounts to requiring that

2Nu = NL (III-35)

or
L = 2u. (III-36)

If the mutants are recessive, each death by natural selection kills two mutants, so that

2Nu = 2NL (III-37)

or
L = u. (III-38)
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Similar arguments easily compute the mutational load in haploids and in polyploids.
This deceptively simple argument is not as airtight as it seems. At equilibrium one

should actually require that selection reduce the gene frequency by the same amount
that mutation has increased it. This is not quite the same as decreasing the number
of mutants by the number which have just mutated. A simple numerical example will
serve. Suppose that a population of 1/2 million individuals has 10 mutants occur in the
current generation, these being added to 100 copies of the mutant allele already present.
If selection now restores the mutant frequency to its previous value of 0.0001 by killing
homozygotes (let us assume that the mutants are recessive) it has to kill 10.001001 copies
instead of 10 copies. The difference comes from the fact that if we killed exactly 10 copies
of the mutant, we would not only reduce the number of mutants from 110 to 100, but
would also reduce the total population number by 5 individuals (10 gene copies). This
is hardly a dramatic inaccuracy, and it points up both the approximate nature of the
argument and the essential accuracy of that approximation.

WEAK SELECTION AND MUTATIONAL LOAD. As the mutational load is said to be
a function of the mutation rate, but not the selection coefficient, it is natural to wonder
how a very weak selection could impose a load. Surely the Haldane-Muller principle
cannot hold all the way to s = 0. Of course, it does not. In the haploid case, the
mutational equilibrium gene frequency qe = u/s is only correct if u < s, otherwise the
only equilibrium of the system (III-21) is qe = 1. If u ≥ s, so that qe = 1, the load is

L = qe s = s, (III-39)

so that as we consider cases with progressively smaller values of s, the load will remain
u until s = u, then below that point the load will smoothly decline to zero as s declines.

We have also been ignoring back mutation, and justifying this practice on the basis
that the frequency of the mutant allele is very low. As s → 0, we will be less and less
able to make this approximation. As s becomes of the same order of magnitude as u,
the equilibrium gene frequency will rise not to one, but to the mutational equilibrium
frequency qe = u/(u + v), and the load will become su/(u + v), which will approach
zero.

Similar considerations apply in the diploid case and the polyploid case. The load
will be a simple function of u unless s is so small that it is not substantially greater than
u. Below that point the load will decline to zero as s does.

MEANING OF THE MUTATIONAL LOAD. We have considered the load as if it
imposed a burden on the population, yet the reader may recall that in the case of the
segregational load (in section II.8), serious reservations were expressed as to whether
that load really imposed any burden. In that case, one might imagine that an overdomi-
nant mutant arose in a population previously fixed for one of the alleles. In the process
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w̄ would increase, even though a formal “load” would be created, through alteration
of the standard against which w̄ is judged from AA to Aa. In the present case, if we
compare mean fitnesses in the population with or without mutation, we are using the
same standard, namely the “wild-type” genotype AA. The presence of mutation is un-
doubtably making the population worse off, by introducing the genotypes Aa and aa
which have lower fitnesses.

While there seem to be fewer difficulties with the notion of mutational load than with
segregational load, matters are not quite as simple as they seem. We have carried out
our computations in terms of relative, not absolute fitnesses. The existence of mutational
load means that average population fitness will be below the fitness of the AA genotype.
If the imposition of the mutational load were somehow to coincide with a raising of
the absolute fitness of AA, then the “load” might actually benefit the population. It
is also not necessarily true that the load will be visible to an ecologist as a lowering
of population size. A population with density-dependent population size regulation
might have an average of 1000 offspring per parent, with only two of those surviving
to adulthood. In such a case, the reduction of the number of surviving offspring from
1000 to 500 will probably have only a small effect on the number of adults maintained
in the population, since the population will still be pressing against the limits set by
density-dependence. It would be a mistake to conclude from this that the mutational
load has no effect whatsoever on population dynamics. The reproductive excess acts as
a buffer allowing the population to survive various misfortunes, and a reduction of the
size of this buffer, even if it has little effect on average population size, may make the
population more vulnerable to extinction in time of crisis.

THE c PARADOX AND MUTATIONAL LOAD. The question of the reality of muta-
tional load as a problem for the population is made more pressing when we consider
what used to be called the “c paradox.” This is the observation that eukaryotes have far
more DNA in their genomes than we can account for based on estimates of the number
of structural genes producing polypeptide chains. A typical mammal has about 5 billion
base pairs in the DNA of its haploid chromosome complement. Taking an average struc-
tural gene to have about 1000 nucleotides in the part coding for the polypeptide chain,
this is enough for 5 million loci. This is far more than could be estimated by extrapola-
tion from the number of salivary gland chromosome bands in Drosophila, far more than
was guessed from the numbers of different mRNA sequences expressed in the cell, and
far more than turned out to be there in sequenced genomes.

Accounting for this “extra” DNA was a classical problem in molecular biology (i.e.,
it was a problem for more than 4 years). From the standpoint of population genetics,
the mutational load calculation is relevant. If there were 20 million genes, each subject
to mutation at a rate 10−7 to deleterious alleles, the fitness of the population would
be reduced to e−2 � 0.15 of its potential value. If we assign an absolute meaning to the
mutational load, this would mean either a 15% probability that a newborn would survive
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to adulthood (all risk coming from genetic disorders, with any death from environmental
accident being on top of this) or else that fertility would be reduced by 85% by sterile
or partially-sterile mutants, or an intermediate combination of these two. Clearly an
organism with as much DNA as we have would be in severe trouble. Yet in humans well
over 98% of all newborns survive to adulthood in most industrial countries.

WHY WE AREN’T ALL DEAD. There are several possible resolutions of the dilemma. If
much of the DNA is simply “spacer” DNA whose sequence is irrelevant, then there will
be a far smaller mutational load. But notice that the sequence must be truly irrelevant,
not just of unknown function. If the “extra” DNA has regulatory or chromosome-pairing
function requiring it to have a specific base sequence, then mutations in that sequence
will still cause a mutational load, even if these loci are not producing polypeptide chains.
Thus the mutational load argument seems to give weight to the notion that this DNA is
nonspecific in sequence. That is now believed to be the case, and the mutational load
must give pause to anyone who proposes to find important functions for most of the
DNA in eukaryotic genomes, especially functions that constrain its sequence.

The other way out is to question whether the load is truly a burden. Surely an
organism which increases its amount of DNA and evolves a new gene function cannot be
making things worse for itself! It may be that in nominally increasing the load, organisms
have at the same time increased the upper limit of their fitness (perhaps by increasing
their reproductive excess) more than enough to compensate. Thus if a species starts
out with a nonfunctional sequence at a given locus, and evolves a functional sequence,
there is a nominal gain in mutational load as we change the “normal” standard from
(say) a to A, but this is more than offset by the increase of fitness. The difficulty with
accepting this view is that it seems to predict that as more loci enter the genome the
discrepancy between maximum possible fitness and average fitness increases. This is
hard to reconcile with the high viability of humans in industrial countries.

An alternative solution is to suggest that each selective death kills many mutant
genes, so that one needs fewer selective deaths to balance the number of mutations. This
implies that selection occurs in such a way that there is an interaction between mutants.
If an individual only dies if it has ten or more mutants, then we cannot simply predict
the fitness of a ten-fold heterozygote from the fitness of single heterozygotes. Models of
selection of this sort were introduced by Sved, Reed, and Bodmer (1967), King (1967),
and Milkman (1967) to deal with segregational load problems, and these papers may be
consulted for more details. Hopf, Michod, and Sanderson (1988) have examined how
the mutational load should vary among different mating systems. They find that the
mutational load varies among them in easily predictable ways.

The mutational load calculation continues to be relevant to understanding whether
most eukaryotic DNA has any function that is visible to natural selection. Recent an-
nouncements (Encode Project Consortium, 2012) that 80% of human DNA is “func-
tional”, based on finding some transcription or binding of transcription factors in it,
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are very misleading. Junk DNA is still junk DNA, however often its demise has been
announced.

III.8 Quasispecies

In an important paper that also put forward the hypercycle concept for the origin of life,
Manfred Eigen and Peter Schuster (1971) also described as a quasispecies a population
of genotypes with different fitnesses and with mutation among them. This has been
applied primarily to viral populations. If the mutation rates are high enough relative
to the fitness differences, there will be cloud of genotypes, with few individuals having
the most fit genotype. This is the situation that Eigen and Schuster refer to. I have not
been able to find any clear difference between a quasispecies and an ordinary population
that has an equilibrium between mutation and natural selection against the deleterious
alleles.

Eigen and Schuster gave equations for the selection/mutation process in haploid (or
asexual) organisms, in a continuous-time model. In our terms, the fitnesses in Eigen
and Schuster’s model would be absolute fitnesses Wi. If there are n genotypes, and if
the mutation rates between genotypes i and j is uij, Eigen pointed out that the equilib-
rium distribution under selection versus mutation would be proportional to the leading
eigenvector of the matrix WU, where W is a diagonal matrix of fitnesses of genotypes.
This is an interesting general result, but not of much use except in particular cases where
the equilibria can also be found by simpler methods. A more detailed account of their
theory will be found in the paper by Eigen, McCaskill, and Schuster (1988). Wilke (2005)
reviewed the concept of quasispecies, finding it essentially equivalent to a population
with mutation-selection balance, and arguing that there is no disagreement between
these two ways of describing viral evolution.

MUTATION IN A UNICELLULAR SPECIES.
When we have unicellular species, and reproduction is by cell division, when there

are L sites that can mutate, then for the fully functional sequence the fitness W = 2. If
there is no back mutation and if mutation occurs independently at each site, then by
constructing the above matrices we find that the dominant eigenvalue is 2(1− u)L. The
population will be able to survive if this quantity exceeds 1. Taking Lth roots and solving
for u, the condition for this will be u < 1− (1/2)1/L which is approximately uL < ln 2.
Thus the total mutation rate, summed over all sites, must be less than 0.693147. Eigen
and Schuster noted that mutation rates high enough that each individual has on average
1 or more new mutant per generation were too high for continued existence of the
species.
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III.9 Mutation versus selection optimizing a phenotype

In his book The Genetical Theory of Natural Selection in 1930, R. A. Fisher argued that
mutations of modest size will play the largest role in evolution. He supported this by
a heuristic argument that has been influential, which has come to be called Fisher’s
Geometric Model. He imagines a phenotypic character that has an optimum value, with
fitness falling away symmetrically on either side of the optimum. Suppose that the
organism is haploid, and the allele at one locus determines the phenotype. If the current
phenotype is a distance d from the optimum value, then a new mutant will have a higher
fitness if it causes change x in the direction of the optimum and ends up at a distance
less than d from the optimum.

If the mutant has a large enough effect that x > 2d, or x < 0, then it will have a lower
fitness than the current allele.

III.10 Mutation and Linkage Disequilibrium

Mutation is a particularly simple evolutionary force in that (at least in our simple mod-
els) it occurs independently to each gene copy. This has enabled us to treat diploids as
if haploid, and has generally kept things fairly simple. The amount of mutation at a
locus, being independent of what are the genotypes at other loci, cannot be affected by
the amount of linkage disequilibrium, but it remains to be seen whether mutation can in
some way cause linkage disequilibrium. Will the presence of mutation cause a lack of in-
dependence between loci, and in this way complicate the analysis of other evolutionary
forces?

Intuitively, one feels that an evolutionary force whose action at each gene is indepen-
dent could not create disequilibrium. In fact, this intuition is correct, but to validate it
requires a bit of algebra. Let us look at two loci in a population with discrete generations,
where each locus has two alleles. Suppose that the population is in a state of linkage
equilibrium, but does not necessarily have its gene frequencies at their mutational equi-
librium values. Before mutation we have four chromosome types, AB, Ab, aB, and ab at
frequencies given by the four quantities xAB, xAb, xaB, and xab, which we assume add
to one. The forward and backward mutation rates at the A locus are given by u1 and
v1, at the B locus by u2 and v2. After mutation the frequency of an AB chromosome (or
haploid genome) is

x′AB = xAB(1− u1)(1− u2) + xAb(1− u1) v2 + xaB v1(1− u2) + xab v1v2. (III-40)

The justification of this formula is straightforward: to end up with an AB chromo-
some we must either start with an AB chromosome and have neither gene mutate, or
start with an Ab chromosome and have the A gene remain unmutated while the b mu-
tates to a B, and similarly for the other two chromosome types.
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We have not yet used the fact that this generation started out in linkage equilibrium.
We can write xAB = pA pB, etc. so that

x′AB = pA pB (1− u1)(1− u2) + pA pb (1− u1)v2 + pa pB v1(1− u2) + pa pb v1v2

= [pA(1− u1) + pav1] [pB(1− u2) + pbv2].
(III-41)

The fact that the chromosome frequency is a product of two terms, one corresponding
to each locus, suggests that this may be a state of linkage equilibrium, and such is in fact
the case. Comparison of (III-41) with formula (III-1) shows that (allowing for differences
in notation) each of the terms in brackets is the new gene frequency of A or of B after
mutation. So immediately after mutation we have linkage equilibrium:

x′AB = p′A p′B. (III-42)

We have considered part of a single generation, and seen that the changes in chro-
mosome frequencies as a result of mutation are such as to alter the gene frequencies
but leave the fact of linkage equilibrium unaltered. Although we have talked of chro-
mosomes, the same calculation applies to two loci which are unlinked but in the same
haploid genome or gamete genome.

Since recombination will have no effect on chromosome (gamete) frequencies which
are in linkage equilibrium, we did not need to take it into account.

The principle that mutation alters gene frequencies without causing departure from
linkage equilibrium can be applied to any number of loci and any number of alleles,
but we are too lazy to do so here. In the more general case where we start in a state
of linkage disequilibrium, mutation will act to move the population closer to linkage
equilibrium by a very small amount, as is shown by Turner (1967).

III.11 History and References.

The mathematics of simple mutational equilibrium are so elementary that they were
well-known to Fisher, Wright, and Haldane. Most of the early work on mutation was
concerned with the fate of a single mutant (Fisher, 1922; Haldane, 1927) which we will
treat in Chapter VII. The pioneer of work on mutation in populations seems to have been
Danforth (1921), but full mathematical treatment was somewhat delayed. Recurrent
mutation was not often considered because these authors held too realistic a view of
population sizes and mutation rates: when Haldane (1927) finally treated the case of
recurrent mutation, he did so in the more realistic and more general case of the balance
between mutation and selection. There he presented a general treatment utilizing the
full cubic equation generated by a model with forward and backward mutation and
complete recessive inheritance of the mutant. A somewhat simplified version of this
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argument was given in the Appendix to his book (1932). Fisher (1928, 1930) presented
a verbal argument obtaining the equilibrium frequency of a dominant mutant opposed
by selection. Wright (1929a) presented a more complete treatment of partial dominance
and recessiveness, very similar in notation and conclusions to our section III.5 above.

The discussions of mutation-selection equilibrium by Haldane, Fisher, and Wright
took place in the context of a debate over Fisher’s theory of the origin of dominance of
rare mutants. Fisher started from the well known fact that rare visible mutants tend to
be recessive to wild-type far more frequently than they are dominant. Noting that the
rare mutant would be present almost exclusively in heterozygotes, Fisher asked what
would happen if alleles arose at another locus, a modifier locus, which altered the fit-
ness of heterozygotes or homozygotes for the mutant. Alleles would be favored at the
modifier locus that increased the fitness of those genotypes. Since few homozygotes
would be present, the selection favoring increase of homozygote fitness would hardly
ever be present, while modifier alleles whose effects were on the heterozygote would
be subject to much larger selection. The result, Fisher argued (1928, 1930) would be a
faster increase in the fitness of the mutant heterozygote than in the homozygote fitness,
leading to the evolution of the degree of dominance of rare mutants toward complete
recessiveness.

Wright (1929a) disagreed, arguing that in either case the selection on the modifiers
was far too weak (owing to the rareness of mutants at the main locus) to allow it to be
a significant evolutionary force in the face of genetic drift. In the ensuing controversy
(Fisher, 1929; Wright, 1929b) debate centered around the effects of finite population
size, with Wright citing results he was later (1931) to publish in his classic paper on
the interaction of deterministic forces and genetic drift. Haldane (1930a) and Muller
(1950b) sided with Wright in this dispute. These authors adduced other, more directly
physiological reasons why deleterious mutants tended to be recessive, and saw no need
for Fisher’s theory of the evolution of dominance to be of real importance.

The mutational load was discovered independently by Haldane (1937, 1939, 1940)
and Muller (1950a). Haldane’s work of the 1930’s (1935) followed the lead of Danforth
(1921), who had made the first estimate of the rate of mutation of a human gene. In the
1950s and 1960s, the concept of mutational load played a role in the controversy over the
genetic effects of atomic radiation and atmospheric testing of atomic weapons. Today it
continues to be embroiled in controversy, as it validates a major argument that most of
our genome must be junk DNA.

Exercises

1. Suppose that allele A is initially fixed in a population, and that it has a mutation
rate of 10−5 to a, and that there is no back mutation. What will be the frequency of
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allele a in the population (exactly) after 2 generations?

2. If there were back mutation in the above case, at the same mutation rate, what
would the result be?

3. When A → a at rate 10−5 and a → A at rate 10−6, what will be the equilibrium
gene frequency in an infinitely large population?

4. In the above case, how long will it take the population to move half way to its
equilibrium starting from fixation for A? Starting from equal frequencies of the
two alleles?

5. Two alleles that are selectively neutral (have no difference in fitness) exist in muta-
tion balance in a population. The rate of mutation from B to b is 10−5 and the rate
of mutation from b to B is 5.0× 10−6.

(a) What will the equilibrium frequencies of B and b be?

(b) At that equilibrium which of these are correct:

(i) The fraction of copies of B mutating to b is equal to the fraction of copies
of b mutating to B.

(ii) The number of copies of B mutating to b is equal to the number of copies
of b mutating to B.

(iii) Half of the mutation events occurring at this locus are to B, half to b.

(c) If we start a new population, from individuals all of whom are BB, how many
generations will go by before the frequency of b in that population rises to half
of its equilibrium value?

6. DNA in eukaryotes ofter contains regions that have multiple tandem repeats of
two or three nucleotides, such as CAGCAGCAGCAG .... The number of copies
can either increase or decrease as a result of “slippage” in replication, and this can
occur at a much higher rate than point mutation does.

Suppose that we have a region with a trinucleotide repeat which has 30 copies in
all members of the population. With a rate u there is slippage in replication of the
region, and half of the time this leads to one more copy, and half of the time to one
fewer copy.

(i) What are the frequencies of 29, 30, and 31 copies after one generation?

(ii) What are the frequencies of 28, 29, 30, 31, and 32 copies after 2 generations?

(iii) What is the mean (expectation) of the change in copy number in producing
that first offspring generation? (Yes, this is as easy as it seems).
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(iv) What is the variance of the change in copy number in that generation? [This
will require you to know that the variance of a variable is the mean of its square, minus
the square of its mean.]

(v) In this case the variance after t generations will be the sum of the variances of
change in each generation, so just the variance of change in that first offspring
generation multiplied by t. If u = 0.0001, how many generations will be
needed for the variance of copy number to become 1?

7. If a population reproduces apomictically (by completely asexual clonal reproduc-
tion) and has A→ a at rate 10−5 and a→ A at the same rate, what will be the gene
frequencies at mutational equilibrium? What will be the genotype frequencies?

8. Suppose that we consider a haploid organism with lethal mutants occurring at
rate u. How do the equations given in this chapter compare with our intuitive
understanding of what the frequency of mutants at equilibrium will be? How
rapid will be the return to equilibrium after the frequency of mutants changes?

9. What will be the frequency of mutants at equilibrium if the fitnesses of A (nonmu-
tant) and a (the mutant allele) are 1 + s : 1 instead of 1 : 1− s? (This can be solved
without redoing all of the equations).

10. At Hiroshima and Nagasaki there can be little doubt (from the frequency of somatic
effects such as leukemia) that many mutations occurred, yet studies of offspring of
survivors have shown few genetic diseases among offspring of survivors. What
might this imply about the values of h and s in such mutants?

11. A recessive deleterious mutant causes a syndrome S that reduces the fitness of the
homozygote for the mutant by 20%. The heterozygote fitness is normal.

(a) If we observe that the frequency of the allele (note: not the frequency of the
homozygote) in the population is 0.01, and assume that the allele frequency
is at equilibrium under selection versus mutation, what would the rate of
mutation to the deleterious allele from the normal allele have to be? Why?

(b) When in this state of equilibrium gene frequency, what fraction of copies of the
allele are killed off each generation by the reduced fitness? Why?

(c) This pool of copies of the mutant allele is about how many times larger than
the number of copies that arise in one generation? Does this imply that the
average copy arose very recently or not? Why or why not?

(d) If we suddenly double the mutation rate, owing to some mutagen in the air or
water, and it stays at that new value, by what fraction of its size will this pool
of mutants increase in the next generation? Explain your reasoning.
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12. What are some of the biases which we are likely to risk by taking observed human
genetic disorders and using their frequencies and presumed fitnesses to calculate
the average mutation rate per gene in humans?

13. Huntington’s Disease is an autosomal dominant disorder with a frequency of about
1 in 100,000 in the population. It is a severe neurological disorder with onset in
the mid-thirties, so that it is probable that the fitness of affected individuals is only
reduced by 2% or so, since they have already had most of their offspring by this
age. Estimate the mutation rate at this locus. How many generations ago did the
average mutant allele in the population occur?

14. How would the frequency of Huntington’s Disease be altered if (i) carriers now
could be detected at birth and as a result of knowing their status they reduced their
average number of offspring by 20%? (ii) if instead genetic counselling resulted in
the offspring of affected individuals (who do not know their exact carrier status)
having 20% fewer offspring themselves? How rapidly would the disease incidence
change in these cases once those practices began?

15. Suppose we have a chromosome rearrangement that changes the gene order on the
chromosome back or forth between two gene orders, which we will call I and II.
The two gene orders are inherited as if they were alleles at a locus. Suppose that
this change of gene order has no effects on fitness when the two chromosomes in a
diploid are of the same gene order, but has 10% lower fitness when there is a “chro-
mosome heterozygote” which has both of the two gene orders. If you have a rate
u of rearrangement in both directions between these, what will be (approximately,
using the formulas for equilibrium between mutation and selection) the equilib-
rium frequency of II in a population that starts from gene order I? What will be the
equilibrium frequency of gene order I in a population that starts with gene order
II? Give a formula in terms of u, and calculate the frequencies for u = 10−6 and
u = 10−4

Complements/Problems

1. If we consider a population with partial self-fertilization (a randomly chosen frac-
tion s of the population selfing in each generation, and the rest mating at random),
in the absence of selection what will be the mutational equilibrium of gene fre-
quency? of genotype frequencies?

2. In a diploid random mating population consider an underdominant locus with
fitnesses of AA, Aa, and aa of 1 : 1− s : 1. If mutation rates for A→ a and a→ A
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are both μ, what will be the (approximate) stable equilibrium gene frequencies if μ

is small?

3. In a sex-linked locus with two alleles, if the mutation rates for A → a are u f and
um in the two sexes, and the rates for a → A are v f and vm, what will be the
equilibrium gene and genotype frequencies in the absence of selection?

4. For what values of s and u will the various equilibrium solutions of (III-15), the
haploid case of mutation-selection balance, be stable or unstable?

5. Bacteria grow by doubling. Suppose that a bacterial population has its DNA have
n sites that are under selection and need to be maintained in their current state.
If fitnesses at the different sites are multiplicative (the assumption I typically use
in class), what is the largest mutation rate per site per generation (to other base
states, all of which are deleterious) you can have and still have the most-fit class
just barely be able to reproduce itself (i.e. just be able to have the average bacterium
have one fully-fit descendant). Hint – you won’t need to compute mutational loads, just
try to figure out the expected number of nonmutant, fully-fit descendants and ensure that
it is 1. That number would be 2 if there were no mutation.

What would this mutation rate be if n = 5× 106? Now look at the results of the the
subsection on Mutation in a Unicellular Species in section III.8 and compare them
to your result.

6. Make a simple analog to the 1971 argument of Eigen and Schuster (see section
III.8 above) for two haploid genotypes with unidirectional mutation and selection
against genotype 2. Imagine that we have mutation rate u from genotype 1 to
genotype 2, no reverse mutation, and that the relative fitness of genotype 2 is
1− s. This is actually identical to the haploid model in section III.4. If we observe
the genotype frequencies immediately after mutation, the matrices W and U that
correspond to Eigen and Schuster’s matrices are

U =

[
1− u 0

u 1

]
, W =

[
W1 0
0 W1(1− s)

]
.

Compute the product of matrices UW, find its eigenvalues and eigenvectors, and
show that the proportions of the frequencies of the terms in the leading right eigen-
vector are exactly the equilibrium frequencies of the two alleles derived in section
III.4.

7. Suppose that in a diploid there is a locus whose alleles include one normal allele
and two mutant alleles. The mutation rate from the normal allele to the first mutant
allele is μ1, and that to the second mutant allele is μ2. There is no back mutation or
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mutation between the two mutant alleles. Suppose that any individual with two of
the mutant alleles (whether or not they are the same mutant) dies. Heterozygotes
between either mutant allele and the normal allele have no reduction in fitness.
What are the equilibrium frequencies of the two alleles? What would they be if
instead the heterozygote between the two mutant alleles had normal fitness?

8. We could approximate (III-15) by saying that the two evolutionary forces, selection
and mutation, make changes of gene frequency of approximately s p(1 − p) and
−u p respectively. When we require that these cancel each other out by summing
to zero, we can obtain an equilibrium gene frequency. Is it correct? Should it be?
Why or why not?

9. If a recessive lethal mutant can occur at a sex-linked locus, with equal mutation
rates in females and males, what will its equilibrium gene frequency be (assuming
that male hemizygotes are equivalent to female homozygotes in fitness)? What will
be the answer if the fitness of hemizygotes and homozygotes is 1− s rather than
zero? How could we use sex-linked mutants to estimate mutation rates of human
genes?

10. We have explained that You can work backwards from the formula for the equilib-
rium frequency of a deleterious allele and infer the mutation rate to it.

(i) Imagine a deleterious recessive allele with selection coefficient s and observed
to be at gene frequency q. If this is the equilibrium gene frequency under this
pattern of selection, derive the formula for the estimate of the mutation rate
to this allele, explaining as you go.

(ii) But now suppose that the allele actually has a fitness 1− hs in the heterozygote
as well, and that that is what affects its equilibrium frequency, and you just
didn’t know that. Instead of the correct mutation rate, what mutation rate
would you get? (Use the above equations, but plug into them the equilib-
rium gene frequencies you expect with this amount of selection against the
heterozygote. Write the result it as an expression in the true mutation rate u
and the values of h and s). Will that be higher or lower than the truth?

11. If the fitnesses of AA, Aa, and aa are respectively, 1, 1− hs, and 1− s, with uni-
directional mutation A → a at rate u, what is the exact quadratic equation for
equilibrium gene frequency of a?

12. Suppose that we have fitnesses

Genotype AA Aa aa
Fitness 0 1/2 1
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at a locus.

(i) What is the formula for the gene frequency of the deleterious allele A in the
next generation? (For this simply see subsection II.6 on Additive Fitnesses in
the notes)

(ii) Now suppose that after selection there is mutation, with forward and backward
mutation rates both being u. What is the formula for the gene frequency after
that?

(iii) What is the equilibrium frequency? (This does not even require solving a
quadratic equation).

(iv) How does this compare with the formula for the equilibrium frequency de-
rived in the book in cases of partial dominance? Why the discrepancy? How
serious is it likely to be? (Note that the deleterious allele is taken to be allele a
in that derivation).

13. What equations must be solved to obtain the equilibrium gene frequencies in the
sex-linked case corresponding to the autosomal case of the preceding problem?
Assume hemizygotes have the same fitnesses as the corresponding homozygotes.

14. Based on problem 8, what is the exact mutational load as a function of u, s, and h?

15. Use the equations for selection at a multiplicative locus to obtain an expression for
the mutational load in a case where fitnesses are geometric: 1 : 1− s : (1− s)2. Is
the approximation L = 2u a good one in this case?

16. When mutation is bidirectional, with A → a at rate u and the reverse at rate v,
obtain an exact (quadratic) expression for the mutational load in the haploid case.
Does it show results consistent with our intuitive discussion when s is allowed to
be very small?

17. Epigenetic modifications of DNA such as methylation can produce changes of phe-
notype, though the modifications generally revert in one or a few generations. Con-
sider a haploid organism with a site with two states, unmethylated and methylated,
which we will treat as if they were alleles that mutated to each other. Suppose that
the probability of change to the methylated state is u, and that the probability of
reversion to the unmethylated state is 1/3 per generation. Suppose that the fitness
of the individuals with the unmethylated state is 1− s. Use the mathematics de-
veloped in the answer to the previous question to find out what values of s and u
will predict a frequency of the methylated state that is greater than 0.01. You may
want to compare your answer to the conclusions of Slatkin (2009) and Tal, Kisdi
and Jablonka (2010).
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18. Using the results in problem 6, which asked you to compare Eigen and Schuster’s
equations to the results of the section on the mutation/selection equilibrium at a
two-allele haploid locus, to show that if we had n loci, where fitnesses were mul-
tiplicative across loci, that the mean fitness in a population at equilibrium will be
(1− u)n. Consider for what values of n the mean relative fitness will be substan-
tially lower than the fitness of the best genotype. In light of this, show that this is
a counterpart to Eigen and Schuster’s argument that if u > 1/n, the best genotype
will be rare in the population.

19. In an infinite haploid population, suppose that there are n loci in the genome. Each
mutant allele multiplies the fitness by 1− s, where this selection coefficient is the
same for each locus. Suppose that there is a mutation rate u from the normal allele
to the mutant allele at each locus, and that there is no back mutation. Group the
haplotypes according to how many mutant alleles they carry, so that all we know
is the values of fk, where k = 0, 1, . . . , n.

• What is the distribution of the number of new mutants that occur in offspring
of a genome that already has k mutants?

• Derive the equations for change of the fk under mutation, in the production
of newborn offspring.

• Derive the equations for the change of the fk between the newborn stage and
the adult stage, if the selection is by differential viability.

• What is the equilibrium distribution of k at the life stage immediately after
mutation occurs and immediately before natural selection acts?

• Is this a member of a known family of probability distributions?

• Is it the distribution you would get if there were linkage equilibrium?

20. What are the equations for change of linkage disequilibrium when we start in link-
age disequilibrium and with gene frequencies away from their mutational equilib-
rium? Can independent mutation at each locus ever increase the value of D?
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Chapter IV

MIGRATION

IV.1 Introduction

Migration is a bit of an enigma. Although it is one of the evolutionary forces whose
mathematics is simplest, it is not easy to see whether it is an adaptive or a maladaptive
force. As we shall see, while migration works against adaptation to local environments,
and in this sense is maladaptive, there may be situations in which adaptation to local
environments is itself maladaptive with respect to future environments. Migration is of
particular interest because its consideration enables us to take advantage of the existence
of the spatial dimensionality of the environment. Alternatively, one may regard it as a
complication, a violation of the simplicity of the single random-mating population, but
even then the presence of this complication is accompanied by an increased amount of
information in the form of gene frequencies or phenotypes at different locales.

IV.2 The Effect of Migration on Gene Frequencies

The mathematics of migration are only slightly less simple than those of mutation. Mu-
tation occurs (roughly) independently to each gene, while if it is diploid individuals who
are doing the migrating, the genes they introduce into a population come in packets of
two. In terms of gene frequencies, the effects of migration are easily seen. Suppose that a
population, immediately after some migration has occurred, consists of a fraction 1−m
of individuals who have not immigrated, plus a fraction m of new immigrants from an-
other population. Suppose that the gene frequencies of an allele A were p1 and p2 in
these two populations before the migration occurred. Finally, suppose that individuals
migrate or stay at home without regard to their genotypes. Then among non-immigrants
the frequency of the A allele will still be p1, and among immigrants it will be p2.

A simple calculation of a weighted average then immediately tells us that the new
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gene frequency after migration will be

p′1 = (1−m) p1 + m p2. (IV-1)

this result applies to a single allele. Since we have not specified how many other alleles
there are, we have in effect done the computation for the general case of multiple alleles.
But we have restricted ourselves to two populations. If there are a total of n populations,
and if m1i is the fraction of individuals in population 1, after a bout of migration, who
come from population i, then a directly analogous formula holds:

p′1 = (1−m12 −m13 − · · · −m1n) p1 + m12 p2 + . . . + m1n pn. (IV-2)

We can make this expression a bit more compact by defining m11 to be the fraction of
individuals in population 1 which are nonimmigrants. This replaces the expression in
parentheses in (IV-2), yielding

p′1 = ∑
i

m1i pi. (IV-3)

We shall see later that these conventions enable a compact matrix notation.

IV.3 Migration and Genotype Frequencies: Gene Pools

We have been following gene frequencies rather than genotype frequencies. When we
start keeping track of genotypes, things are not quite so simple. It starts to matter
very much at what stage of the life cycle the migration takes place. Initially, suppose
that adults migrate. If we have two populations, each fixed for a different allele. If
population number 1 is fixed for A, and receives 20% immigration of diploid individuals
from population 2 which is fixed for a, then the frequencies of genotypes after migration
will be

AA Aa aa
0.80 0 0.20.

These are certainly not Hardy-Weinberg proportions. There is a strong deficit of
heterozygotes.

We can compute the frequencies of genotypes in a mixture by a simple process of
weighted averaging. If P(1)

ij and P(2)
ij are the genotype frequencies of Ai Aj respectively in

populations 1 and 2, after migration, and P(m)
ij is the genotype frequency in the resulting

mixture, we have straightforwardly

P(m)
ij = (1−m) P(1)

ij + m P(2)
ij . (IV-4)

In the numerical example both populations were fixed before migration. Note that fixa-
tion for an allele is also a state of being in Hardy-Weinberg proportions. So by mixing
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two populations, each in Hardy-Weinberg proportions, we have created a mixture which
is not in Hardy-Weinberg proportions.

THE WAHLUND EFFECT. Mixed populations are usually out of Hardy-Weinberg pro-
portions immediately after the mixture, as a calculation due to Wahlund (1928) shows.
Let us retreat to the case of two alleles. Let pi be the gene frequency of A in population i
(not the frequency of allele Ai). Before mixture let each population be in Hardy-Weinberg
proportions. Immediately after the mixture of diploid individuals occurs, but before any
mating can take place, the proportion of AA homozygotes in the population will be

PAA = m1 p2
1 + m2 p2

2 + · · ·+ mn p2
n, (IV-5)

where mi is the fraction of the mixture which was contributed by population i. This
formula is just a version of (IV-4) for n ancestral populations, each in Hardy-Weinberg
proportions, with two alleles. Note that (IV-5) is just the weighted average of p2, taken
over all n populations with weights (mi) proportional to the contribution of each popula-
tion to the mixture. It is simply E(p2), the expectation of the random quantity p2, where
the randomness comes from having probability mi of encountering an individual from
population i, a population having p = pi.

By contrast with (IV-5), if the mixture were in Hardy-Weinberg proportions we could
predict its genotype frequencies from its gene frequencies in the usual way. The gene
frequency in the mixture is given by (IV-2) and (IV-3). Note that these can be written
as the expected value E(p), where the random quantity p has probability mi of taking
on the value pi. The Hardy-Weinberg genotype frequency of AA is of course simply
the square of this, [E(p)]2, so that the deviation of the frequency of AA from Hardy-
Weinberg proportions is

PAA − [E(p)]2 = E(p2) − [E(p)]2. (IV-6)

The righthand side of (IV-6) is the standard expression for the variance Var (p) of the
random variable p. So rearranging this equation

PAA = [E(p)]2 + Var (p). (IV-7)

This is the Wahlund Effect: the frequency of homozygotes in a mixture of popula-
tions, each in Hardy-Weinberg proportions, is increased over Hardy-Weinberg propor-
tions by the variance of the frequencies of the allele in the components of the mixture.
For instance, if we draw a sample of individuals from a geographic area which comprises
not one random-mating population but many populations, whose mean gene frequency
is 0.3 with standard deviation of gene frequency 0.1, then the frequency of homozygotes
in our sample is expected to be (0.3)2 + (0.1)2 = 0.09 + 0.01 = 0.10, so that the overall
frequency of homozygotes for this allele is increased above its Hardy-Weinberg expecta-
tion by an amount equal to the variance of gene frequency among the populations.
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If there are two alleles, Wahlund’s Law applies to each homozygote, and since p+ q =
1, the variance of the frequency of a must be exactly the same as the variance of the
frequency of A. So equal amounts are added to the frequencies of AA and aa, and there
must be a corresponding subtraction from the frequency of Aa. Replacing E(p) by the
simpler notation p̄, we have

pAA = p̄2 + Var (p)

pAa = 2 p̄(1− p̄) − 2 Var (p)

paa = (1− p̄)2 + Var (p).

(IV-8)

With multiple alleles the situation becomes more complex. The Wahlund Effect ap-
plies to each homozygote, although the variances of the frequencies of different alleles
need no longer be equal. The heterozygote frequencies are increased by twice the co-
variance of the frequencies of the relevant alleles, the covariance being weighted, as was
the variance, by the contributions of each population to the mixture. Most pairs of alle-
les have negative covariances, so that usually the heterozygote frequencies are decreased.
But it is is possible for covariances to be negative, so it is possible for mixture to create an
excess of certain heterozygotes relative to Hardy-Weinberg expectation. However, since
each homozygote is present in excess, there must be an overall deficit of heterozygotes.
The Wahlund Effect is worth keeping in mind: it is one of the most important sources
of departure from Hardy-Weinberg proportions in samples from nature that may come
from more than one population.

EFFECTS OF RANDOM MATING. The Wahlund Effect operates in a direct mixture
of individuals who have not yet had an opportunity to intermate (indeed, the mixture
may be entirely a product of our sampling methods). If a generation of random mating
occurs after mixture, the results are entirely different. We have already seen that the
offspring of random mating will be in Hardy-Weinberg proportions no matter what the
genotype frequencies in the parents, provided that suitable conditions apply. We may
conclude that, following random mating, the population which has received immigration
will be in Hardy-Weinberg proportions at the new gene frequency given by (IV-3), and
Wahlund’s Law will no longer be relevant.

It will therefore be important in modelling the process of migration to keep careful
track of the life stage of which the migration occurs. If haploid gametes (both eggs and
sperm) migrate and thereafter all the gametes in the population combine at random,
Hardy-Weinberg proportions will be achieved immediately, while migration of adults
leads to a mixed population out of Hardy-Weinberg proportions, which does not achieve
Hardy-Weinberg proportions until the next generation. But if migration recurs each
generation, there may never be a generation that is truly in Hardy-Weinberg proportions.
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LINKAGE DISEQUILIBRIUM CREATED BY MIGRATION. The foregoing discus-
sion has been entirely in terms of single loci. Just as it creates departure from Hardy-
Weinberg proportions, the process of mixture creates linkage disequilibrium as well. An
example may be useful. Suppose that population 1 consists entirely of AA BB indi-
viduals, and population 2 entirely of aa bb individuals. In a mixture of these in equal
proportions it is obvious that there will be departure from Hardy-Weinberg proportions
at both loci, as the new gene frequencies are 0.5 A : 0.5 a and 0.5 B : 0.5 b while there
are no heterozygotes at all. There will also be linkage disequilibrium: of the gametes
contributed to the next generation, half will be AB and half ab, with no Ab or aB. Note
that the two original populations are each in Hardy-Weinberg proportions and linkage
equilibrium, since fixation for (say) AA BB is such a state. So it is possible to create link-
age disequilibrium by mixing individuals (or gametes) from two or more populations,
neither of which itself shows any linkage disequilibrium.

Will linkage disequilibrium always result from mixture? How much disequilibrium
will be created? A simple derivation may shed some light on this. We have seen that
when we make a mixture of individuals, a fraction mi coming from population i, we can
regard there as being a random variable p which takes on the value pi with probability
mi. Let p be random variable corresponding to allele A, and let q be the random variable
corresponding to allele B. Since these alleles are at different loci, we do not have that
p + q = 1. Consider a randomly chosen individual from the mixture, and consider a
gamete produced by it. With probability mi the individual came from population i. We
are assuming that it was randomly chosen from that population, and that the population
is in linkage equilibrium. If so, the probability that the gamete is AB is simply piqi. So
the overall proportion of AB gametes produced by individuals in the mixture is

Prob (AB) = ∑
i

mi pi qi. (IV-9)

We can subtract from this the product of the frequencies of A and B in the mixture.
These are given by expressions like (IV-3), so that the amount of linkage disequilibrium
in the mixture is given by

D = ∑
i

mi pi qi −
(

∑
i

mi pi

)(
∑

i
mi qi

)
. (IV-10)

This is formally the answer, but its meaning will be clearer with some further interpre-
tation. Each of the parts of (IV-10) can be written in terms of the random variables p and
q:

D = E(p q) − E(p) E(q) = Cov (p, q). (IV-11)

The linkage disequilibrium in the mixture is simply the covariance in the frequency of
p and q over the populations contributing to the mixture, weighted by the proportions
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in which they contribute. Only if the distributions of gene frequencies at the two loci
are independent when examined across the original populations will there be no linkage
disequilibrium created by mixture. On the other hand, if p and q do not vary much over
populations, the amount of disequilibrium cannot be large (in fact, it cannot be greater
than the product of the standard deviations of the allele frequencies at the loci).

Once the mixture occurs, the linkage disequilibrium starts to decay by recombina-
tion. If the loci are unlinked, then it rapidly disappears, leaving a population in linkage
equilibrium at the new gene frequencies given by (IV-3).

GENE FLOW. Once the departures from linkage equilibrium and Hardy-Weinberg
proportions are gone, what has been accomplished by the admixture is to alter the gene
frequencies to new values, intermediate between those of the contributing populations.
This is an example of the notion of the population as a gene pool, a mixture of genes
rather than phenotypes, genotypes, or gametes. In a state of linkage equilibrium and
random mating, all genotype frequencies can be constructed from the gene frequencies.
In fact, we can predict the existence of genotypes whose frequencies may be so low that
in most generations they do not occur in the population. The migration computations
serve as a clear illustration of the fact that it is the gene frequencies, and not individual
genotypes, which form the inheritance of a population.

This has often been expressed by referring to migration as gene flow, to emphasize
that from the standpoint of evolution it is the genes which move, and not individuals
or genotypes. Cases can be found in which the retention or creation of departures from
random combination have qualitative effects on the outcome. More often, the vision of
the population as a gene pool and migration as gene flow gives a true picture of the
underlying dynamics of this evolutionary force.

IV.4 Estimating Admixture

Human populations are frequently composed of mixtures of individuals of different
genetic backgrounds. When this admixture has occurred in past generations, it leaves
its trace in the gene frequencies. Attempts have been made to use gene frequencies to
estimate the degree of admixture of various populations.

In the simplest case, the computation simply reverses equation (IV-1). If we call the
frequency of an allele in the putatively admixed population p, (IV-1) is

p = (1−m) p1 + m p2. (IV-12)

we can use (IV-12) to estimate m if p, p1, and p2 are known, solving it to give

m =
p− p1

p2 − p1
(IV-13)
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For example, in the town of Claxton, Georgia the gene frequency of the A blood type
allele (actually a composite of two alleles, A1 and A2) was found by Cooper et. al. (1963)
to be 0.05 among whites and 0.129 among African-Americans. In West African popula-
tions (Cavalli-Sforza and Bodmer, 1971, p. 493) the frequency of A is about 0.143. Our
estimate of the fraction of European ancestry among African-Americans in Claxton will
then be

m̂ =
0.129− 0.143
0.05− 0.143

= 0.1505

The pitfalls of such a computation are many. In the first place, each of these gene
frequencies is itself an estimate, and the variances and covariances of these quantities
must be taken into account in computing the variance of the resulting estimate. There
is a presumption that the admixture of white ancestry is fairly represented by looking
at gene frequencies of whites in Claxton. Even more dubious are the West African gene
frequencies. Slaves were taken not only from West Africa, but from Central Africa and
East Africa. Even within West Africa there are local differences in gene frequencies
which render it dubious whether a given West African population is representative of
the ancestry of African-Americans.

Granted these limitations, an interesting application can be made of this sort of cal-
culation. When admixture estimates are made for the same set of populations using
different loci, the results sometimes differ. For example, Cavalli-Sforza and Bodmer
(1971) obtain an estimate of 0.296 for the European ancestry of African-Americans in
Claxton when the allele for sickle-cell anemia is used. The most likely explanation for
this discrepancy is that the gene frequency of the HbβS allele reflects not only admixture
but also selection. In a New World environment lacking falciparum malaria, the deaths of
HbβS HbβS individuals from sickle-cell disease will reduce the frequency of that allele,
an effect which will make it look as if there has been greater admixture from the white
population.

REFERENCES. Admixture studies led to some of the earliest work on migration effects.
The basic formula (IV-1) was used by Bernstein (1931) in the form of equation (IV-13).
The notion of using admixture studies to indicate which loci are under natural selection
was first used by Workman, Blumberg, and Cooper (1963). Wahlund (1928) derived the
effects of mixture on genotype frequencies, but it was only realized four decades later
that such mixtures would also be a source of linkage disequilibrium (Cavalli-Sforza and
Bodmer, 1971, p. 69). The formulation in terms of covariances is due to Timothy Prout
(in his Appendix to Mitton and Koehn, 1973).

IV.5 Recurrent Migration: Models of Migration

.
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m
ContinentIsland

Figure 4.1: The one-island model.

When migration exerts a continual effect, the mathematics is a simple extension of
that given above. There are many different situations possible, but a few patterns of
migration have accounted for most of the studies in the literature of population genetics.
Let us review a few of these models of migration.

THE ONE-ISLAND MODEL. One imagines a small island located near a large conti-
nent. Migration from the island to the continent is too tiny a fraction of the gene pool
of the continent to be of any influence, and it is imagined that the gene frequencies on
the continent remain unchanged. But a fraction m of the gene pool on the island comes
from the continent each generation. The geographic situation looks like this: and the
equation for gene frequency p(t) on the island in generation t is:

p(t) = (1−m) p(t−1) + m pc (IV-14)

where pc is the constant gene frequency on the continent.

THE ISLAND MODEL. Suppose that we had n islands which exchanged migrants
with each other. Each generation the fraction of genes which arrive from each given
other island is taken to be m/(n − 1), so that m is the fraction of genes which come
from outside each island. In this model there is not only a total symmetry, but even
an absence of geography. No island is imagined to be closer to one neighbor than to
another. This geography cannot be realized except in n− 1 dimensions, but it may be
represented as in Figure 4.2. Population i will have its gene frequency p(t)i in generation
t be determined by:

p(t)i = (1−m) p(t−1)
i + ∑

j �=i

m
(n− 1)

p(t−1)
j (IV-15)

a similar equation holding for each population.
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Figure 4.2: The island model.

THE STEPPING-STONE MODEL. Imagine that the populations are arrayed in a reg-
ular pattern in space, and let migration depend on the distance between them. The
simplest patterns are a one dimensional string of equally-spaced populations, and a two
dimensional rectangular lattice:

Migration is imagined to occur between neighboring populations. In the one-dimensional
case a fraction m/2 of genes after migration are immigrant from each neighbor. In the
two-dimensional case m/4 are immigrants from each neighbor. More general patterns
of migration can be imagined in which the number of migrants depends on distance in
a more complicated way, with some migrants being received from populations 2, 3, or
more steps away along the chain of stepping stones.

In the Figure, the arrays of stepping stones are imagined to extend off to infinity
in all directions. If the object is to study a population of finite geographical extent, it
is easy to envision a line of populations of finite length, or a rectangle of populations.
In these cases some special provision must be made for the pattern of migration at the
boundaries. In the one-dimensional case, an end population may be imagined to receive
m/2 of its genes from its one neighbor, so that only m/2 of its genes are new immigrants
immediately after migration. Alternatively we may specify that m of its genes come from
the neighbor, so that the fraction of genes in each population which are newly immigrant
is kept the same.

To avoid the mathematical difficulties inherent in having some populations be more
equal than others, we may consider a circle of populations instead of the one-dimensional
line, or a toroidal pattern (instead of the rectangle), where the top and bottom rows of
populations exchange migrants, and so do the leftmost and rightmost columns. If this is
done properly, the model is seamless, if not terribly realistic.

THE GENERAL MIGRATION MATRIX MODEL. The most general possible pattern,
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Figure 4.3: The one- and two-dimensional infinite stepping stone models.

one which subsumes all the others, simply states that we have n populations, and that
after migration of fraction mij of the genes in population i are newly arrived from pop-
ulation j. Some care must be taken in interpreting the quantity mij. The table of the
mij is referred to as the backward migration matrix, because it looks back in time from
the recipient (i) to the source (j), measuring the number of immigrant individuals (or
genes) as a fraction of the number of individuals (genes) in the population receiving
the immigration, the measurement being conducted after the migration. One can also
describe the migration rates by means of the forward migration matrix m∗ij, which gives the
fraction of individuals (or genes) in population i who end up in population j. Since the
number of individuals migrating must be the same whether we measure it as immigrants
or emigrants, we have the following relationship:

Ni m∗ij = N′j mji (IV-16)

where Ni is the population size of population i before migration, and N′j is the size of
population j after migration. The two sides of (IV-16) simply compute the number of
migrating individuals using the two different rates m∗ij and mji.

The advantage of posing this general migration matrix model is that the computa-
tions can be recast in matrix form. If M is the matrix of the mij, and if p(t) is the vector

of the p(t)i , then the counterpart to (IV-1) is simply

p(t) = M p(t−1). (IV-17)
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A special case of particular interest is when the expected number of individuals
arriving in population i from population j is equal to the expected number arriving in j
from i. In that case

Ni mij = Nj mji. (IV-18)

For the particular case of equal population sizes, this gives equal migration rates in both
directions, so that the matrix M is symmetric. Whether or not the population sizes are
equal, (IV-18) defines a situation where each population exports as many genes as it
imports, so that there is no net outflow or inflow from any population. In this case, a
gene gains no advantage from being in any particular population. As we shall see, this
case yields particularly simple results.

IV.6 Recurrent Migration: Gene Frequencies

.
Having defined these models of migration, let us look at a few of them to see what

will be the effect of migration on gene frequencies.

THE ONE-ISLAND MODEL. Equation (IV-14) has an equilibrium value which is par-
ticularly easy to find. Dropping the superscripts (t) and (t− 1) and solving it for p, we
get p = pc. More interesting is the rate of convergence to this equilibrium. Subtracting
pC from both sides of (IV-14).

p(t) − pc = (1−m) p(t−1) + m pc − pc

= (1−m) (p(t−1) − pc).
(IV-19)

The island population is approaching the continental gene frequency pc as a result of
recurrent immigration. Equation (IV-19) shows that the deviation of p from its final
value pc is multiplied by (1− m) every generation. Thus the island population moves
a fraction m of the way to its equilibrium each generation. The effect of migration is to
make the gene frequencies p and pc more similar (in this case by changing only p). the
rate at which this happens is given by m.

THE ISLAND MODEL. This model has a particularly symmetrical structure which
yields results easily. Equation (IV-15) can be rewritten (after a little algebra) as

p(t)i = (1−m + m
n ) p(t−1)

i + m
n ∑j p(t−1)

j

=
[
1− ( n

n−1

)
m
]

p(t−1)
i +

( n
n−1

)
m p̄(t−1),

(IV-20)
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where p̄(t) = ∑ p(t)i /n is the mean gene frequency in all colonies in generation t.
This shows that in each generation, the gene frequency pi is obtained by averaging its
previous value with the overall mean gene frequency p̄. If we take (IV-20), sum both
sides over i and divide by n, we get:

p̄(t) =
[
1− ( n

n−1

)
m
]

p̄(t−1) +
( n

n−1

)
m p̄(t−1)

= p̄(t−1)
(IV-21)

which shows us that the mean gene frequency over all populations does not change
through time. Note the quantity nm/(n − 1) which appears in all of these expressions.
It is nearly equal to m if n is large (when n = 20 it is 20n/19). Let us call this quantity
m∗. Now we can rewrite (IV-21) as

p(t)i = (1−m∗)p(t−1)
i + m∗ p̄. (IV-22)

This is really just (IV-14) with somewhat different notation, and we can immediately
see what will be the behavior of the gene frequencies in the individual populations.
Each population’s gene frequency moves a fraction m∗ of the way toward its ultimate
equilibrium value each generation. The equilibrium value is given by the overall average
gene frequency p̄. So migration has an averaging effect, bringing all gene frequencies to
a common value but not actually changing the overall gene frequency. As we shall see,
this property of migration is general to a large class of migration schemes.

The rate at which gene frequencies approach their common equilibrium is nearly
given by m, with the time to move a substantial fraction of the distance to equilibrium
being roughly 1/m. This has an intuitive interpretation as the time scale on which a
large fraction of the population has been replaced by immigrants.

MORE GENERAL MODELS. Comparable derivations can be done in the stepping-
stone models, although things become more difficult there. The rate of approach to
equilibrium is then quite a bit more complicated to obtain. But the qualitative results
are similar. Even in the most general scheme, the migration matrix, certain generalities
emerge. We shall state them intuitively here but not give derivations:

1. At equilibrium, all populations have the same gene frequency. It is rather easy to use
(IV-17) to show that a state in which there is no geographic differentiation is an
equilibrium state. One uses the fact that each row of the matrix M must sum to 1,
since each gene in the population must have come from somewhere. It is not so
easy to show that this is the only kind of equilibrium state - in part because that
is not so. If we are allowing full generality in the pattern of migration, we allow
cases where one can easily see that other equilibria exist. For instance, there is the
case in which there is no migration at all, so that mij = 1 and all other mij are zero!
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In such a situation it is immediately apparent that whatever gene frequencies we
start with will simply remain unchanged. Another case involves two subsets of
populations. There is exchange of migrants within each subset, but no migration
between different subsets. In that case each subset could have a uniform gene
frequency, but the gene frequencies in the two subsets could differ substantially.

It is not even ruled out that there may be no equilibrium at all. If we have two
populations, and m12 = m21 = 1, then in each generation the ancestry of each
population is supplied entirely by the other. So if we start with different gene
frequencies (say 0.6 and 0.3) the gene frequency of the first population will oscillate:
0.6, 0.3, 0.6, 0.3, . . . . In effect, the two populations change places every generation.

All of which establishes that the above “generality” requires some special condi-
tions. We will not attempt to find the least restrictive possible conditions gener-
ating convergence to an equilibrium at which all gene frequencies are equal, but
the following rather weak conditions will suffice: each population must have some
individuals who are nonmigrant (so that all the mii must be nonzero), and it must
be possible for any given population to receive immigration from any other if we
wait a sufficient number of generations. The second condition simply requires that
the populations form a connected set with regard to migration - that no subset of
populations be isolated from the others. An example where we can readily verify
that these conditions hold is the stepping stone model. There will be no isolated
sets of populations (provided that m > 0) and some individuals will not migrate
(provided that m < 1).

2. The rate of approach to equilibrium is controlled by m. Usually the rate of approach will
be relatively close to m, where m is an appropriately defined migration parame-
ter. This is a rather hazy principle which cannot be more precisely stated without
making quite elaborate theorems. Suffice it to say that when all migration rates
are small multiples of m, and we take m small, it is usually found that halving m
halves the rate of approach to equilibrium. In many cases the rate of approach will
itself be a small multiple of m.

Although perfect generalities are hard to come by, the reader will not be seriously
misled by the following conclusion:

Migration tends to smooth out geographic differences
in gene frequencies. The rate at which this occurs is
given by the rate of migration.
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IV.7 History and References

The earliest work on migration involved admixture computations, in the work of Bern-
stein (1931). Glass and Li (1953) applied the notion of recurrent migration to admixture
computations. The one-island model was first used by Haldane (1930a), and the island
model was invented by Sewall Wright (1931), who used it to investigate genetic drift
effects on gene frequencies, which we will cover in Chapter VII. The great Russian math-
ematician A. N. Kolmogorov (1935) did some early computations involving means and
variances of gene frequencies in island models. The stepping stone model was invented
independently by Malécot (1950) and Kimura (1953), although both were apparently in-
fluenced by the model of a population continuously spread out in a spatial continuum,
propounded by Wright (1940). The migration matrix approach has only been investi-
gated rather recently (Cavalli-Sforza and Zei, 1967; Bodmer and Cavalli-Sforza, 1968).
The constant in most of these investigations is that migration in and of itself is such a
simple evolutionary force that these papers are largely investigations of its interaction
with other evolutionary forces such as selection or genetic drift. We will cover one of
these interactions later in this chapter and the other in a subsequent chapter.

Just as simple mixture creates linkage disequilibrium, so does recurrent migration. A
model of this sort was first put forward by Li and Nei (1974). Feldman and Christiansen
(1974) presented an interesting model in which migration maintained a gradient of gene
frequencies (a cline) and in which linkage disequilibrium persisted as a result of recurrent
migration.

IV.8 Migration vs. Selection: Patches of Adaptation

Migration as an evolutionary force continually works to make the genetic composition
of different populations more similar. Under certain circumstances natural selection will
be operating in the opposite direction, and it is clearly of interest to see to what extent
one force will prevail over the other.

The simplest model available seems to be that in which a single population is subject
to selection different from its neighbors. Selection will then work to differentiate its
gene frequency from its neighbors’, but migration will work against this. Let us start by
examining a haploid model.

A ONE-ISLAND HAPLOID MODEL. A single island lies near a continent. On the
continent natural selection keeps allele a fixed. On the island the A allele is favored.
We consider a one-locus two-allele haploid (or asexual) population with discrete gen-
erations. The fitnesses of A and a individuals on the island are 1 and 1− s. As far as
migration is concerned, the model is a simple one-island model. A fraction m of the in-
dividuals each generation are immigrants. There is no migration back to the continent,
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or if there is it has no influence on the gene frequencies on the continent.
This model is erected as the simplest possible model in which a local patch of genetic

adaptation to a local environment is continually in danger of being swamped by immi-
gration. What we are interested in is the conditions under which local adaptation can be
maintained in the face of gene flow. When it can be maintained, we also want to know
how strong a genetic differentiation can be maintained.

The changes of gene frequency are readily computed under this model. If p is the
gene frequency of A, after selection

p∗ =
p

1− (1− p)s
, (IV-23)

and after migration
p′ = (1−m) p∗ + m× 0

= (1−m) p∗

=
p (1−m)

1− (1− p)s
.

(IV-24)

The reader may have noticed that these are precisely the equations for the balance be-
tween mutation and selection in haploids, equations (III-13) through (III-15). The anal-
ogy between immigration and mutation is generally useful, and much of the mathemat-
ics is basically the same, with the replacement of the mutation rate μ by the immigration
rate m.

From (IV-24) we can compute the change of gene frequency:

Δp = p′ − p =
p (1−m)

1− (1− p)s
− p =

−m p + p(1− p)s
1− (1− p)s

(IV-25)

There are two values of p for which Δp = 0. These are the values at which the
numerator of (IV-26) is zero. They are when p = 0 or when

p = 1−m/s. (IV-26)

These correspond to the two possible fates of the patch of adaptation: it may be lost
(p = 0) or it may be maintained in the face of continued gene flow.

Our interest is in which of these equilibria is stable. This will reflect the sign of Δp,
and that in turn is solely a function of the numerator of (IV-25). The denominator, being
the mean fitness, can never be negative. The numerator is p[−m + (1− p)s]. There are
two cases of interest. If s ≤ m, then a moment’s consideration will show that (1− p)s can
never be greater than m, so that the numerator of (IV-26) will always be negative. This
is exactly the case in which the equilibrium gene frequency 1− m/s will be negative.
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Figure 4.4: Equilibrium frequencies of a locally-favored allele on an island in
the haploid case, with migration coming from a nearby continent at rate m.
The equilibrium frequencies are shown in bold lines for different values of
the migration rate. The arrows show the directions of gene frequency change
for different migration rates. As discussed in the text and shown in equation
(IV-26), the equilibrium frequency declines to zero as the migration rate is
increased, and is zero for cases where the migration rate reaches or exceeds
the selection coefficient against the continental allele.

So we get a picture which is consistent: only the equilibrium p = 0 makes any sense,
and consideration of Δp shows that p will continually decrease toward that equilibrium.
When m ≥ s, migration which brings in a’s overwhelms the selection which is trying to
maintain some A’s in the patch.

When s > m, the picture is different. The quantity −m + (1− p)s will sometimes be
positive and sometimes negative. In particular, it will be positive when p < 1−m/s and
negative when p > 1− m/s. So in this case the gene frequency of A will rise toward
the equilibrium value when it is below it and fall toward it when above it. To prove
that the equilibrium is truly a stable one, we would have to also show that there is
no overshooting of the equilibrium (or at least, not enough to allow any oscillations of
increasing amplitude). This can be done without much difficulty, but we will not allow
this matter to detain us here.

The picture which emerges is a fairly simple one. When m ≥ s, migration over-
whelms selection and a patch of adaptation to local conditions cannot be maintained.
When s > m, local adaptation can be maintained, but the frequency of the locally fa-
vored allele will be only 1− m/s, so that some a alleles will always be present, in an
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equilibrium between their introduction by migration and their elimination by selection.
The behavior is shown in Figure 4.4.

This result forms a reasonably consistent picture with our intuitive feeling that mi-
gration as an evolutionary force operates with a speed given by m, and selection with a
speed given by s, so that maintenance of a patch of local adaptation depends on whether
selection can eliminate inappropriate alleles as fast as they come in. We can also make an
intuitive analysis similar to the mutation models, using the fact that in each generation
a fraction m of the copies at this locus are a alleles that have newly immigrated, and that
each of these copies has descendants that persist an average of 1/s generations. These
can be multiplied to predict that their equilibrium frequency will be m/s.

DIPLOID MODELS. The extension of this model to diploidy reveals new phenomena,
so that it is important to look at that case. Suppose that migration occurs after selection,
just before random mating within the patch. It will then alter the gene frequencies
within the patch, but there will be Hardy-Weinberg proportions before selection. We will
investigate only the two extreme cases - complete dominance and complete recessiveness
of A. When A is dominant things are fairly straightforward. The equation for change of
p is readily found to be

p′ =
p (1−m)

1− s (1− p)2 (IV-27)

(s is the selection coefficient against aa). The condition for A to increase in the patch
becomes simply

1−m > 1− s (1− p)2 (IV-28)

or
m < s (1− p)2. (IV-29)

As in the haploid case, this is essentially the same equation as we found in the case
of mutation to a recessive deleterious allele (here the non-locally-adapted allele is re-
cessive). Compare this equation to (III-21). A little examination of this condition fills
in most details of the behavior of gene frequencies in this case. When m > s, there is
no equilibrium frequency of A, which declines in frequency until it disappears. When
m < s, migration does not overwhelm selection, but there is a stable equilibrium at

pe = 1−√m/s. (IV-30)

if A is introduced into the patch at low frequency it will increase to this equilibrium
value. If the patch starts out all AA, the frequency of A will be reduced by immigration
to this equilibrium.

The picture with dominance of A is much the same as with haploidy: the ratio be-
tween m and s controls the frequency of A. No A genes will persist if m ≥ s. When s is
much larger than m almost all the genes in the patch will be A.
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Recessive adaptations. With the favored allele A being recessive things become
more complex, and a bit strange. The fitnesses are

AA Aa aa
1 1− s 1− s

and the equation for change of p is

p′ =
p [1− (1− p)s] (1−m)

1− [2p(1− p) + (1− p)2] s
(IV-31)

and the condition for p to increase is

[1− (1− p)s] (1−m) > 1− (1− p2)s (IV-32)

which reduces to
−p2s + p s(1−m) − m(1− s) > 0. (IV-33)

We are only interested in cases in which s > 0, so we can immediately see that when
p is near zero, it will not increase, since (IV-33) is not satisfied if we set p = 0. When p
is near 1, the left-hand side of (IV-33) has the value −m (1− s), which shows that p will
decrease when large. This quadratic thus has a negative value at p = 0 and at p = 1.
The coefficient of the p2 term is negative, showing that the parabola opens downward.
The point at which this parabola achieves its maximum can be found by equating its
derivative (with respect to p) to zero:

−2 p s + s (1−m) = 0 (IV-34)

which shows that the maximum is achieved at p = (1− m)/2. Putting together this
information, keeping in mind that (IV-33) is satisfied when p increases, we must have
one of the two following circumstances: In the first case there are two equilibrium values
(these are the points at which the parabola intersects the axis). The lower one is unstable,
with p decreasing below it and increasing above it. The upper one is a stable equilibrium,
though to complete the demonstration we would have to show that there is no oscillating
overshooting of the equilibrium. In the second case, there are no equilibria, except for
the equilibrium p = 0 which can be seen in (IV-32). The A allele will continually decline
until it is lost. It remains for us to find out which of these cases applies. This can be
done by examining the discriminant of the quadratic (the expression which you find
under the square root sign when you solve the quadratic). For roots to exist which are
not complex numbers, the discriminant must be positive. For the quadratic on the left
side of (IV-33) this yields

s2(1−m)2 − 4m s(1− s) > 0 (IV-35)
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Figure 4.5: Change of gene frequency in the one-island model with migration
opposed by selection, with the locally favored allele recessive. The horizontal
line is zero change of gene frequency. In the upper case the patch of local
adaptation can persist, in the lower case it is lost.

or since s > 0, provided s and m are both less than one,

s
1− s

>
4m

(1−m)2 (IV-36)

When we consider weak selection versus weak migration, the terms in s2 and m2 gener-
ated by the denominators of both sides of this inequality are small compared to s and
m, so that the condition for existence of a nonzero equilibrium frequency of A becomes
essentially s > 4m, just as in all the other cases.

But case of A recessive is different. While it is true that an equilibrium frequency of A
exists, and is a stable equilibrium, when s (roughly) exceeds m, the behavior of A when
rare is very different. It can never increase when rare for there is an unstable equilibrium
on the p-axis between 0 and the stable equilibrium. There is a simple interpretation of
this behavior. When A is rare it has very little selective advantage, for hardly any of the
A genes are in the advantageous AA homozygotes. There is a constant introduction of a
fraction m of a’s into the island or patch. For A to increase the effective selection coeffi-
cient favoring A must be large enough to overcome the continued dilution of A genes by
migration. In the recessive case, when A is rare its selective advantage is nil, and it can-
not invade the patch even though it might be able to persist if introduced in high enough
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frequency. This is an unusual example of a type of behavior which in physics would be
called hysteresis - the population can (if s > m) maintain a high frequency of A, but if
that frequency is perturbed to near zero, it will not return. Recalling the terminology of
our discussion in chapter II, this polymorphism is stable, but not protected.

One consequence of this phenomenon should be that if an allele arises which is locally
advantageous, but that allele is recessive, there will be a reduced chance that the allele is
able to become the basis of a patch of local adaptation. There should thus be a selection
for the dominance of locally-advantageous alleles, by weeding out those mutants which
are recessive.

Another, entirely different consequence of these results is that we should not expect
to see locally-favored recessive alleles maintained at frequencies much below 1/2. Recall
that our quadratic in p has a maximum at p = (1− m)/2, which will often be slightly
below 1/2. Consider what happens as we look at a series of cases with different values of
m. When m is small A will be maintained at a high frequency. The unstable equilibrium
will be near p = 0. To see this consider that when m = 0, one can see from (IV-33) that
p = 1 is an equilibrium and so is p = 0. When we have m small, the small amount
of migration will reduce the stable equilibrium a little below p = 1 and increase the
unstable equilibrium to a bit above p = 0. As m is gradually increased, both equilibria
move toward p = (1−m)/2 from opposite sides. When m reaches the critical threshold
value defined by (IV-36), both equilibria collide at p = (1− m)/2, and thereafter there
are no equilibria other than p = 0. So the stable equilibrium frequency of A is reduced
from p = 1 down to just below 1/2 as m is increased, and then the pocket of local
adaptation suddenly collapses, with natural selection no longer able to maintain it in the
face of migration. This behavior may be contrasted with the dominant and the haploid
cases, where the collapse of the patch occurs as the equilibrium gene frequency (as can
be seen from (IV-26) and (IV-30)) reaches zero.

REFERENCES. The case of an island with locally-adapted alleles was explored rather
fully by Haldane (1930b), who observed all of the above phenomena. Sewall Wright
(1931) was aware of the same phenomena at about the same time. Nagylaki (1975a) has
examined these phenomena more fully for a model with weak selection, in the context
of consideration of the more complicated case of geographic continuum.

IV.9 Two-Population Models

When we considered the effect of migration on a single island or patch of adaptation,
no account could be taken of the effect of the island on its neighbors. In most realistic
models of the geographic structure of natural populations, a patch or local population
will export some of its genes to its immediate neighbors. This in turn means that some
of the genes which migration brings into a population are these recently-exported genes.
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Since neighbors export part of their gene pools to each other, they thereby reduce the
genetic impact of the genes they receive from each other. When two-way migration is
allowed, we should expect that maintenance of a patch of local adaptation will not be
quite so difficult as in the one-island model.

The simplest model which can show this phenomenon has two islands exchanging
migrants. Let us consider the most symmetric and simplest form of this two-island
model. Imagine two populations, each of which receives a fraction m of its genes from
the other each generation. Each population is haploid (or asexual) with discrete gener-
ations. The fitnesses of alleles A and a in population I are 1 + s : 1, and in population
II they are 1 : 1 + s. Thus each allele is favored in its own population, and the selection
coefficients are taken to be equal. Let us call the gene frequencies of A in the two pop-
ulations p1 and p2. We assume that these frequencies are measured at the beginning of
the generation, and that selection precedes migration. After selection

p∗1 =
p1 (1 + s)
1 + sp1

and

p∗2 =
p2

1 + s(1− p2)
.

(IV-37)

After migration
p′1 = (1−m) p∗1 + m p∗2

=
p1(1 + s)(1−m)

1 + s p1
+

p2 m
1 + s (1− p2)

,
(IV-38)

with a similar equation for p′2. We can look for equilibria of this system of equations
by requiring that p′1 = p1 and p′2 = p2 and trying to solve this system of two equations
for p1 and p2. But in this case we can exploit the symmetry of the model and simplify
things.

A SYMMETRIC EQUILIBRIUM. It seems reasonable that the equilibria we are seeking
should be of the form p1 = p, p2 = 1− p. That is, if the equilibrium frequency
of A in population I is p, the equilibrium frequency of a in population II is also p.
This expectation comes from the symmetry of the model: if we exchange the names
of populations I and II, and then exchange the names of alleles A and a, we still have
the same model. It is not ruled out that there might be other kinds of polymorphic
equilibria, but it seems worthwhile to see if there are any of this form. It is a simple
matter to do this using (IV-38). If we substitute p1 = p, p2 = 1− p, and require that
also p′1 = p1 = p, then the equation becomes

p =
p (1 + s) (1−m)

1 + sp
+

(1− p)m
1 + sp

(IV-39)
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Multiplying both sides by the denominator (1+ sp) and rearranging to collect powers
of p, we have the quadratic equation

s p2 + [2m + m s− s] p−m = 0 (IV-40)

This quadratic has the value −m when p = 0 and m(1 + s) when p = 1, and since these
are of opposite sign there must be a root (exactly one, since it is a quadratic) between 0
and 1.

The equation for equilibrium gene frequency is not a particularly revealing expres-
sion, being the solution to this quadratic. It is possible to make various approximations.
The simplest is to notice that if we let m and s both be small, we can ignore the term ms
as being smaller than terms in m or in s. The quadratic equation becomes (dividing by
s)

p2 + (2m/s− 1) p − m/s = 0. (IV-41)

The salient fact about this equation is that its coefficients (and therefore its solution)
depend on m and s only through their ratio. Figure 4.6 shows values of p obtained by
solving (IV-40) for different values of s and m/s. The dependence of p chiefly on m/s
when s is small is readily apparent.

When m � s, in the upper right corner of the diagram, the curve relating p to
m/s is very close to p = 1−m/s. That can be derived from the solution of the quadratic
equation when s, m, and m/s are all taken to be small. It also makes good intuitive sense:
when m is small the favored allele is nearly fixed in each population, and immigration
brings in mostly the other allele, so that the situation is nearly the same as the one-
island model, whose equilibrium frequency of A would be 1− m/s. When m  s, the
frequency of A is nearly 1/2 + s/(8m), which can also be obtained as an approximation
from the solution to the quadratic.

ASYMMETRY AND PATCH-SWAMPING. A stability analysis of this equilibrium can
be done, although it involves two variables, p1 and p2, it involves matrix algebra and
we will not reproduce it here. It can be shown that the equilibrium we have found is
always stable. This may be a bit surprising, for in the one-island model the equilibrium
disappeared when m was made large. In the two-island model the equilibrium never dis-
appears or becomes unstable. In fact, there is in the two-island model a behavior which
corresponds to the swamping of a patch of adaptation. It arises when the strength of
selection in the two populations is unequal. This can be seen intuitively by imagining
the case in which there is selection coefficient s1 favoring A in population I, but in pop-
ulation II the selection favoring a is infinitely strong (s2 = ∞). Then even if migration
introduces some A’s into population II, selection immediately kills them off and returns
that population to consisting entirely of a. Migration from population II to population I
thus always consists entirely of a’s. What we have done is to make the dynamics of gene
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Figure 4.6: Gene frequency in the two-island model as a function of s/m. The
upper two solid curves are for s = 0.01 and s = 0.02, the lower curve is for
s = 0.05.

frequency in population I follow precisely a one-island model! When m > s, the A allele
cannot persist in population I.

Asymmetry in the selection thus allows a sufficiently high rate of migration to abolish
the patch of adaptation in the population with weaker selection. By choosing to examine
a case with perfectly symmetric selection we missed this behavior. We will have a bit
more information on this phenomenon in the next section.

All of our discussion has been in terms of haploid selection, but the equations are
exactly the same if heterozygote fitnesses are the geometric mean of homozygote fit-
nesses. We could have considered partial dominance, but that would only have made
life difficult by converting quadratic equations into cubics.

REFERENCES. The two-island model received little attention for many years. Moran
(1959b) solved for equilibria in a diploid two-island model with weak selection and
migration, and he also established the stability of this equilibrium and the instability of
the other equilibria at which both populations are fixed for the same allele. Eyland (1971)
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analyzed the case where selection is not symmetric, giving conditions for existence of
the equilibrium when there is a possibility of one island’s alleles swamping the patch
of adaptation on the other island. Maynard Smith (1970) presented sufficient conditions
for the maintenance of polymorphism in a two-island model.

IV.10 The Levene Model: High Migration

In 1953, Howard Levene set forth a model of selection and migration which it is useful
to discuss at this point because it gives us some insight as to when the contradictory
selection in different populations gives rise to adaptations which cannot coexist. Lev-
ene’s model constitutes the extreme in migration, complete random mating among all
populations. There is a single pool of mating individuals who mate at random. The i-th
population contributes a fraction ci of them. The resulting offspring are distributed at
random among the populations (let us say that there are n populations). Because the
same mating pool contributes all the offspring, in a diploid two-allele case each popula-
tion starts out with frequencies p2, 2p(1− p), and (1− p)2 of the three genotypes. This
is what makes the Levene Model so easy to analyze - the overall random mating leaves
us with only one variable, p, to follow.

Within each population selection occurs. Suppose that the i-th population has fit-
nesses wi : 1 : vi of the genotypes AA, Aa, and aa. Then after selection the gene frequency
of A in the i-th population will be

pi =
p2 wi + p(1− p)

p2 wi + 2p(1− p) + (1− p)2vi
(IV-42)

as a result of the usual selection formulae. Now each population contributes a given
fraction ci of the mating pool in the next generation. The overall gene frequency p′ in
that mating pool is simply the weighted average ∑ ci pi, which is

p′ = ∑
i

ci
p2 wi + p(1− p)

p2 wi + 2p(1− p) + (1− p)2 vi
(IV-43)

While this looks like a complex expression, it involves only one variable, p. This makes
analysis quite simple.

If we look for equilibrium values of p, there are of course p = 0 and p = 1. The
obvious way to find equilibrium values between 0 and 1 is to set p′ = p and try to solve
(IV-43) as an equation in p. Alas, this gives us a polynomial in p of order (2n + 1) which
has no known explicit solution. However, we can easily get conditions for there to be a
protected polymorphism by asking whether p will increase near p = 0 and decrease
near p = 1. When p is small, then we can ignore the rare AA homozygotes and write
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(IV-43), ignoring terms in p2, (terms in p2 in the numerator or in p in the denominator)

p′ = ∑
i

ci
pi

vi
. (IV-44)

The condition for p to increase is just p′ > p, which from this equation is seen to be

∑
i

ci

vi
> 1. (IV-45)

There is an exactly analogous equation for the case in which (1− p) is small, namely

∑
i

ci
wi

> 1 (IV-46)

If both of these conditions are satisfied, there will be protected polymorphism. If not,
then there may be stable polymorphic equilibria between 0 and 1, but polymorphism
may disappear if the gene frequencies are perturbed to values near fixation.

The conditions (IV-45) and (IV-46) require, in effect, that the weighted harmonic
mean (the reciprocal of the mean of reciprocals) of the heterozygote fitnesses exceed the
weighted harmonic means of both homozygote fitnesses. Why weren’t the results de-
pendent on weighted arithmetic means? If the newborns are being randomly distributed
among the populations, why didn’t the maintenance of polymorphism just depend on
the weighted average fitnesses ∑i ciwi, 1, and ∑i civi? The answer to this points up an
important property of the Levene model. If a fraction ci of the newborns were exposed
to the selection regime of population i, and the survivors (let’s assume for the moment
that the selection is by differences in viability) were simply taken and pooled to form
the parents of the next generation, then we could simply use arithmetic weighted mean
fitnesses. The average probability that an AA individual would survive would then be
c1w1 + · · ·+ cnwn. The conditions for polymorphism would simply be overdominance
of these mean fitnesses.

The probability that an AA individual survives and contributes to the mating pool
is, however, not this arithmetic mean fitness. Recall that ci is not the proportion of new-
borns allocated to population i, but the fraction of the mating pool which population i
ends up contributing. The contribution of each population is fixed, independent of the
fitness of individuals in that population. Even if most of the individuals in population
i are of very low fitness, the contribution to the mating pool is still ci. This in effect
assumes that selection in each population precedes density-dependent population size
regulation, which takes place separately in each population. The population size, and hence
its contribution to the mating pool, is determined after selection, and essentially inde-
pendently of it. Thus an individual of low fitness in a given population may be more or
less likely to end up in the mating pool, depending on the fitnesses of the others in its
population.
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An example will help clarify the point. Let’s consider for the moment a haploid two-
allele case, with two populations. The two genotypes A and a are equally frequent. In
one population A is twice as fit as a, in the other the reverse:

fitness of
i ci A a
1 1/2 0.5 1
2 1/2 2 l

If ci represented the probability of an individual landing in population i, and there
were no density regulation in each population separately, then the mean fitness of A
would be (0.5 + 2)/2 = 1.25, and the mean fitness of a would be (1 + 1)/2 = 1.0. We
expect A to increase. But with density regulation in each population with ci being the
contribution population i makes to the mating pool, we find that in population 1 the gene
frequency of A after selection is 1/3, and in population 2 it is 2/3. The resulting genotype
frequencies in the mating pool are 1/2 : 1/2, the same as the initial genotype frequencies.
The separate population regulation in each population has yielded a different outcome.
That this is the critical way in which Levene’s model differs from a single random-mating
population was first pointed out by Dempster (1955).

The frequency-dependence of overall fitnesses which is induced by having densities
regulated in each population makes it easier to maintain an overall polymorphism than
if there were only one population. In the diploid case, this is a general phenomenon.
Allele A changes when rare as if it had an overall fitness of 1 while the common aa ho-
mozygote had a fitness of 1/(∑i ci/vi), the weighted harmonic mean of the aa fitnesses.
Likewise when a is rare, the frequency of A changes as if the fitnesses of AA : Aa were
1/(∑i ci/wi) : 1. It can be proven that harmonic means are never larger than the corre-
sponding arithmetic mean. So the effect of having density regulation in each population
is to lower the effective fitnesses of the homozygotes, making polymorphism easier to
envisage. The reader may find it useful to compute some numerical examples.

In effect there are two things that we mean by the word “population". The first
is a group of organisms in perfect competition. The second is a group of organisms
which mate at random. Levene’s model presents us with a divergence between the two
definitions, with competition only within populations, but mating at random over all
populations.

We can use Levene’s model to find conditions under which polymorphism will be
protected in the two-population model of the previous section, provided m = 1/2,
which is equivalent to having one mating pool covering both populations. Our model of
that section was a haploid model, but it should have exactly the same dynamics as if the
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population were diploid with geometric fitnesses. So let us consider the following case:

fitness of
i ci AA Aa aa
1 1/2 1 + s1 1 1/(1 + s1)
2 1/2 1/(1 + s2) 1 1 + s2

Each population shows geometric fitnesses with heterozygote relative fitness 1, and
with selection acting in opposite directions in the two populations (assuming s1 and s2
are both positive). We have allowed the selection coefficients in the two populations to
differ. The object is to investigate by how much s1 and s2 have to differ to eliminate
the possibility of stable polymorphism. Of course our answer will only tell us about
protected polymorphism, and then only when m = 1/2.

The conditions for increase of A when rare are, from (IV-45)

1
2

(
1

1 + s1

)
+

1
2

(
1

1/(1 + s2)

)
> 1 (IV-47)

or
1

2(1 + s1)
+

1 + s2

2
> 1 (IV-48)

and the corresponding condition for increase of a is the same with subscripts 1 and 2
interchanged:

1 + s1

2
+

1
2(1 + s2)

> 1 (IV-49)

We want to know when both of these will hold. If we express each of these by finding
the limits on s2 as a function of s1, we get from (IV-48)

s2 >
s1

1 + s1
(IV-50)

and from (IV-49)

s2 <
s2

1− s1
(IV-51)

yielding the overall condition

s1

1− s1
> s2 >

s1

1 + s1
(IV-52)

These are fairly tight limits. If s = 0.1, then they require that

0.1111 > s2 > 0.0909
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so that s2 must be (roughly) within 10% of the value of s1 or one patch of adaptation
will swamp the other out of existence. As the selection coefficients become smaller, the
conditions become more restrictive. When s1 = 0.01,

0.0101 > s2 > 0.0099 (IV-53)

which means that s2 must now be within 1% of s1.
We can conclude that when selection in the two populations is of unequal strength,

then at high migration rates one patch of adaptation swamps the other. At low migration
rates it is much easier to maintain polymorphism: when s1 = ∞ we are in a one-island
model, and we will still have polymorphism (in the form of the maintenance of local
adaptation to local conditions) no matter what the value of s2, provided that s2 > m.
So both patches can maintain adaptation to local conditions, provided that either the
selection coefficients in each population are nearly equal, or that migration is sufficiently
restricted. Correspondingly, the swamping of a patch of local adaptation will nearly
always occur if there is sufficient migration, unless the strengths of selection in different
populations are rather precisely balanced.

We have thus been able to use Levene’s conditions for protected polymorphism to get
some insight into the behavior of the two-island model. Eyland’s (1971) conditions for
the local stability of polymorphism in a two-island model differ slightly from the above,
but show the same general patterns. Eyland used an additive rather than a geometric
fitness pattern, and made an analysis restricted to small values of s1 and s2, so it is
not surprising that the results should differ, and it is comforting that the differences
between Eyland’s and our conditions disappears as s1 and s2 are made small. Karlin
and McGregor (1972) have presented a method of small parameters, a method which is
a version of one widely used in applied physics, which can easily be used to show that
polymorphism will always be stable if m is sufficiently near zero.

REFERENCES. In addition to Levene’s and Dempster’s papers, there has been some
further general work on the Levene Model. Li (1955) showed that under Levene’s model
gene frequency changes in the direction that moves uphill on a surface which is the
weighted geometric mean of the individual population mean fitnesses (as a function
of p). Cannings (1971, 1973) generalized Li’s result to multiple alleles. Gliddon and
Strobeck (1975) showed that the Levene Model could maintain polymorphism in hap-
loids. Maynard Smith (1962) and Prout (1968) gave conditions for protected polymor-
phism when one allele is completely dominant, in which case Levene’s result needs to be
supplemented by other conditions. Karlin (1977) has presented a general mathematical
analysis of some special cases of Levene’s model, as well as intuitive speculations on
more general patterns.
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IV.11 Selection-Migration Clines

Having examined these simple geographic structures, we can more readily understand
more realistic situations. Complete realism is unattainable, save at the sacrifice of math-
ematical tractability. The compromise we examine in this section is the simplest models
yielding clines, situations in which a regular geometric arrangement of populations and
a simple pattern of selection yields a smooth unidirectional pattern of change in gene
frequency. Clines were defined by Julian Huxley as smooth gradients in the average
value of a character. Here we take the character to be gene frequency. We will look at
some simple arrangements which generate clines.

CLINES IN A STEPPING-STONE MODEL. We start with some numerical results. We
consider an infinite one-dimensional stepping-stone model, with discrete generations.
Each population receives a fraction m/2 of its mating pool from each of its two neighbors,
and 1−m from itself. Each generation consists of selection, followed by migration, and
then random mating. The populations are numbered with consecutive integers -5, -
4, -3, -2, -1, 0, 1, 2, . . . . Selection is assumed to involve geometrically intermediate
heterozygotes: alternatively we may regard this as a haploid model. Each population
has its own selection coefficient on A (as usual, we have two alleles).

All that we have done is to generalize to a stepping-stone model the two-population
selection-migration model of previous sections. It will be convenient to alter the model
of selection slightly to make it additive rather than geometric: the fitnesses of A : a (if
we consider the model haploid) are 1 + si/2 : 1 − si/2. This has the merit of being
symmetrical: a selection coefficient +s in favor of A should be exactly as much selection
as one of −s in favor of a. The equations for change in gene frequencies are

p∗i =
pi (1 + si/2)

1 + si (pi − 1/2)
, (IV-54)

and
p′i = (m/2) p∗i−1 + (1−m) p∗i + (m/2) p∗i+1. (IV-55)

No algebraic solution of these equations is known, for any other than biologically un-
interesting cases (such as all si the same). There are, after all, an infinite number of
nonlinear equations to solve, even to get equilibria by requiring that p′i = pi for all i. A
little examination will show that there are always the solutions in which all the pi are
1 or all are zero. After all, neither selection nor migration can create an allele when it
is absent. But the solutions we are most interested in would have pi near 1 in regions
where si > 0 and near zero when si < 0.

While finding solutions algebraically may be impossible, there is no difficulty in
simply iterating them numerically. We are interested for the moment in two patterns
of selection. In one, which I call the “step”, the selection coefficient shifts abruptly as
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an environmental boundary is crossed. For example, in populations 27, 28, 29, . . . the
selection coefficient favoring A might be s, and in populations 1, 2, . . . 23, 24, 25, 26 it
might be −s. Each allele is favored in its own region. The other pattern I call the “ramp”.
It represents the case where an environmental factor changes smoothly, with selection
coefficients against A gradually weakening until A becomes favored, at first slightly, then
more strongly. The selection coefficient si in this pattern might look like this:

−3.5s,−2.5s,−1.5s,−0.5s, 0.5s, 1.5s, 2.5s, 3.5s, . . . .

Of course we cannot actually numerically iterate the full set of equations (IV-54) and (IV-
55), for we would have to compute an infinite number of quantities every generation.
Instead, we take a suitably large number of populations (in the present case 16), so that
the terminal colonies are nearly fixed one way or the other. The finite stepping stone
differs from the infinite stepping-stone model in that the end populations do not receive
immigration from neighbors on one side. If all these populations are fixed for the same
allele, then it makes no difference whether or not the end colony receives immigrants
from one or both sides.

Figure 4.7 shows the equilibria which result when we iterate these equations. In both
the step and the ramp patterns of selection clines are produced. The terminal popula-
tions are so near fixation that we can have some confidence that the infinite stepping-
stone model would show a similar pattern.

The clines are similar in shape - in fact the strengths of selection were chosen so as to
result in clines of similar slope near the center. Notice that a cline resulting from a step
pattern of selection is not itself a step pattern of gene frequency. Migration introduces
alleles from each side of the environmental transition into the other, rounding off the
pattern of gene frequencies into a smooth cline. The “step-cline” beloved of some evo-
lutionists - the sudden absolute change in a character as a boundary is crossed - is more
of a myth than a reality. It is only possible when selection is infinitely strong, so that mi-
grants crossing the boundary are instantly killed, or else when no migrants at all cross
the boundary. A smooth cline of gene frequency can be the result of either a sudden
transition of selection coefficients (a step) or a smooth change (ramp). Although there
are quantitative differences in the shape of the cline in these two cases, a glance at the
Figure should convince you that our chances of distinguishing between these patterns
in the field is nil, given sampling errors, historical perturbations, and the geographical
inhomogeneities of actual patterns of migration and selection.

Another sort of information we get from iterating these equations numerically is the
rate at which the equilibrium cline shape is approached. We do not have space for an
extensive treatment of this matter, but suffice it to say that the fraction of the distance
toward the final cline shape which the collection of populations moves is roughly indi-
cated by the sizes of the migration rate m and the selection coefficients si. It is a function
of all of these but is about the size of the larger of m and si, at least, those si in the middle
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Figure 4.7: Clines in a ramp case (squares) and in a step case (circles). In
both cases m = 0.3. In the ramp case s = 0.1 and in the step case s = 0.09.
This approximately matches the slope in the center of the clines so that the
differences in their shape are more easily seen.

of the cline. So if we have a step pattern of selection, with s = m = 0.1, it will take on the
order of ten generations to move a substantial distance toward the ultimate cline, while
if s = m = 0.01, it will take on the order of 100 generations. In the case of a step pattern,
a gene from one region survives an average of 1/s generations in the other region before
succumbing to selection. So the A alleles in the region in which a is favored have existed
there no more than 1/s generations. The cline should re-establish itself in at most a few
multiples of that time if we eliminate each allele from the “wrong” region.

There is only a modest amount of theory for clines in stepping-stone models. The
small-parameter theory of Karlin and McGregor (1972a) shows that for sufficiently small
values of the migration rate m, the cline is stable. In stepping-stone models, Bruce Walsh
(1983) has given reasonably tight bounds on how much selection is needed to maintain
a cline. Walsh’s result takes into account the migration rate, and improves considerably
on a much looser bound obtained by Karlin (1976, 1982) which applies for all migration
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rates.

APPROXIMATE SOLUTIONS OF CLINES: A DIFFERENTIAL EQUATION. If we
assume that m and the si are small, and alter the geography a bit, then we can convert the
system of nonlinear equations (IV-54) and (IV-55) into a differential equation. From that
equation we can get information on the slope of the cline, and in some cases we can solve
for the entire shape of the cline. The change in geography is to imagine that populations
are packed so closely in space that we in effect have a true continuum of populations.
We can index position by a coordinate x which runs from −∞ to +∞. At position x the
gene frequency is p(x) at equilibrium, and the selection coefficient favoring A is s(x). As
before we consider a haploid (or geometrically-intermediate diploid) population with
discrete generations.

Since in a continuum there is no notion of the “next” population, we must alter
the migration scheme a bit. Let M(y) dy, for a very small interval of width dy, be the
probability that an individual found at point x after migration came from the interval
between x + y and x + y + dy. The counterpart to equation (IV-1) is the integral (in effect
a summation) over all possible displacements of the individual by migration:

p(x) =
∫

M(y) p∗(x + y) dy. (IV-56)

If migration is weak, migrants come almost entirely from nearby locations (small values
of y), so it is legitimate to approximate p∗(x + y) by its Taylor series:

p(x) �
∫

M(y)
[

p∗(x) + y
dp∗(x)

dx
+

y2

2
d2p∗

dx2

]
dy

� p∗(x)
∫

M(y)dy +
dp∗(x)

dx

∫
yM(y) dy +

1
2

d2p∗(x)
dx

∫
y2M(y) dy.

(IV-57)
Of the three integrals on the right-hand side of (IV-57), the first is simply the sum

of all probabilities of different origins of an individual, and thus is 1. The second is
E(y), the expectation of the displacement under migration. Note that the displacement
is not the distance migrated, but has a sign indicating the direction of migration. We
are primarily interested in the most straightforward cases, and these are cases in which
migration by an amount +y is just as probable as migration by an amount −y, so that
there is no directional tendency to drift rightwards or leftwards on the average. In these
symmetrical cases the average displacement E(y) is zero, so that the second term will
vanish. The third integral is E(y2), the mean square displacement. When E(y) = 0, this
is also the variance of the distribution whose density function is M(y). This quantity we
use to measure the amount of migration, and call m. Note that in the discrete stepping
stone model where migration involves y = +1 with probability m/2, y = −1 with
probability m/2, and y = 0 with probability (1−m), E(y2) does in fact turn out to be m.
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The result of these changes in (IV-55) is

p′(x) � p∗(x) + m
2

d2p∗(x)
dx2 , (IV-58)

the terms ignored in the Taylor series being terms in m2.
The quantities p∗(x) are the gene frequencies before migration, after selection. Since

s(x) is small, we have approximately, from (II-47)

p∗(x) � p(x) + s(x) p(x)[1− p(x)], (IV-59)

ignoring terms containing s2(x). This can be substituted into (IV-58). If the product
m s(x) of two small quantities is also ignored, the result is

p′(x) � p(x) + s(x) p(x)[1− p(x)] +
m
2

d2p(x)
dx2 . (IV-60)

At equilibrium, we can erase the prime on p′(x) and make it p(x). Then writing p(x)
as p and s(x) as s (but keeping in mind that these are functions of x), we have the
differential equation

m
2

d2p
dx2 + s p(1− p) = 0. (IV-61)

It is on this equation that we concentrate.
An alternative derivation of the equation is to take (IV-59), substitute it into (IV-55)

and ignore terms in sim and s2
i , getting

p′i � pi + si pi(1− pi) +
m
2

[pi+1 − 2pi + pi−1]. (IV-62)

The differential equation then arises when we approximate the second order differ-
ence in the rightmost term by d2p/dx2 and the difference between p′i and pi by dp/dx.
This differential equation was first obtained by Fisher (1937) and was also given by Hal-
dane (1948) and Fisher (1950). The latter two papers use it to try to solve for equilibrium
positions of clines, but Fisher is forced to solve numerically rather than exactly. Fisher’s
1950 paper is almost certainly the first application of computers to biology, as his cline
computations were carried out on the Cambridge University’s EDSAC, the first (or per-
haps second) stored-program electronic computer operational, within a few months of
its completion (see Wilkes, 1975).

APPROXIMATE SOLUTIONS OF CLINES: THEIR SHAPE. In one case, the full so-
lution of equation (IV-61) is available. In his pioneering paper on clines, Haldane (1948)
gave the solution for the case of a step pattern with symmetric selection. The solution of
this differential equation is tedious, and since it is the only case of interest which can be
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easily solved it is not particularly useful to go over the steps of the solution. The result
is, for x > 0

p(x) = −1
2
+

3
2

(
tanh

[(√
s/2m

)
x + tanh−1

(√
2/3

)] )2
, (IV-63)

where tanh(y) = (ey − e−y)/(ey + e−y) and tanh−1(
√

2/3) turns out to be 1.1462158.
When x < 0 there is a corresponding formula which has the same slope, but reflected so
that p(−x) = 1− p(x). For details of the derivation see the step-by-step explanation by
Roughgarden (1979, pp. 243-246).

In most other cases the only solutions to the basic differential equation (IV-61) are
numerical. The earliest papers on equilibrium clines, those of Haldane (1948) and Fisher
(1950), presented numerical solutions of different cases. Haldane found the equilibrium
for a step pattern of selection and a completely dominant gene, Fisher for intermediate
dominance and a smooth ramp pattern of selection. Slatkin (1973) presented numerical
solutions for a number of different cases. Slatkin’s solutions were not actually of the
differential equation (IV-61), but of the integral equation which gives rise to it, (IV-57).
Slatkin gives a number of numerical results validating the notion of the characteristic
length. May, Endler, and McMurtrie (1975) have presented further numerical results and
scaling arguments supporting Slatkin’s generalizations.

APPROXIMATE SOLUTIONS OF CLINES: THEIR SLOPE. We can use the differential
equation to solve rather simply for the slope of the cline in the case of the step pattern
of selection. In that case, in the right-hand half of the cline s(x) = s, so that there the
differential equation is

d2p
dx2 = − 2s

m
p(1− p). (IV-64)

Let y = dp/dx be the slope of the cline. Then this equation can be rewritten

dy
dx

= − 2s
m

p(1− p). (IV-65)

For the moment, let us rename 2s/m by letting a = 2s/m. Now divide both sides of
(IV-65) by dp/dx = y. We get

dy
dx

/
dp
dx

= −a p(1− p)/y, (IV-66)

or
dy
dp

= −a p(1− p)/y, (IV-67)

so that
y dy = −a p(1− p) dp. (IV-68)
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We have managed to obtain an equation in which the variables are separated, and we
now simply integrate both sides, getting

y2

2
+ C = − a p2

2
+

a p3

3
, (IV-69)

where C incorporates the undetermined constants of both integrations. We can deter-
mine C by using boundary conditions. As we move out to the right, the cline approaches
p = 1 and is increasingly flat. This means that “at” p = 1 the slope y = 0. Requiring that
this be true in (IV-69) by substituting in these values of p and y, we find that C = −a/6.
So we can solve for y, the slope as

y =

[
a
3
− ap2 +

2a
3

p3
]1/2

. (IV-70)

The specific case we are interested in has a symmetric step pattern of selection, so that
s(x) = s if x > 0, and s(x) = −s if x < 0. The solution we are interested in runs through
p = 1/2 at x = 0 (which is not to say that there might not be other solutions as well).
Substituting in p = 1/2 and recalling the definition of a, we find that the slope in the
center of the cline will be

dp
dx

=
( s

3m

)1/2
. (IV-71)

It can be verified that this is the slope of the curve in (IV-65) at x = 0.
The slope depends on s and m only through their ratio, but it is less obvious that it

should be proportional to the square root of their ratio. This is a result different from the
one-island case. There the slope, actually the difference in equilibrium gene frequencies
between populations, was 1−m/s.

We can compare this approximation to the slope found when we iterate equations
(IV-54) and (IV-55) to equilibrium and evaluate the difference between the two central
populations. Table 4.1 shows the comparison between the two slopes. The results of the
iteration are in reasonable agreement with our approximation. The agreement is better
when s is small (and would presumably have been even better if m had been smaller).
We do not expect the two numbers to be exactly the same because in the iteration the
slope is measured at two points each 1/2 unit from the center of the cline. Even if the
approximate solution were to exactly interpolate the points of the discrete iteration, since
the curve is sigmoid (“S-shaped”) its slope would be higher in the exact center than if
measured between two points each 1/2 unit distance from the center. In the rightmost
column of the table this is computed using the solution for the continuous cline with a
step pattern of selection (equation IV-63 above).

The “exact” iterations in Table 4.1 are only exact for a region 16 populations in length:
in a truly infinite array of stepping stones we expect the cline to have a slightly different
(in fact slightly higher) slope, because of the absence of end effects.
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Table 4.1: Comparison of slope of a stepping-stone model cline with m = 0.1,
the corresponding approximation from the slope in the center of the gene
frequency curve predicted from the differential equation, and a better ap-
proximation from the differential equation’s predicted gene frequencies at
± 0.5

s slope (exact) slope (approx.) slope(better)
0.005 0.123 0.129 0.123
0.01 0.176 0.183 0.170
0.02 0.246 0.258 0.233
0.05 0.374 0.408 0.347
0.1 0.499 0.577 0.458

THE CHARACTERISTIC LENGTH OF A CLINE. There are many variants on the
cline which can be investigated by numerical solution of the differential equation (IV-
61). One leads to recognition of a phenomenon of particular importance, first pointed
out by Slatkin (1973). This is the existence of a characteristic length of a cline.

We know that for a step pattern of selection with parameters s and m, the slope of the
cline at its center is (s/3m)1/2. If the cline had this slope throughout its central region,
then it would go from 0 to 1 in a distance of

√
3m/s. If we take the quantity

√
m/s, this

will be slightly more than half this distance. We call this quantity �c the characteristic
length of the cline. We now show that it has some meaning beyond this interpretation.
Slatkin showed that a variation in fitness which is substantially shorter in extent than �c
is too short for selection to respond to. He did this by placing in the middle of the cline
a region with no selection, and asking how long it has to be before it has a noticeable
effect on the shape of the cline.

CHARACTERISTIC LENGTH AND SWAMPING OF PATCHES. We saw in Moran’s
two-island model that if selection was asymmetric, the export of alleles from one island
could overwhelm selection against them on the other. A similar phenomenon occurs
in clines, and the notion of characteristic length plays a role, one which rather neatly
fits in with its other effects. Each end of a cline of finite extent can be regarded as in a
battle with the other. Selection in a given region reduces the frequency of the ill-adapted
allele in that region. The export of alleles by migration reduces the frequency of those
alleles in their own region of the cline, thus making the first region less susceptible to
swamping by immigration. The second region is engaged in the same “activities”. The
stronger is selection in each region, the less likely it is to be overwhelmed by an influx
of unfavorable alleles.

Another factor favoring retention of locally adapted alleles in a region is the length
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Table 4.2: Numerical solution of stepping-stone cline with step pattern of se-
lection. Details of case explained in text. The table shows the maximum gene
frequency in the smaller patch as function of s, for m = 0.1. The characteristic
length of the cline is also given.

s pmax �c
0.1 0.994 1
0.05 0.974 1.41
0.02 0.895 2.24
0.01 0.769 3.16

0.005 0.557 4.47
0.003 0.320 5.77
0.002 0.058 7.07

0.0019 0.019 7.25
0.0018 0 7.45
0.0015 0 8.16
0.001 0 10

of the region. The shorter a region is (in terms of distance from the boundary), the
larger is the fraction of its gene pool which consists of new immigrants. For a given rate
of migration, whether each patch persists depends on both the strength of selection in
that patch and the length of the patch. As migration rates are increased, one patch of
adaptation will be lost before it can swamp out the other patch.

There is then an amount of migration which does not allow local adaptation in both
regions. It is particularly interesting that this seems to depend on the characteristic
length of the cline. Table 4.2 shows results from numerical solutions of the stepping-
stone model (IV-54) and (IV-55). The length of the species range is 16 populations, the
first 4 of which have A favored with selection coefficient s, and the last 12 of which have
a favored to the same extent. It can be seen from the Table that the value of s at which
the smaller patch disappears corresponds to a characteristic length which is about twice
the length of the patch. This is a fairly general rule. If the patch is being eroded by
immigration from both sides the critical threshold is reached when �c is roughly equal
to half the length of the patch.

It might be thought that this poses a problem for the species: if adaptation to a local
environmental variation cannot occur if it is smaller than �c, surely this means that there
would be regions which were small but in which the environment was very unfavorable
to the nearby genotypes. In such cases local adaptation to the region would not occur,
and the organism would never be able to adapt to the region well enough to survive
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there. This problem does not occur. If selection is strong in that region, then that will
reduce �c (which has s in its denominator). The result will be that if s is large enough �c
will be small enough to allow local adaptation to occur.

Hanson (1966) found the approximate collapse of a pocket of adaptation, but was
misled by his numerical methods into believing that in such a case a small frequency of
the locally-adapted allele would exist at equilibrium. The first person to point out that
the collapse of a patch of adaptation would be absolute was Nagylaki (1975). Fleming
(1975) and Conley (1975) have applied various analytical mathematical techniques to
prove theorems concerning the existence of stable clines in cases of habitats of finite
length.

IV.12 The Wave of Advance of an Advantageous Allele

Fisher (1937) and Kolmogorov, Petrovsky, and Piskunov (1937) posed an ingenious prob-
lem which has led to much interesting mathematical work. Imagine a large region in
which allele A is at an advantage over a, the advantage being the same everywhere. If
we introduce a few copies of A into one area, they will increase in frequency and then
descendants will also begin to spread out horizontally. After a while A will be nearly
fixed in a patch, and at each end of the patch the gene frequency will be increasing
and the patch will be widening. At a patch’s end, there will form a “wave” of A in-
dividuals (or genes) which will propagate outwards, ultimately ending in fixation of A
everywhere. These authors posed the problem of determining how fast that wave trav-
els, and what its shape is. This problem happens to lead to fascinating mathematics, and
has become a favorite exercise for mathematicians specializing in differential equations,
although these subsequent investigations have added little of substance to Fisher’s treat-
ment. All we shall do here is to present the basic differential equation, and cite a few of
the conclusions.

With haploid selection and selection coefficient s, an argument similar to that which
leads to equation (IV-60) yields

p(x, t + 1) � p(x, t) + s p(x, t) [1− p(x, t)] +
m
2

∂2p(x, t)
∂x2 (IV-72)

In this case, since we are not dealing with an equilibrium cline, we have indexed p
by t as well as x, in which case the second derivative must be a partial derivative. The
argument implicitly assumes that s and m are small. In that case, we will not go far
wrong by approximating p(x, t + 1) by its Taylor series expansion around p(x, t),

p(x, t + 1) � p(x, t) +
∂p(x, t)

∂t
, (IV-73)
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so that we get (dropping the arguments of p but keeping in mind that it is a function of
x and t),

∂p
∂t

= s p(1− p) +
m
2

∂2p
∂x2 (IV-74)

which is the partial differential equation of the system. In particular, we are interested
in the solution curves which propagate unchanged in shape at a constant velocity. If the
velocity rightwards along the x axis is v, then moving rightwards by an amount v dt at
time t should involve as much change in gene frequency as moving back in time by an
amount dt, so that we have the wave condition that the velocity of the wave, times the
negative of its slope, is the rate at which the water rises

−v
∂p
∂x

=
∂p
∂t

, (IV-75)

This common-sense condition can be substituted into (IV-72) to get

m
2

∂2p
∂x2 + v

∂p
∂x

+ s p(1− p) = 0 (IV-76)

This equation has no explicit solution, but Fisher obtained information regarding
the velocity v. It turns out that depending on the initial pattern of gene frequencies,
there may be waves of different velocities. But the wave of greatest biological interest
corresponds to the slowest possible velocity, which is

v =
√

2ms. (IV-77)

The methods by which this is established are discussed in some detail by Moran (1962).
References to further work are given by Hadeler (1976).

While the mathematics involved is no doubt challenging, some caveats are necessary.
In some cases (e.g. a recessive advantageous gene) a wave does not even exist. If the
environment has inhomogeneities, as in a stepping-stone model, they can severely affect
the speed of the wave, so that the result (IV-75) may not accurately approximate more
realistic spatial distributions. The speed of propagation of a wave depends critically on
the exact shape of the leading edge of the wave, so that genetic drift may also have an
effect on wave speed. Slatkin and Charlesworth (1978) give a numerical simulation in
which a stepping-stone model with finite populations achieved only half the wave speed
predicted by the Fisher theory.

There is thus reason for skepticism of the relevance of the theoretical result. The
question is of some importance, because a wave of advance would be difficult to distin-
guish from a stationary cline in practice, and we would like to know how easily we may
be thus misled about the type of selection present. In chapter VII we will see that genetic
drift can also mimic a cline if conditions are right.
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Exercises

1. With three alleles, find a set of gene frequencies in two populations which give more
heterozygotes than expected under Hardy-Weinberg proportions for at least one of
the heterozygous genotypes, if we sample from a mixture of the two populations.

2. Here are the gene frequencies of one allele at each of four loci in four (imaginary)
populations:

gene A, gene B, gene C, gene D,
allele A1 allele B3 allele C6 allele D3

Sedro-Woolley 0.1137 0.4521 0.0438 0.2311
Burlington 0.1442 0.4799 0.0626 0.2216
Mount Vernon 0.1800 0.5309 0.0843 0.1850
Anacortes 0.1527 0.4276 0.0692 0.3017

Someone suggests that the Burlington population may be entirely the result of
people who came from the other three towns. What would then be the three
fractions of the genes in Burlington that came from each of those three towns?
(Hint – the three fractions have to add up to 1). Show how you figured this out.

3. When linkage disequilibrium is created by an initial admixture of two populations,
each in linkage equilibrium, but with both loci having different gene frequencies
in the two populations, what will be the formula for the decay of D with time?

4. In a two island model with immigration rates 0.1 and 0.2 into the islands, whose
initial gene frequencies of an allele are respectively 0 and 1, what will be the equi-
librium gene frequency? (Hint – find a quantity a which has the property that if
p1 and p2 are the frequencies of the allele in the two islands that the weighted average
ap1 + (1− a)p2 stays unchanged from one generation to the next).

5. Suppose that there are three populations with gene frequencies for allele A of 0.1,
0.2, and 0.5. In each generation a fraction 0.9 of each population comes from the
population and the rest come equally from the other two. (This is true for all
three populations). What is the ultimate gene frequency in the populations? How
quickly is this attained (i.e. how long does it take to get halfway to the equilibrium
gene frequencies?). Hint: this looks hard but all that is necessary is that you look through
the various models in chapter IV until you find one that handles this case – then figure out
how to use the equations that are given for that model.

6. Can you construct a case with two populations exchanging migrants at a constant
rate, in which the gene frequency in a population oscillate but ultimately settle
down to an equilibrium? A numerical example will suffice.
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7. In the one-island model, what will be the “migrational load” as a function of m
and s? Investigate the cases where the allele favored on the island is dominant,
and where fitnesses on the island are geometric. You can assume that m > s.

8. For different degrees of dominance of A in a one-island model, obtain from an
intuitive argument the conditions for A to increase in its island if initially present
in very low frequency. How does this compare with the conditions for A to have
an equilibrium gene frequency which is nonzero? What does the comparison of
these two sets of conditions tell us about the patterns of dominance will we see
among locally adapted alleles (as compared to the dominance of a random sample
of locally favorable new mutants)?

9. For the haploid Levene model of section (IV.10), with two equal-sized patches having
fitnesses of A : a of 0.5 : 1 and 2 : 1, what will be the behavior of the gene
frequency of A as a function of its frequency p?

10. What is the expression for the “slope” of the gene frequencies in the two-island
model with haploid selection? How does it compare numerically with the slope
from (IV-69) for an infinitely long cline in cases with small s and small m? What
are the intuitive explanations for any discrepancy?

11. On intuitive grounds, do we expect that a cline of finite length will have a greater
or a lesser slope than a cline in a habitat of infinite length? Why?

Complements/Problems

1. In a mixture of populations, express the general formula for E[PAi Aj ] in terms of
covariances of allele frequencies. In a two-allele case, can E[PAi Aj ] ever be less than
the product of the mean gene frequencies of each allele?

2. In a mixture of gametes from populations which are themselves not in linkage
equilibrium, what is the expression for D in terms of mi, pi, qi, and Di? In terms of
covariances between and within populations?

3. With two parental populations and an admixed population, with observed (sam-
ple) gene frequencies p1, p2, and pad, and with sample sizes n1, n2, and nad, what is
the maximum likelihood estimate of the degree of admixture? Be sure to consider
all cases.

4. Suppose that admixture occurs by male sailors from population 2 settling down
in population 1. How will the effects on gene frequency differ if we compare
autosomal vs. sex-linked loci?
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5. In the general two-island model with immigration rates m1 and m2, what is the
equilibrium gene frequency as a function of the initial gene frequencies p1(0) and
p2(0)? Now suppose we assume that You can use matrices. What is the rate of
approach to equilibrium as a function of m1 and m2?

6. In the above case, the different values of m1 and m2 are due to there being an equal
number of migrant individuals M in each direction, but different population sizes
N1 and N2 in the islands. Express the above result in terms of N1, N2 and M rather
than m1 and m2. Why does the result make good intuitive sense?

7. Two populations exchange migrants. They are of equal size and have migration
rate m between them. There is a locus which has fitnesses of AA, Aa, and aa which
are 1 : 1 − s : 1. Suppose that allele A is at initial frequency 0.1 in population
1 and 0.9 in population 2. If m is considerably smaller than s, what will be the
approximate gene frequencies in each population when everything settles down to
equilibrium? Hint: there is an analogy here of migration to mutation. This one can be
done exactly by equations using the symmetry of the situation, or approximately using the
analogy – whichever you feel you can handle.

8. Suppose that we have a stepping-stone population structure with migration rate
m and no selection. Imagine a region in which gene frequency is initially a linear
function of position. Will the gene frequencies change? What is wrong with this
result?

9. Why didn’t we use 20 rather than 16 populations in the numerical calculations of
equilibrium gene frequencies for the ramp pattern of selection? (It wasn’t just the
numerical difficulty - it was a cover-up. Unmask this dastardly deed.)

10. Suppose that we have two continents, one with a gene frequency of 1.0 for allele
A, and the other with a gene frequency of 0. Between them stretch a chain of
islands that form a perfect stepping stone model, with migration rate m/2 between
adjacent islands, and migration rate m/2 into each of the terminal islands from
the nearby mainland. The mainland gene frequencies are unaffected by the gene
flow across the islands, because the continents are so big. There is no selection or
mutation. What is the equilibrium array of gene frequencies in the islands? (Hint
– the pattern is the same no matter what the number of islands. Don’t bother to derive the
equilibrium from first principles, you will probably succeed if you make a good guess and
then verify that it is the equilibrium).

11. Suppose that a stream has a large resident population of rainbow trout (that remain
there and do not run to the sea). They are fixed for a locally-favored allele A at a
locus that would have fitnesses of AA, Aa, and aa of 1 : 0.9 : 0.81 in that stream. A
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hatchery is suddenly set up next door and as a result of straying from the hatchery
in each generation trout that are all aa enter the stream and breed with the locals,
the newly-arrived hatchery fish arriving adults and constituting 5% of all parents
in each generation.

(i) What will be the ultimate fate of allele A?

(ii) Make some calculation that gives us a good sense for how rapidly this ultimate
state is approached, and describe why the calculation conveys that.

12. What would be the “migrational load” in a cline if we roughly approximate the
cline by saying that gene frequency is linear from 0 to 1 with slope

√
s/3m in the

middle of the cline and either 0 or 1 beyond there?

13. A (non-recessive) favorable allele expanding in a two-dimensional environment
will form a nearly fixed patch which becomes circular in shape, and at its edge
there is a wave of advance outwards that moves at the same speed as in the one-
dimensional case. Can you see why? Think about the fact that our planet is spher-
ical, but to those who live on it, its surface looks flat.
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Chapter V

INBREEDING

V.1 Introduction

We now deal with the consequences of non-random mating. There are two important
kinds of non-random mating: assortative mating and inbreeding. The first is preferential
mating of individuals with similar phenotypes. For example, at a locus with two alleles,
aa individuals might mate only with other aa individuals, and A- individuals (AA or
Aa) might mate only with other A- individuals. The second type of non-random mating
is inbreeding. Inbreeding is the preferential mating of relatives, where the probability
of mating depends only on the degree of relationship, with the genotype or phenotype
not further affecting the chance of occurrence of a particular mating, once the degree of
relationship is known. In this chapter we are concerned only with inbreeding.

B C D

E G

H

Figure 5.1: Pedigree example. Circles are females, squares males. Arrows
point from parents to offspring.

Nonrandom mating seems at first to be a prohibitively difficult phenomenon to deal
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B C D

E G

H

AA Aa aa

AA Aa

AA

Figure 5.2: A particular assignment of genotypes compatible with the pedi-
gree of Figure 5.1 and with the Mendelian rules. There are 155 such assign-
ments, 45 of which have individual H as AA.

with. Consider the situation shown in Figure 5.1. Two half-sibs, E and G, have mated to
produce an offspring, H. Suppose that a great many such half-sib matings occurred, and
that in each mating, the three original parents B, C, and D were taken at random from
a random-mating population with two alleles A and a, at gene frequencies p and 1− p.
What would be the fraction of the resulting individuals (those designated H) who were
(say) AA? The straightforward approach is to consider all possibilities. Each of the three
founding individuals B, C, and D could be any of the three genotypes, so that we start
with 3× 3× 3 = 27 possibilities. For each of these there are further possibilities for the
genotypes of E and G. Thus, if B, C, and D were respectively AA, Aa, and aa, E could be
either AA or Aa, and G could be Aa or aa. There are then further possibilities for H, so
that if E is AA and G is Aa, H could be either AA or Aa.

The particular assignment of genotypes to individuals shown in Figure 5.2 has a
probability of

p2 × 2p(1− p)× (1− p)2 × 1
2
× 1

2
× 1

2
(V-1)

Summing this sort of probability over all possibilities in which H is AA, we could obtain
the probability of this event. But it would be very tedious. There are 36 = 729 possible
assignments of genotypes to individuals. Of these, 155 do not violate the Mendelian
rules in the assignment of genotypes to phenotypes. Of those, 45 have individual H
being AA. Of course, as the individual cases are not equiprobable, the actual probability
of H being AA is not 45/155. Rather, it is a sum of 45 terms, each a probability of the
same sort as (V-1).

Clearly, this approach is difficult to carry out, even on a simple pedigree such as this
one. Fortunately a much simpler, although subtler method is available. It was invented
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and developed by Sewall Wright (1921a, b, c), although the version presented here is
Malécot’s (1948, 1969), who re-worked Wright’s methods in terms of probabilities rather
than partial regression coefficients.

V.2 Inbreeding Coefficients and Genotype Frequencies

.
The solution to the problem posed in Figure 5.1 will be easy if we can calculate the

inbreeding coefficient fH of individual H. The inbreeding coefficient of an individual is
the probability that the two gene copies present at a locus in that individual are identical
by descent, relative to an appropriate base population. Two genes are identical by descent
if, and only if, they are descended from the same individual gene copy. Now of course
we must stop somewhere as we trace back the ancestry of the two genes. Otherwise
any two gene copies would be certain of being identical by descent, provided that life
has a monophyletic origin. The function of the base population is to set the context of
the problem. In the base population, all gene copies are assumed not to be identical by
descent.

Once we know f for an individual, it is not hard to calculate the expected genotype
frequencies. There are two cases. A fraction f of the time, the two gene copies in the
individual are identical by descent. If so, then in the two-allele case both will be A if
the gene from which they were copied in the base population was an A. This will be so
p of the time, where p is the frequency of A in the base population. If the two copies
that are identical by descent are descended from a copy that is a, then both copies will
be a, which will happen 1− p of the time. A fraction 1− f of the time, the two gene
copies in the individual will not be identical by descent. They are then descended from
different copies in the base population. Under the particular assumption that the base
population was formed by random mating and is in Hardy-Weinberg proportions, p2 of
the time both gene copies will be A. Putting all of this together, the expected genotype
frequencies will be

AA p2 (1− f ) + p f

Aa 2p(1− p) (1− f )

aa (1− p)2 (1− f ) + (1− p) f .

(V-2)

Note that we have not only assumed that the base population is in Hardy-Weinberg
proportions, we have implicitly assumed that there is no mutation, since we assume that
in the time since both gene copies originated from the same copy, there has been no
further mutation. The assumption that two gene copies not identical by descent have,
in effect, been drawn at random from the base population implicitly assumes that there
are no differential viabilities or fertilities. These formulas are implicit in the classic and
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pioneering treatment of the population genetics of inbreeding by Sewall Wright (1921a,
1921b, 1921c). They seem to have been first stated explicitly by him 12 years later (Wright,
1933).

Extension of (V-2) to multiple alleles is straightforward. If both gene copies are iden-
tical by descent, the probability that the individual is an Ai Ai homozygote is pi. If the
gene copies are not identical by descent, then the probability of any genotype is simply
its Hardy-Weinberg probability. Then the genotype frequencies will be:

Ai Ai p2
i (1− f ) + pi f

Ai Aj 2 pi pj (1− f ) (where i �= j).
(V-3)

In the case of the pedigree in Figure 5.1, it will turn out that fH = 1/8. The base
population is the population from which the individuals B, C, and D were drawn. In
that population, the alleles A and a had gene frequencies p and 1− p. So the probability
that H is AA is simply

7
8

p2 +
1
8

p, (V-4)

the chance that it is Aa is 14/8 p(1− p), and the probability that it is aa is 7/8 (1−
p)2 + 1/8 (1− p), which when expanded becomes

1 − 15
8

p +
7
8

p2. (V-5)

Notice that the average gene frequency of A among individuals produced by the same
mating scheme leading to H is simply p, since

7
8

p2 +
1
8

p +
1
2

14
8

p(1− p) = p. (V-6)

More generally, the gene frequency of A among all individuals having inbreeding coef-
ficient f is

p2(1− f ) + p f +
1
2
× 2p(1− p) (1− f ) = p (1− f ) + p f = p. (V-7)

The reader may verify that the same relationship holds for multiple alleles. Inbreeding
does not affect gene frequencies, on average. But it does affect the probability of co-
occurrence of two A or two a genes in the same individual.

Expressions (V-4) show how easy it is to compute genotype frequencies once we
know f. If there is a simple method for computing f itself, then the inbreeding-coefficients
approach will be decidedly superior to direct enumeration.
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C

E G

H

c’

e g

c

Figure 5.3: A simple example of inbreeding. The same as Figure 5.1, except
that the gametes and the origin of the gene copies are shown, and extraneous
individuals are deleted from the pedigree. The braces under individuals em-
phasize that each gamete contains at random one of the two gene copies at
the locus in the parent individual.

V.3 The Loop Calculus: A Simple Example.

In the pedigree in Figure 5.1, the fact that H is partly inbred is the consequence of
the fact that both the mother of H (namely E) and the father of H (namely G) share a
common ancestor. Thus it is possible to trace back from H through E to the common
ancestor, C, and then from C through G back to H. A common ancestor creates at least
one loop in the pedigree. A method of calculating f was developed by Wright (1922)
which works by finding and examining loops in the pedigree of the individual whose f
must be computed. Figure 5.3 shows the same pedigree, redrawn in the form we will
use it. If H has two gene copies which are identical by descent, this must reflect the fact
that the copy in gamete e is descended from the copy in gamete c, that the copy in c is
copied from the same gene copy in C as is the copy in c′, and the copy in g is descended
from the copy in G. These events have easily-computed probabilities, dependent only on
the Mendelian rules of inheritance. Let us denote the event that “the gene copies c and
c′ are identical by descent” by (c ≡ c′). Suppose that we denote the event “the gene
copy in e is a copy of the gene copy in c” by (e ← c). We distinguish between ← and
≡ because one gene copy may be identical by descent to another without being a direct
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copy of it. Note that we have no use for individuals B and D in this computation, so that
they can be omitted from the pedigree. We want to compute

fH = Prob (e ≡ g)

= Prob [(e ← c) and (c ≡ c′) and (c′ → g)].
(V-8)

But the events (e ← c), (c ≡ c′), and (c′ → g) are the results of meioses in two
different individuals, so that they are independent of one another. So we can multiply
their probabilities:

fH = Prob (e← c)× Prob (c ≡ c′)× Prob (c′ → g). (V-9)

The probability that the gene copy in e is descended from that in c is clearly 1/2, as
that is the fraction of time that the gene in e arises from the maternally-derived gene in
E. The event (c ≡ c′) is a bit more complex. If c and c′ are both descended from the left-
hand (maternally-derived) gene in C, they will be identical by descent. This event has
probability 1/2× 1/2 = 1/4. But c and c′ could also be identical by descent through
both being copies of the right-hand (paternally-derived) gene in C, an event which also
has probability 1/4. If they are descended from different copies in C, they cannot be
identical by descent. So Prob(c ≡ c′) = 1/4+ 1/4 = 1/2. The event (c ≡ c′) is clearly
independent in its occurrence from (e ← c), as whether c and c′ are copies from the
same gene in C has to do with the random alignment of chromosomes in two successive
meioses in C, and whether (e ← c) depends on the random alignment of chromosomes
in a meiosis in E. The event (c′ → g) is clearly of the same nature as (e ← c), and has
probability 1/2, and is independent of the other two events. So

fH =
1
2
× 1

2
× 1

2
= 1/8. (V-10)

This is the value previously stated, and justifies the formulas (V-4).
The computation of f makes the same assumptions as the direct enumeration method.

For the stated probabilities to be correct, there can have been no mutation. The assump-
tion of no natural selection plays a more hidden role: if there is natural selection, an
individual receiving (say) the left-hand gene copy in E may be more likely to survive to
adulthood than if it received the right-hand gene copy. This makes that individual more
likely to be included in the pedigree, and biases the probability Prob(e ← c) away from
1/2. Interestingly, we must not only assume that there is no natural selection acting at
the locus with which we are concerned, but we must also assume that there is no natural
selection acting at any locus linked to it.

We have not discussed the way in which the definition of the base population has
entered into the computation of fH. The base population is the initial population from
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Figure 5.4: A more complex pedigree.

which B, C, and D were drawn. We assumed that if the gene in e came from B, or the
gene in g came from D, or if the genes in e and g came from different genes in C, then
the two genes in H could be regarded as drawn at random from the base population.
This implicitly defines the base population as the one from which B, C, and D were
drawn, and assumes that population was in Hardy-Weinberg proportions. If B, C, and
D actually came from a different situation, for example a population of F1 offspring from
a cross of two pure lines, then the method of computation given here will not work.

V.4 The Loop Calculus: A Pedigree With Several Loops.

The pedigree in Figure 5.4 will serve as an example of the use of the loop calculus in its
fullest form. Extraneous individuals have again been omitted (one parent each of G, C,
and D).

Three loops lead from g to h which are relevant. The first loop is IGECBDHI. This
corresponds to the events (g ← e ← c ← b ≡ b′ → d′ → h). The probability that the
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copy in g is identical by descent to the copy in h through this route is (1/2)6 = 1/64.
The second loop is IGEDHI. This corresponds to the events (g ← e← d ≡ d′ → h). The
probability that (g ≡ h) by this route is (1/2)4 = 1/16. The problem arises as to how to
combine these probabilities. The key to this problem is to notice that it is impossible for
both (e ← d) and (e← c) to be true at the same time. So I cannot be inbred through both
of these loops simultaneously. These are mutually exclusive events, so their probabilities
should be summed.

The third loop, IGEHI, presents a thornier problem. It corresponds to the events
(g ← e ≡ e′ → h). The problem arises with the event (e ≡ e′). If individual E, at the
top of this loop, were one of the original ancestors of the pedigree, there would be no
problem. Then we could have e be identical by descent to e′ only if both were copies
of the same gene copy in E. Otherwise they would be copied from different genes in
the base population, and by definition could not be identical by descent. However, E is
itself a partially inbred individual. It is at the bottom of the loop ECBDE. Half of the
time, e and e′ are copied from the same gene copy in E. The other half of the time, they
represent both gene copies in E, and then their probability of being identical by descent
is fE. So

Prob (e ≡ e′) =
1
2
+

1
2

fE =
1
2
(1 + fE). (V-11)

Then the contribution of loop IGEHI to f I is (1/2)3(1 + fE). Now the same arguments
tell us that fE = (1/2)3, so the loop IGEHI contributes (1/2)3[1+ (1/2)3] to f I . This loop
represents an event which is mutually exclusive with the events of the other two loops,
so we can add the three probabilities, getting

f I = 1
64 +

1
16 +

1
8

(
1 + 1

8

)
= 1

64 +
4
64 +

8
64 +

1
64

= 14
64 = 0.21875.

(V-12)

The reader may have noticed some loops in Figure 5.4 which we have not counted.
The loop HEDH is not relevant. It is useful in part of the computation of fH, but that
quantity is not needed in the computation of f I . The events (h → e′) and (h → d′)
have probabilities which do not depend on fH, only on the Mendelian rules. Loops such
as IGECBDEGI look relevant, but are not. They would be useful only to calculate the
probability that the gene copy in g is identical by descent to itself! This we could obtain
without necessity of following loops, and the answer would tell us nothing of interest.
Loop IHDBCEGI looks very relevant. It is: we have already counted it. It is the same
loop as IGECBDHI, which we already counted. Since one corresponds to one of the ways
that the gene copy in h could be identical to that in g, and the other to the analogous way
that the gene copy in g could be identical to that in h, these are the same event, and we
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should not count the event twice. To avoid this duplication, we should always start from
one parent (say G) and proceed through the loop to the other (H). Finally, what about
loop IGECBDEHI? This loop passes through E twice, requiring that (e ← c) and (e′ ← d).
The only thing wrong with this loop is that we have already taken it into account when
computing the contribution from loop IGEHI. For in that case we included a contribution
of 1/4 fE which covered the event that the two gene copies in E were identical by descent
(the event (c ← b ≡ b′ → d) and that e came from the left-hand gene copy in E and e′
from the right-hand copy. The other 1/4 fE made the loop IGEDBCEHI redundant.

Loops must start from one parent of the individual and end at the other, must never
pass through the same individual twice, and may not change direction (up to down or
down to up) more than once. If the common ancestor at the top of a loop is itself inbred,
its own inbreeding coefficient must be taken into account by multiplying by 1/2 (1 + f )
rather than 1/2. We will not try to develop the rules of the loop calculus further: what
is important is that the reader understand the logic of the procedure.

V.5 The Loop Calculus: Sex Linkage.

For computing the inbreeding coefficient at a sex-linked locus, the logic followed is the
same, except for a change in the Mendelian rules. We will never, in a standard X-Y
sex determination system, want to compute the inbreeding coefficient of a male for a
sex-linked locus. Knowing that the lone gene copy at this locus on the X-chromosome
is identical to itself is of no interest. We will therefore be confined to computing f for
females.

The pedigree in Figure 5.4 will again serve as our example. The three loops originat-
ing from I are again the relevant ones to consider, plus the subsidiary loop above E. Let
us consider first the loop IGEDHI. Keep in mind that the locus under consideration is on
the X-chromosome. Clearly, the probability that (g ← e) is one-half, since an X-linked
gene copy in g could have been copied from the X-chromosome in e or from the X do-
nated by the male parent of G. Likewise, the probability that (e ← d) is also one-half,
as d carries one of the two X-chromosomes which end up in E. But we cannot compute
the probability that (d ≡ d′), as it cannot occur. The gamete d′ carries a Y-chromosome
from D to H, not a copy of the gene in question. Immediately, we can see that this loop
cannot be the cause of any identity between g and h. All loops containing two males in
succession must be regarded as broken, for the purposes of computing the inbreeding
coefficient at a sex-linked locus. The next of our three main loops, IGECBDHI, has the
same two males, B and D, so that it too cannot contribute anything to fH .

We are left with IGEHI. As already mentioned, the probability that (g ← e) is one-
half. The probability that (e ≡ e′) depends on fE, and is (1/2)(1 + fE), as before.
The chance that (e′ → h) is one of those affected by sex-linkage. Since e′ is the X-
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chromosome going into male H, and since h carries a copy of the same X-chromosome,
Prob(e′ → h) = 1. So

f I =
1
2

1
2
(1 + fE) (1) =

1
4
(1 + fE). (V-13)

We now compute fE in the same fashion. It is essentially the same kind of loop as
IGEHI, except that B is not inbred. So fE = 1/4, giving

f I = 1
4

[
1 + 1

4

]
= 1

4 +
1

16 = 5
16

= 0.3125.

(V-14)

Note that a sex-linked locus in I has a greater inbreeding coefficient than does an au-
tosomal locus. This will often, but not always, be true. In general, the breakage of the
male links in the pedigree will produce fewer loops relevant to a sex-linked locus, with
each of these loops contributing more heavily to f because of the higher probability of
transmission of X-linked genes through males. As in the case of an autosomal locus,
understanding the logic of the computation is more useful than rote memorization of
the rules.

V.6 The Method of Coefficients of Kinship.

A more systematic method of calculating inbreeding coefficients makes use of coefficients
of kinship. This is a translation of Malécot’s (1948) term “coefficient de parente,” which is
also often rendered: coefficient of parentage or coefficient of consanguinity. The coefficient of
kinship of two individuals, B and C, may be roughly defined as the inbreeding coefficient
of the offspring of a mating between B and C. The coefficient is defined whether or not
B and C ever actually mate: it may even be the case that they are the same sex. Given
that possibility, it is perhaps better to redefine the coefficient of kinship of B and C as
the probability that a randomly chosen gene copy from B is identical by descent to a
randomly chosen gene copy from C. Let us call this quantity FBC. Clearly, if D is the
offspring of a mating between B and C,

fD = FBC. (V-15)

To compute inbreeding coefficients in a pedigree, we therefore need only know the
coefficients of kinship of the pairs of individuals in the pedigree. It will turn out that
these can be computed in a systematic fashion, using a few simple rules. Figure 5.5
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Figure 5.5: Diagram showing the logic of computing a coefficient of kinship
involving an offspring from those involving its parents.

shows one of the two situations we need consider. B and C have mated and given rise to
an offspring, D. Suppose that we know FEB and FEC, and wish to compute FED. Notice
that the maternal (left-hand) gene in D is a copy of a randomly chosen gene copy from
B, and the paternal (right-hand) gene is a copy of a randomly chosen gene copy from C.
In choosing a gene copy from D, we therefore will get a random gene copy from B half
of the time, and a random gene copy from C half of the time. Then

FED =
1
2

FEB +
1
2

FEC. (V-16)

The other case we must consider is when E is the same individual as B. Formula
(V-16), applied mechanically, would yield

FBD =
1
2

FBB +
1
2

FBC. (V-17)

But what is FBB? It must be the probability that two gene copies, drawn indepen-
dently from B, are identical by descent. Since these gene copies will represent the same
copy half of the time, and different copies half of the time,

FBB =
1
2
(1 + fB). (V-18)

fB can be computed from the coefficient of kinship of the two parents of B, as given by
a relation like (V-15).

For the initial individuals founding a pedigree, they are assumed to be non-inbred
and have coefficients of kinship zero. We can then use (V-13), (V-15), and (V-12) to com-
pute those coefficients of kinship which involve their immediate offspring, then those
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which involve their offspring, and so on. Whenever one of the individuals involved is
new to the pedigree, drawn from the base population, we assume that its coefficient of
kinship with all pre-existing individuals in the pedigree is zero, and its inbreeding coef-
ficient is zero. It will be useful to keep in mind that FBC = FCB for all individuals B and
C. Table 5.1 shows the computation of the coefficients of kinship for the pedigree in Fig-
ure 5.4. The computation is simple but repetitious, lending itself easily to programming
for a computer. There are, however, some pitfalls possible. In the pedigree of Figure
5.4, if we compute FEC by looking at the kinship coefficient of E with the ancestors of
C (rather than of C with the ancestors of E) the result may be incorrect. To see this, try
it both ways. This method was first suggested by Cruden (1949) and Emik and Terrill
(1949). It is expounded in some detail by Kempthorne (1957) and by Falconer (1989). It
is efficient enough for medium-size pedigrees.

For very large pedigrees (tens of thousands of individuals) the method will generate
too many coefficients of kinship to be practical. In such cases, loop-finding programs
such as that of Mange (1964) will be more efficient if the inbreeding coefficients of only
a few individuals are desired. Alternatively, one may use random sampling techniques
such as those of Wright and McPhee (1925) or Edwards (1968) for a useful rough estimate
of f .

The method of coefficients of kinship is easily extended to sex-linkage.

V.7 The Complication of Linkage.

So far, we have considered only a single locus. Suppose that we wanted to know the
probabilities of genotypes at two loci in an inbred individual. We can develop expres-
sions for the genotype frequencies in terms of the probabilities that the two loci are or
are not inbred. If F00 is the probability that neither locus is identical by descent, if F10 is
the probability that locus A is identical by descent but B is not, if F01 is the probability
that A is not identical by descent but B is, and if F11 is the probability that A and B
are both identical by descent, then the genotype probabilities can be written straightfor-
wardly in terms of these quantities. If the base population is at linkage equilibrium with
frequencies p of A and q of B, then

Prob (AABB) = p2q2 F00 + pq2 F10 + p2q F01 + pq F11. (V-19)

The logic of (V-19) is the same as for (V-2). I will not explain it in detail here. Similar
expressions can be worked out for the other genotypes. The four coefficients F00, F01, F10,
and F11 actually require only one new quantity to be computed. Note that F10 + F11 = fA,
the probability that locus A is identical by descent irrespective of the status of locus
B. Likewise F01 + F11 = fB, and if both A and B are autosomal (or both sex-linked),
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Table 5.1: Sequence of computations of the coefficients of kinship of the indi-
viduals in the pedigree in Figure 5.4. Whenever used, O denotes an individ-
ual outside the pedigree.

Generation 1 FBB = 1
2(1 + FOO) = 0.5

Generation 2 FBC = FCB = 1
2 FBB + 1

2 FBO = 0.25

FCC = 1
2(1 + FBO) = 0.5

FBD = FDB = 1
2 FBB + 1

2 FBO = 0.25

FCD = FDC = 1
2 FBC + 1

2 FOC = 0.125

FDD = 1
2(1 + FBO) = 0.5

Generation 3 FEB = FBE = 1
2 FCB + 1

2 FDB = 0.25

FEC = FCE = 1
2 FCC + 1

2 FDC = 0.3125

FED = FDE = 1
2 FCD + 1

2 FDD = 0.3125

FEE = 1
2(1 + FCD) = 0.5625

Generation 4 FGB = FBG = 1
2 FEB + 1

2 FOB = 0.125

FGC = FCG = 1
2 FEC + 1

2 FOC = 0.15625

FGD = FDG = 1
2 FED + 1

2 FOD = 0.15625

FGE = FEG = 1
2 FEE + 1

2 FOE = 0.28125

FGG = 1
2(1 + FEO) = 0.5

FHB = FBH = 1
2 FEB + 1

2 FDB = 0.25

FHC = FCH = 1
2 FEC + 1

2 FDC = 0.21875

FHD = FDH = 1
2 FED + 1

2 FDD = 0.40625

FHE = FEH = 1
2 FEE + 1

2 FDE = 0.4375

FHG = FGH = 1
2 FEH + 1

2 FOH = 0.21875

Then
f I = FGH = 0.21875

fH = FDE = 0.3125

fE = FCD = 0.125
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fA = fB = f . Furthermore, all four of the F’s can be written in terms of f and F11:

F10 = f − F11

F01 = f − F11

F00 = 1− F11 − F10 − F01 = 1− 2 f + F11.

(V-20)

Once we compute f for an individual, by standard methods, we need only know F11 to
be able to obtain genotype probabilities jointly at two loci.

There are two simple cases. If the two loci A and B are so tightly linked that no
recombination ever occurs between them, then whenever one locus is identical by de-
scent, so is the other. In that case, F11 = f , and F01 = F10 = 0 with F00 = 1− f . Of
course, in such a case the base population is unlikely to be at linkage equilibrium, and
we must revise equation (V-19) to take gamete frequencies in the base population into
account. On the other hand, if the two loci are unlinked, so that r = 1/2, then it turns
out that F11 = f 2. The events of identity by descent at the two loci are independent,
once the pedigree is specified. This is not a fact which will be immediately apparent to
the reader of these notes. If you consider the various logical steps involved in inquiring
whether locus A and locus B are identical by descent, you will soon convince yourself
that in all cases, the ancestor from which a copy at locus A is descended is determined
independently of the ancestor from which a copy at locus B is descended. I leave this to
the reader as an exercise.

Unhappily, there is no simple method for computing F11 by a loop-calculus approach
when the recombination fraction r is neither 0 nor 1/2. The complication comes from a
fact which was implicit in the discussion of the unlinked case: it is possible for A to be
identical by descent through one loop and for B to be simultaneously identical by descent
through another. To use the loop approach one has to enumerate over all pairs of loops
above the given individual, and also compute as well the probabilities of joint identity
of descent through the same loop. The steps involved are tedious but straightforward,
and are practical in small pedigrees. Denniston (1975) shows how to do this in the
case where no other individual in the pedigree, above the particular individual we are
interested in, is inbred. It is also possible to develop methods based on coefficients
of kinship. However, the number of quantities which we must keep track of increases
greatly. We must compute probabilities such as FIJ;KL, the probability that locus A is
identical by descent in random gametes from I and J and that locus B is identical by
descent in gametes from K and L, plus a number of other sorts of quantities. Using this
approach with even a moderate-sized pedigree will require much computation.
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V.8 More Elaborate Probabilities of Identity.

The standard coefficient of kinship tells us the probability that two genes drawn at ran-
dom, one each from individuals I and J, will be identical by descent. But it does not
answer more complex questions, such as the probability that the maternally-derived
copies in I and J are identical by descent and at the same time the two paternally-derived
copies are identical by descent. Such quantities are of more than academic interest: they
enable us to compute quantities such as the probability that I is of genotype aa given
that J is aa. This is of importance in genetic counselling. We may want to know the
probability that a relative of an affected individual will be affected.

To compute the joint genotype probabilities of pairs of individuals, we can use the set
of 15 coefficients developed by Gillois (1964, 1965) and expounded by Jacquard (1974).
Other expositions of similar approaches include those of Cockerham (1971) and Den-
niston (1974). In simple cases one may use the matrix-computation methods of Li and
Sacks (1954), which were independently derived earlier by Geppert and Koller (1938).
Thompson (1974) has developed a general algebraic approach to the calculation of si-
multaneous genotype probabilities of a number of individuals in a pedigree, suitable for
computation in small pedigrees. See Karigl (1982) for further generalizations of these
methods.

V.9 Regular Systems of Inbreeding: Selfing.

When the same pattern of mating is repeated in each generation of a pedigree, we can
take advantage of this regularity in computing the inbreeding coefficient. In the next
few sections, we will see how this is done. Although regular systems of inbreeding are
fun and of some importance, our underlying objective will be to explain the machinery
that we will then use to analyze inbreeding in random-mating finite populations.

The simplest possible regular system of inbreeding is repeated self-fertilization, shown
in Figure 5.6. In each generation, the single individual in the line self-fertilizes to pro-
duce the single individual of the next generation. Suppose that we want to know the
inbreeding coefficient of the individual in generation t in a self-fertilizing line, where
generation 0 is drawn from the base population. Let this inbreeding coefficient be ft.
Since ft is also the coefficient of kinship of the two gene copies in the gametes of gener-
ation t− 1,

ft =
1
2
(1 + ft−1). (V-21)

This is simple enough, and it can readily be used to find a formula for ft in terms of t and
f0. But an even simpler approach is to follow ht = 1− ft. This is the probability that the
two gene copies in the individual of generation t are not identical by descent. A direct
argument which gives us a recurrence relation for ht is as follows. Half of the time, the

231



t

t−1

t+1

generation

Figure 5.6: The system of repeated self-fertilization.

two gene copies are descended from the same gene in the individual of generation t− 1.
If so, they cannot be non-identical. Half of the time, they are descended from different
copies in generation t − 1, in which case the probability that they are not identical by
descent is simply ht−1. So

ht =
1
2

ht−1. (V-22)

We immediately see that since h is being multiplied by 1/2 every generation,

ht =

(
1
2

)t
h0 =

(
1
2

)t
(V-23)

Clearly

ft = 1− ht = 1−
(

1
2

)t
. (V-24)

As h declines to 0, f rises to 1.
In this particular example, we can also analyze the results by enumerating genotypes.

Simple consideration of the Mendelian rules will show that if the individual of genera-
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Table 5.2: Proportion of self-fertilizing lines having various genotypes, when
the base population is in Hardy-Weinberg proportions with two alleles whose
frequencies are 0.6 and 0.4.

Proportion of lines which are:
AA Aa aa

generation

0 0.36 0.48 0.16
1 0.48 0.24 0.28
2 0.54 0.12 0.34
3 0.57 0.06 0.37
4 0.585 0.03 0.385
5 0.5925 0.015 0.3925
6 0.59625 0.0075 0.39625
7 0.598125 0.00375 0.398125
...

...
...

...
∞ 0.60000 0 0.4000

tion t is homozygous, so must be the individuals in all subsequent generations. But if
the individual in generation t is a heterozygote Aa, the individual of the next generation
will be AA one-quarter of the time, aa one-quarter of the time, and Aa half of the time.
Table 5.2 shows the results we expect if we set up a large number of self-fertilizing lines
from a random-mating population initially at Hardy-Weinberg proportions. Every gen-
eration, half of the heterozygous lines are converted into homozygotes. Note that the
overall gene frequency of A is not changed by inbreeding, although the proportion of A
within any one line tends to zero or one. The results fit equation (V-2), as they must, the
proportion of heterozygotes in generation t being 2p(1− p)(1− ft) = 2p(1− p)ht.

Thus the relative proportion of heterozygotes in generation 7, compared to the initial
generation, is

0.00375
0.48

= 0.0078125 = (0.5)7. (V-25)

So ht may be regarded either as the probability of non-identity-by-descent, or as the
fraction of initial heterozygosity still remaining among replicate inbreeding lines.
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Figure 5.7: The system of repeated full-sib mating, and three probabilities of
non-identity used to analyze it.

V.10 Regular Systems of Inbreeding: Full Sib Mating

.
Full-sib mating, which is a slightly more complicated system, will serve to illustrate

most of the details of analysis of a regular system of inbreeding. Figure 5.7 shows a
diagram of full-sib mating, in which in each generation a pair of full sibs is kept as the
source of the next generation. As there are two individuals per generation, there are a
total of 3 coefficients of kinship possible within a generation. While the analysis could
be carried through in terms of coefficients of kinship, it will prove easier to work with
three different quantities. These are illustrated in the lower part of Figure 5.7. We work
with probabilities of non-identity-by-descent of pairs of gene copies. The quantity ht is
the probability of non-identity of the two gene copies in a female in generation t. �t is
the corresponding probability of non-identity of the two gene copies in a male. kt is the
probability of non-identity of two genes, one drawn from the female and one from the
male.
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The first simplification in the analysis is to note that, provided that both the females
and males founding each line are drawn from the same base population (which we
assume), the symmetry of the situation demands that ht = �t throughout the process.
Hence, from this point on, ht will be redefined as the probability of non-identity of
two genes from the same individual, irrespective of its sex. We are now down to two
quantities, ht and kt. Because the two gene copies in the same individual definitely came
from different parents, and are copies of random gene copies in those parents, clearly

ht = kt−1. (V-26)

However, the two gene copies chosen at random from different parents can be of four
different origins. Both may be the maternally-derived copies, or both the paternally-
derived copies, or the first maternal and the second paternal, or the first paternal and
the second maternal. Each of these possibilities has probability 1/4. In the first two
cases, both came in the preceding generation from the same individual, an event with
total probability 1/2. But only in half of those cases would the two gene copies from the
same individual be copies of both gene copies in that individual, so that (1/4)ht−1 of
the time the two copies in different individuals are non-identical owing to descent from
non-identical copies in the same parent. One-fourth of the time they represent copies
of the same gene from the same parent, and cannot be non-identical. Half of the time,
they came from different parents (and were drawn randomly from those parents). Hence
they will be non-identical through descent from non-identical copies in different parents
(1/2) kt−1 of the time. Putting all of these possibilities together, we get

kt =
1
4

ht−1 +
1
2

kt−1. (V-27)

The initial values, h0 and k0, are clearly 1 if the initial male and female were drawn at
random from the base population. We can start with those values and use (V-26) and
(V-27) to compute ht and kt successively for as many generations as we desire. Figure
5.8 shows ht and kt plotted both directly and logarithmically against time (which we
measure in generations). It will be apparent from the logarithmic plot that after a few
generations, h and k decline geometrically (losing a constant percentage of their current
value each generation).

While we may be satisfied to know some arithmetic values of ht and kt, we may also
be interested in the ultimate rate of decay of h and k, which will be the rate at which ft
approaches 1. There is a short-cut method for finding the rate of decay, which we now
briefly examine. We first note that, from (V-26), ht−1 = kt−2. Substituting kt−2 for ht−1 in
(V-27), we find that

kt =
1
2

kt−1 +
1
4

kt−2, (V-28)

so that we can calculate each value of k from the two previous values. Now suppose that
k has reached the part of its curve in Figure 5.8 where it is declining geometrically. Then
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Figure 5.8: The decline of the probability of non-identity under repeated full-
sib mating. Circles give the probabilities of non-identity of genes in the same
individual, squares the corresponding probability for genes drawn from dif-
ferent individuals.

each k is a constant fraction λ of the previous k. So

kt = λ kt−1 = λ2 kt−2
and

kt−1 = λ kt−2 .
(V-29)

Substituting these into (V-28), we get

λ2 kt−2 =
1
2

λ kt−2 +
1
4

kt−2. (V-30)

Each term of (V-30) contains kt−2. Since it is never zero, it can be divided out of
each term, giving, after moving all terms to the same side of the equation, the following
quadratic equation in λ:

λ2 − 1
2

λ − 1
4

= 0. (V-31)
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Figure 5.9: Same as the previous figure, except that the vertical axis is scaled
logarithmically. Note how quickly the rate of decay of non-identity becomes
constant.

The solutions of (V-31) are (1±√5)/4. Since the λ we are looking for must be positive,
the relevant solution is the larger one:

λ =
1 +
√

5
4

= 0.80901699. (V-32)

Thus full-sib lines asymptotically lose nearly 20% of heterozygosity each generation.
Although we have computed the rate of decline of k, h must decline at the same rate, by
equation (V-26). The h in each generation is simply the k in the previous one.

HISTORY. This technique, of eliminating all but one quantity from the equations (V-26)
and (V-27), making two one-generation recurrence equations into one two-generation
equation (V-28), is of general applicability. It was used (in effect) by Sewall Wright in his
1921 papers, where he analyzed not only full-sib mating, but nine other simple mating
systems. The full-sib mating case was first analyzed by Pearl (1913), incorrectly. His
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results were corrected by Jennings (1914) and Fish (1914), and retracted by Pearl himself
(1914). However, all of these approaches made use of direct genotype enumeration.
Jennings (1916) was able to extend this analysis to the case of a parent-offspring mating
system. It was only with the elaboration of the inbreeding coefficient by Wright (1921a,
b, c) that such computations could be carried out easily for a wide variety of mating
systems.

V.11 Regular Systems of Inbreeding: Matrix Methods

.
The equations (V-26) and (V-27) are simultaneous linear homogeneous recurrence

equations. The present method for obtaining λ has neither been presented in general
form, nor has it found all relevant information. We now examine a technique using the
algebra of matrices, which allows complete and systematic solution of such recurrence
equations. The reader who is unfamiliar with matrix algebra may wish to familiarize
themselves with it before reading this section. Alternatively, no harm will come from
skipping this section. Simple numerical computation with equations (V-26) and (V-27)
over a number of generations will usually be sufficient to illustrate the properties of
full-sib mating, without recourse to more elaborate approaches.

The equations (V-26) and (V-27) can be rewritten in matrix form:⎡⎣ ht

kt

⎤⎦ =

⎡⎣ 0 1

1
4

1
2

⎤⎦⎡⎣ ht−1

kt−1

⎤⎦ (V-33)

which is a matrix equation of the form

xt = A xt−1. (V-34)

It follows that
xt = At x0. (V-35)

The matrix A has a characteristic equation which is obtained by subtracting λ from all of
the diagonal elements of A, then taking the determinant of the resulting matrix. Since
λ is unknown, the result is an expression in λ, in fact, a polynomial. Computing this
polynomial and equating it to zero, we obtain the characteristic equation:

(0− λ)

(
1
2
− λ

)
− 1

4
(1) = 0. (V-36)
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This is simply

λ2 − 1
2

λ − 1
4

= 0, (V-37)

which is precisely (V-31)! In most cases resulting from inbreeding systems, there are as
many distinct roots of the characteristic equation as there are rows (or columns) of A.
These roots are known as characteristic values or eigenvalues. Let us assume that in the gen-
eral case there are n rows (columns) of A. If there are not n different roots λ1, λ2, . . . , λn
of the characteristic equation, this is usually because we have failed to take advantage of
some symmetry in the pedigree, and the net result is that one or more of the quantities
in the vector xt are superfluous. Suppose that we have pared down the quantities in xt to
the minimum possible, and have found the n roots of the characteristic equation, which
we take to be distinct roots, no two of which are equal.

The standard spectral theory of matrices then tells us that we can find n vectors
y1, y2, . . . , yn, which satisfy the equations

Ayi = λi yi, i = 1, 2, . . . , n. (V-38)

When we have found these vectors, we can write the initial vector x0 as a linear com-
bination of these vectors. This means that we can find n constants c1, c2, . . . , cn such
that

x0 = c1 y1 + c2 y2 + . . . + cn yn. (V-39)

A property of the vectors yi (which are called the eigenvectors or characteristic vectors of
A), is that in general we can write

xt = c1λt
1 y1 + · · ·+ cnλt

n yn. (V-40)

This gives us a way to compute any xt once we have computed the eigenvalues and
eigenvectors of A, and the constants c1, . . . , cn. In particular, as t increases, the vector xt
is more and more closely approximated by the term

xt � c1 λt
1 x1, (V-41)

where λ1 is the eigenvalue of A which has the largest absolute value. In this case, the
elements of A are never negative, and each row of A never adds up to more than 1, as
the elements of the row are probabilities of mutually exclusive events. Two mathematical
theorems (Gershgorin’s theorem and Frobenius’ theorem) assure us that 0 < λ1 < 1 and
that, since all other eigenvalues are closer to zero than λ1, the convergence in (V-40)
will actually take place if c1 > 0. λ1 is worth notice. It is the asymptotic fraction of
heterozygosity which is retained each generation.

There is no point in belaboring this approach further. The reader interested in ac-
tual computations will find computer programs available to obtain the eigenvalues and
eigenvectors of matrices such as A. The point worth making here is simply that the
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manipulations of the recurrence equations in the previous section were not arbitrary
or based on trickery: they were a way of obtaining the characteristic equation and its
largest root. We can find this root in any case of interest, by finding A and getting its
characteristic equation.

OTHER MATRIX APPROACHES. An alternative approach to regular systems of in-
breeding which also uses matrix algebra is the one developed by Bartlett and Haldane
(1934) for an autotetraploid case. It was stated generally by Fisher (1949 and subsequent
editions). It involves setting up a matrix with one column for each of the genotype com-
positions of a given generation. Thus, in the case of repeated full-sib mating, there are
9 possible compositions in generation t if there are two alleles at the locus. The k-th
column of this matrix contains the probabilities that if we are now in the k-th genotype
composition, in the next generation we shall be in each of the possible genotype compo-
sitions. Fisher shows how to set up these matrices, and to simplify them somewhat. It
will always turn out that the largest eigenvalue of this matrix is the same as the value
λ1 obtained by the approach of this section (see, for example, the comments of Wright,
1969, pp. 171-173). In theory these matrices give an even more complete analysis of the
inbreeding system than does the smaller matrix A. In practice, however, they are quite
difficult to work with. They are very large matrices in all but the simplest cases.

V.12 Repeated double first cousin mating.

Figure 5.10 shows the system of repeated double-first-cousins mating, which we take as
the third (and final) example of a repeated mating system. The method of analysis is
analogous to the case of full-sib mating. We need only three quantities: ht, kt, and �t. If
we draw two gene copies from the pedigree,

they can come from three sources. If both come from the same individual, their
probability of non-identity is ht. If they come from individuals who are full sibs, their
probability of non-identity is kt. If they come from different individuals who are not
sibs, their probability of non-identity is �t. By carefully studying the pedigree, you will
discover that all possible pairs of individuals from the same generation fall into one of
these categories. Since the mating system avoids mating of sibs, the two gene copies in
one individual come from different non-sibs in the previous generation. The genes in
sibs come half of the time from different parents, who are nonsibs. Half of the time, they
come from the same individual, in which case they come from different gene copies half
of the time. Finally, the two genes in nonsibs cannot come from the same individual.
They will come from sibs half of the time and from nonsibs half of the time. Thus we
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Figure 5.10: The system of repeated double-first-cousins mating, and three
probabilities of nonidentity used to analyze it.

obtain:

ht+1 = �t

kt+1 = 1
4ht + 1

2 �t

�t+1 = 1
2kt + 1

2 �t

(V-42)

We can use these equations to compute these quantities in successive generations. The
initial values of h, k, and � are 1. After an initial period of a varying rate of decline,
all three quantities decline geometrically, with a constant factor λ by which each is
multiplied in each generation. We can find λ by eliminating all but one of the three
quantities h, k, and � from equations (V-42). Then we use equations (V-29) or their
equivalent to obtain an equation in λ which can be solved.

Alternatively, we can set up the matrix described in the previous section, and subtract
λ from its diagonal elements. By equating the determinant of that matrix to zero, we
obtain the equation for λ:

∣∣∣∣∣∣
0− λ 0 1

1
4 0− λ 1

2
0 1

2
1
2 − λ

∣∣∣∣∣∣ = 0, (V-43)
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or

λ3 − 1
2

λ2 − 1
4

λ− 1
8

= 0. (V-44)

The largest root of (V-44) is λ = 0.919643.
We can set up systems of size 8, 16, 32, etc., which are analogous to double-first cousin

mating in that they mate those individuals at each generation who are least closely
related. These “maximum avoidance of inbreeding” systems were analyzed by Wright
(1933). All have characteristic equations analogous to (V-31) and (V-44). For example,
the equation for octuple third cousin mating is:

λ5 − 1
2

λ4 − 1
4

λ3 − 1
8

λ2 − 1
16

λ− 1
32

= 0 (V-45)

V.13 Avoiding Inbreeding.

Interestingly enough, the systems of “maximum avoidance of inbreeding” do not have
the lowest ultimate rates of approach to homozygosity. With the same number of in-
dividuals, it is possible to devise circular half-sib mating systems which, although they
inbreed faster initially, have a lower rate of approach to total homozygosity. This was
shown by Kimura and Crow (1964), who treated such systems in generality. Robertson
(1964) provided a more general framework for this result. He showed that, in general,
regular systems of mating with a given number of individuals will have a lower rate of
approach to homozygosity the more closely related are the individuals who mate!

Of course, the best system of all for avoiding the loss of alleles from a population
of fixed size involves the most intense inbreeding of all. If we divide a population of
size 20 into 10 full-sib lines, and keep those lines isolated from each other, we stand a
good chance of retaining a reasonable fraction of the common alleles present initially.
For even though each such line reaches fixation for an allele, different lines may well fix
for different alleles. So although each individual becomes homozygous, we can restore
a good fraction of the initial heterozygosity of the base population by crossing different
lines. By contrast, a repeated mating system which does not break the population into
isolated lineages is certain to fix for one allele or another sooner or later, however small
its rate of approach to homozygosity.

In spite of the need to conserve the dwindling supply of genetic variability in domes-
tic animals and plants, the system of isolated inbred lines is rarely used. This is because
of the disastrous effects of inbreeding on viability and fertility. We now examine these
effects briefly.
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V.14 The Effects of Inbreeding.

The simplest effects of inbreeding are on the frequencies of phenotypes of recessive
alleles. From (V-2), if A is a recessive allele (the size of the letter notwithstanding) the
frequency of homozygotes is

p2(1− f ) + p f , (V-46)

which can be rewritten
p2 + f p(1− p), (V-47)

which shows that the frequency of homozygotes increases with f . How much it increases
is a function of the gene frequency p. When p = 0.1, the homozygote frequency will rise
from 0.01 to 0.1 as f is increased from 0 to 1. This is an increase by a factor of ten. But
when p = 0.001, the increase will be from 0.000001 to 0.001, a factor of 1000. If a popu-
lation has a great many rare recessive mutants, inbreeding will make the frequencies of
their phenotypes far greater. It is a quite general observation that severely deleterious
rare mutants tend to be recessive. There are straightforward functional reasons for this.
For loci which code for enzymes, a severely deleterious mutant tends to be one which
renders the enzyme inactive. When only half of the enzyme molecules (or polypeptide
chains) are inactive, there is still usually enough active enzyme around to give a normal
or nearly-normal phenotype. So severely deleterious mutants tend to be recessive more
often than dominant.

This is the basis of the effect of inbreeding in reducing fitness. There is much data on
the effects of inbreeding, but one set of figures will suffice. The frequency of congenital
genetic diseases is about 1% at birth. But if the parents are first cousins ( f = 0.0625),
this figure rises to 2%, implying that we would see a great increase in a mating which
produced a completely inbred offspring.

In the case of rare recessive alleles, we have seen that inbreeding produces a great
increase in the frequency of homozygotes for that allele. This implies that most of the
homozygotes result from identity by descent rather than from randomly-occurring ho-
mozygosity. One example should suffice. If a rare allele has p = 0.001, and if one mating
in a thousand is a first cousin marriage (for which f = 1/16 or 0.0625), then the average
f is (0.001)(0.0625) = 0.0000625. The frequency of homozygotes is (from (V-47))

(0.000001)(0.9999375) + (0.0000625)(0.001) = 1.062× 10−6.

The fraction of all homozygotes who result from inbreeding is

6.25× 10−8

1.062× 10−6 = 0.0588.

So although only one mating in a thousand involves inbreeding, and those are only first-
cousin matings, almost six percent of all homozygotes for the recessive allele come from
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those matings! These figures are of interest, in that they are reasonable for many genetic
diseases in human populations. One in a thousand is not untypical of rates of cousin
marriage in Europe and the U. S.

For an overdominant locus, there can also be a decrease of fitness as a result of
inbreeding. Suppose the fitnesses of three genotypes are:

AA Aa aa
0.5 1 0.5

Mean fitness of a population is increased above one-half by the presence of heterozy-
gotes. As the level of inbreeding increases, heterozygotes will become rarer, so that
mean fitness must decline. Since the frequency of heterozygotes at any stage is their
original frequency, multiplied by 1− f , this decline must be continual throughout the
process.

Both of the preceding cases are part of a more general process. Suppose that the
fitnesses of the three genotypes AA, Aa, and aa are respectively wAA, wAa, and waa. The
mean population fitness is:

[p2(1− f ) + p f ] wAA + 2p(1− p)(1− f )wAa + [(1− p)2(1− f ) + (1− p) f ] waa

= p2 wAA + 2p(1− p)wAa + (1− p)2 waa

+ f
[
(p− p2)wAA− 2p(1− p)wAa + ((1− p)− (1− p)2)waa

]
= w̄0 − f p(1− p) [2wAa − wAA− waa],

(V-48)
where w̄0 is (clearly) the average population fitness before the onset of inbreeding. The
direction of the effect of inbreeding and its size depend on the sign and magnitude of
2wAa − wAA − waa. This quantity is twice wAa − (wAA + waa)/2, which is the difference
between the fitness of Aa and the average of the fitnesses of AA and aa. So we can say
that the decline of fitness with inbreeding will be greater the farther above the average of
the homozygote fitnesses is the heterozygote fitness. We can thus immediately see that
mean fitness will decline under inbreeding if (i) the locus is overdominant, or (ii) the
allele with higher fitness is dominant, or (iii) even if there is a slight tendency to partial
dominance of the more fit allele. Another prediction of (V-48) is that if we plot mean
fitness against f , it will decline (or perhaps increase) linearly with f . There are no terms
in f 2 in (V-48).

MULTIPLE LOCI. This linearity only holds for a single locus. If fitness were a sum
of effects from different loci, each effect’s average declining linearly with f , we would
expect average fitness of the genotype to be linear with f . But when loci do not interact,
it is much more natural to assume that the fitness of a genotype is the product of fitnesses
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at the different loci. For example, if the probability of surviving a risk of death at locus
A is wAA, and the probability of surviving a totally unrelated cause of death at locus
B is wBB, the probability of surviving both should be wAAwBB. If the loci are also at
linkage equilibrium, then it can be shown that the mean fitness of individuals in the
population can be computed by taking the products of the mean fitnesses at the separate
loci. This means that the mean fitness is a product of terms, each a linear function of f .
In taking the products of a series of expressions like (V-48), we introduce higher powers
of f , so the decline (increase) of fitness is no longer linear. This calculation is fraught
with hidden assumptions. One is that the occurrence of identity by descent at different
loci is independent. This assumption may not be met even for unlinked loci if there is
any variation from individual to individual in f . It is perhaps best to move on without
attempting to untangle this particular difficulty further.

Note that there is nothing in the calculation in (V-48) which is specific to fitness. We
could as easily be considering any character which is controlled by a single locus and
assumes numerical values. We will return to this point when we consider the effects of
inbreeding on quantitative characters.

V.15 Some Comments About Pedigrees

.
Pedigrees, particularly regularly constructed ones, are fascinating structures from

a logical and combinatorial point of view. Two of their properties are worth special
comment.

First, it is not possible to sex-label all pedigrees. That is to say, we can draw some
pedigrees in which we cannot assign sexes to individuals without finding two individ-
uals of the same sex mating. The reader may wish to stop here and try to invent such
a case, then continue reading. The simplest example I know involves three parents and
three offspring. The parents are called A, B, and C. Suppose that all three pairwise mat-
ings occur, each producing an offspring. So A mates with B, A mates with C, and B
mates with C. Since B mates with both A and C, those two individuals must be of the
same sex. But A has mated with C, so they must be of different sexes. This is clearly a
contradiction. It is resolved by removing our assumption that it is possible to sex-label
this pedigree.

Second, a conjecture of Sewall Wright’s is worth mentioning. In all the cases we have
studied, continuation of the mating system leads to complete inbreeding. Wright noticed
that in certain cases this did not occur. These cases turned out to be ones in which the
number of ancestors of an individual rise faster than linearly as we move back in time to
previous generations. Thus in the case of full sib mating the number of ancestors of an
individual are 2, 2, . . . , 2, . . . as we move back in time. But if we had a mating system in
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which the number of ancestors was (say) 2, 2, 4, 4, 8, 8, . . . we would find that no matter
how long the inbreeding has been going on, the level of inbreeding will approach an
upper limit short of complete inbreeding. No counterexample is known to Wright’s rule.
Nevertheless, no rigorous (i.e., correct) proof of it exists, in part because of its generality.
I leave it to one of you to prove it.

Exercises

1. If we have a dominant trait whose gene frequency is 0.3, what will be the frequency
of the trait when f = 0? When f = 0.2? When f = 0.5? When f = 1?

2. James Roosevelt was one son of Eleanor Roosevelt and Franklin Delano Roosevelt,
who were fifth cousins (her maiden name was Roosevelt). What was his inbreeding
coefficient? (Note – fifth cousins are people who have one parent each that are
fourth cousins to each other, and similarly for fourth, third, and second cousins.)

3. Compute f I in this pedigree: What is f I when the gene is sex-linked?

I

4. What is the inbreeding coefficient of individual I in the following pedigree (written
in human genetic form):

A B

C D E G

H J K

L M N

P Q

I
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5. Calculate the inbreeding coefficient of individual I in this pedigree. Show the list
of loops you find and their contributions.

I

B C

D E G H

J K L

M N

6. What is the inbreeding coefficient of the bottom individual in this diagram (arrows
run downwards and all circles are individuals – note the self-fertilization):

7. For this regular inbreeding system, which runs from left to right, obtain the recur-
rence relations necessary to analyze it:

etc.

8. For a locus with a recessive allele a at a frequency of 0.01, suppose that we di-
vide the population into two parts and then inbreed each subpopulation until the
inbreeding coefficient is f . In terms of f , what is
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(i) the expected frequency of aa in one subpopulation?

(ii) the expected frequency of aa in the F1 cross between the two subpopulations
(individuals one of whose parents come from one population and one from
the other)?

(iii) the expected frequency of aa in the F2 between the two subpopulations (indi-
viduals whose parents are two different F1 individuals)?

Complements/Problems

1. Suppose that we have a parent-offspring regular system of inbreeding, of the fol-
lowing sort: Individuals #1 and #2 mate to produce individual #3. Then #2 and #3
mate to produce #4, then #3 and #4 to produce #5, and so on. Produce equations
for changes in probabilities of non-identity by descent. Obtain the asymptotic rate
of decline by finding λ. Compared with the results we obtained for repeated sib-
mating, does this system or mating inbreed faster or slower? (Hint: you will need
two coefficients, the probability of non-IBD of an individual, and the coefficient of kinship
between the individual and the parent who is about to mate with it. And you will have to
figure out how long is one generation.)

2. What are the recurrence equations for a regular full-sib inbreeding system when
we are considering a sex-linked locus?

3. Take the double first-cousins system in Figure 5.10 and turn the picture upside
down. What system of inbreeding is it?

4. Suppose that in an infinite random-mating population, a fraction s of (diploid)
individuals, chosen at random in each generation, reproduce by self-fertilization,
the remainder mating at random. Obtain a recurrence equation for the probability
of identity of descent of the two gene copies in an individual chosen at random.
How does this ft change through time?

5. If we take 20 individuals from an infinite, random-mating population and start 10
full-sib lines, continue inbreeding each line for a long time, then cross two of these
lines, will the heterozygosity of this hybrid individual be (a) greater, (b) less, or
(c) the same as that of a random individual from the original population? Hint:
(thinking will be more useful than algebraic computation on this one.)

6. Does the result of the previous problem mean that two inbred lines started from
a random-mating population will allow us to restore the full variability of the
original population by creating a hybrid population by crossing the two lines?
Why or why not?
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7. If in a population of individuals the average coefficient of inbreeding of newborn
individuals is f , and if at a locus there are completely recessive deleterious mutants
in the population with gene frequency q and mutation rate to the deleterious alleles
u, what is the probability of homozygosity for the mutant allele? If the selection
coefficient against that allele is s, what fraction of copies of the deleterious mutant
are eliminated in each generation? How large an effect will the inbreeding have on
the equilibrium gene frequency of the deleterious mutants?

8. Suppose that we store a large quantity of semen from a prize bull, and carry out the
following “parent-offspring” mating system: in each generation a cow is artificially
inseminated with some of the semen, and a female offspring is produced. This
offspring in turn is artificially inseminated with some of the semen to produce a
female offspring in the next generation, and so on. What will be the equations of
change in the inbreeding coefficient of these individuals? To what value will f tend
through time, and how quickly?

9. Suppose that we start a self-fertilizing line from an Aa heterozygous individual.
Suppose further that the viabilities of AA, Aa, and aa are in the ratios of 1− s : 1 :
1− s. In each generation one of the surviving offspring is chosen to continue the
self-fertilizing line. Find equations for the change of ft. To what limit does ft tend?
How does this depend on s? How does mean fitness change with time? How does
this compare with the naive result which we would get by applying (V-18) and
(V-48)? Explain any discrepancy.

Suppose that this locus is symmetrically overdominant, so that the fitnesses are

Genotype AA Aa aa
Fitness 1− s 1 1− s

How rapidly do the heterozygotes disappear in that case? The model is that a het-
erozygous individual breeds many offspring (in proportions 1

4 : 1
2 : 1

4), and these
then undergo selection with the above fitnesses, deterministically. Then a random
survivor is chosen to be the parent. Concentrate on computing the probability that
a heterozygote gives a heterozygote as the adult in the next generation. Compute
this in terms of s, and explain your logic. Hint #1: You should follow genotype fre-
quencies among the offspring, not just gene frequencies. Hint #2: Make sure to check your
result by seeing whether it does the right thing when s = 0, which is the no-selection case,
and also does the right thing when s = 1, which will be the case where only heteryozygotes
can survive. If it does not do the obvious thing in these two cases then you have made a
mistake somewhere. Hint #3: you don’t need to do anything involving identity-by-descent
to do this one.

10. Suppose that we have sampled N individuals from an infinite population whose
genotype frequencies were in the proportions (V-2). Suppose that we assume that
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the sample of size N contains the three genotypes precisely in the proportions given
by (V-2). If we compute the chi-square statistic to test departure of the genotype
frequencies in the sample from Hardy-Weinberg proportions, what will this quan-
tity be, as a function of N, f and p? How large a sample would be needed, to
detect an inbreeding coefficient of 0.05? of 0.01?

11. What is wrong with the preceding calculation as a means of finding the expected
value of the chi-square test for departure from Hardy-Weinberg proportions, based
on a sample of size N from a population whose genotype frequencies are given by
(V-2)? (Hint:) consider what you would get if N = 1, and ask in what ways this differs
from the result of the previous problem. Think.)

12. Suppose that we consider two uniting gametes in a population with given p and
f . Let X = 0 if the maternal gamete is a, X = 1 if it is A. Let Y = 0 if the paternal
gamete is a, Y = 1 if it is A. In terms of p and f : What is the mean of X? The
mean of Y? The variance of X? of Y? The covariance of X and Y? The correlation
coefficient of X and Y?

13. J.B.S. Haldane considered a system of repeated backcrossing of an individual het-
erozygous at one locus to a pure line homozygous at that locus. (In repeated
backcrossing, in each generation we preserve only the offspring heterozygous at
that locus, and breed them to new individuals taken from the pure line). If there
is another locus, also heterozygous in the experimental line and also homozygous
in the pure line, linked to that locus with recombination fraction r, what are the
equations for the probability that the second locus is homozygous in generation t?
We repeatedly cross AB/ab × ab/ab, with the offspring that are saved for the next
generation being only those that have genotype Aa. Sooner or later, the B allele will
be lost, replaced by b. What does this result imply about how large a region around
locus A will still be heterozygous after t generations? Is there a simple formula for
its expected length?
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Chapter VI

FINITE POPULATION SIZE

VI.1 Genetic Drift and Inbreeding: their relationship

You had two parents, they each had two parents, they each had two parents, and so on.
If you go back 10 generations, you had 1024 ancestors. At a remove of 20 generations,
1,048,576 ancestors. At a remove of 40 generations (about 1000 years), you must have had
over a trillion ancestors! Now, it is quite clear that not that many people have ever lived.
How do we resolve the paradox? Quite simply: some of those people were the same
individuals, counted many times since they occur many times among your ancestors.
Your parents must have been related to each other. Clearly any outbreeding species
whose numbers are finite will be subject to the same argument. It therefore becomes
of interest to ask how rapidly this sort of inbreeding proceeds. To do this, we make a
conceptual model of the process. In this model, we have a population whose size remains
constant at N individuals. These are assumed to mate at random, without respect to their
relationship to each other. While real populations have a more subtle mating system than
this idealization, we will see that, like the Hardy-Weinberg assumptions, this model
serves as a useful starting point for discussion of more realistic cases.

Before turning to this task, it will be instructive to consider this finite population of
size N from another standpoint. Suppose we took one particular locus, and looked at all
the copies of that gene. There are 2N of them, and we could label these 1, 2, 3, . . . , 2N.
Now consider the next generation of individuals (in our idealized model population
we have discrete, nonoverlapping generations, unlike actual human populations). Is it
possible that each of these 2N gene copies is represented exactly once? Yes, but that is
unlikely. To happen, each parent would have to be the parent of exactly two offspring,
and the two gametes it donates must contain copies of the two different gene copies
in that parent (thus an Aa heterozygous parent must give an A allele to one offspring,
and an a allele to the other). If there are N parents, each with two offspring, each one
has only a 50% chance of giving one copy of each of its two genes to its offspring. So
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the probability that each gene copy in the parent generation is represented exactly once
among the offspring (even assuming that each parent will have exactly two offspring) is
(1/2)N , which becomes vanishingly small very rapidly as we consider larger and larger
values of N. For N = 30 it is less than one in a billion.

Now suppose that we started out with 2N different alleles at a locus, each represented
exactly once. The expectation under the Hardy-Weinberg assumptions is that each of
these alleles will remain indefinitely in the population with its initial gene frequency,
1/(2N). But clearly this is not to be. Some alleles will immediately be lost from the
population, by failing to be represented in the next generation. Since there must continue
to be 2N copies of the gene if population size remains N, the remaining alleles must now
be represented more than once each (on the average). The process will then be repeated
in the following generation. It will be somewhat harder to lose alleles, since the surviving
alleles may be present in more than one copy. Nevertheless some will be lost, and the
remainder will be increased in average numbers.

In effect, what is happening as the number of alleles out of the original 2N falls, is
that fewer and fewer of the gene copies originally present are represented. Ultimately,
only one of the original gene copies is represented: the population is fixed for one
allele. When it is, two things have happened: the gene frequencies of the alleles have
changed, and the copies present are all identical by descent. This makes the point that
the random change in gene frequency which is caused by the randomness of Mendelian
segregation and by random variations of offspring number is the same process as the
increase of identity by descent in a random-mating population. The former process is
called random genetic drift. Hagedoorn and Hagedoorn (1921) first called attention to its
potential evolutionary importance, as did Chetverikov (1926). However, neither of these
authors attempted a mathematical treatment. The mathematics of genetic drift was first
carefully worked out by Sewall Wright (1929c, 1931). In the following sections more
detailed citations will be given.

The reader who has followed the above arguments closely may well be suspicious
of one of the steps followed. In the first place, the argument concerning genetic drift
seemed special to the case where initially we started with 2N different alleles. A mo-
ment’s thought will show that it is not. If the gene copies in the population are ultimately
descended from one of the initial gene copies, then whatever the initial number of alleles,
and whatever their frequency one will ultimately fix at the expense of the others.

We have seen that random genetic drift and inbreeding seem to be different aspects
of the same process. We now proceed to look into the mathematics of both phenomena
and their interconnection. We have not been explicit about the fitnesses of the genotypes.
Although genetic drift and inbreeding are always occurring in a finite population, their
analysis is far more complex when natural selection, migration, or mutation also occur.
For the remainder of this chapter we assume that these forces are absent.
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VI.2 Inbreeding due to finite population size

.
Let us consider a population of haploid organisms with constant population size N.

In a haploid, there is no Mendelian segregation, so all genetic drift must be due to vari-
ations in offspring number. If each of the N individuals had exactly one offspring, then
the composition of the population would be exactly reproduced from one generation to
the next (barring mutation, and assuming that we are following a single locus). To model
the processes of genetic drift and inbreeding, we will have to make some particular as-
sumption about how offspring numbers vary. The assumption we shall make is that
each of the N offspring in the next generation is produced by a parent drawn at random
independently. This amounts to saying that the pedigree of the group is constructed by
drawing in the N individuals of the next generation, then connecting each one to one
of the N possible parents, drawn at random and without regard to other links in the
pedigree.

This scheme is not chosen simply for its inherent randomness: it corresponds to a life
history of the group which has some biological plausibility. Suppose that each parent
had a vast number of offspring, but all had the same (vast) number of offspring. Now
suppose that this pool of juveniles is subject to mortality by pure random accident, irre-
spective of genotype and of parentage. The mortality ceases only when the population
of juveniles has been whittled down to N. Now consider these N survivors. The first
one (we number them arbitrarily) is an offspring of one of the N parents, chosen ran-
domly. The second one is also the offspring of a randomly chosen parent, and what is
more important, the fact that the first offspring we examine is descended from parent
#17 tells us nothing whatsoever about whether or not the second offspring also comes
from parent #17.

That is a result of the vast numbers of juveniles produced by each parent, and the
fact that mortality occurs to each juvenile independently. Once it is known that one
of the offspring of #17 has survived, the second offspring must be regarded as chosen
from among all the other juveniles. But this does not make the next one appreciably less
likely also to come from parent #17, as we have ruled out only one of the vast number of
juveniles produced by that parent. Our assumption that there is no variation from parent
to parent in the (vast) number of juveniles each produces is important, since were it not
true, once we knew that parent #17 had provided the first offspring, that information
would indicate that this parent was more likely to have produced a large than a small
number of juveniles, and thus would also have a higher than average chance of providing
the second offspring as well.

Now the model is sufficiently well-specified to permit us to calculate inbreeding
coefficients. The reader may be upset at the very notion of inbreeding coefficients in a
haploid organism. However, it is meaningful to compute coefficients of kinship between
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genes in different individuals. Since we assume that the initial population is also the
base population, the initial coefficient of kinship among different individuals is taken to
be zero. Letting ft be the coefficient of kinship of different, randomly chosen individuals
in generation t, we will obtain a recurrence relation between ft and ft−1. We consider
two cases. First, the two individuals may be descended from different individuals in
the previous generation. Second, they may be descended from the same individual.
In the latter case f = 1, since they must of necessity contain copies of the same gene.
The relative frequencies of these two cases can be obtained by considering that each
offspring’s parent is drawn at random independently (and “with replacement”) from
the N parents. Thus if we look at two distinct offspring, once we know from which
parent the first of them is descended, the chance that the second one comes from the
same parent is simply 1/N. If the two individuals came from different parents, an event
with probability 1− 1/N, we may regard them as drawn from two randomly chosen
distinct individuals. In that case their coefficient of kinship is simply ft−1. Putting all of
this together, we find that

ft =
1
N

+

(
1− 1

N

)
ft−1. (VI-1)

While this recurrence relation is not difficult to solve, it is made completely transparent
by considering the probability of non-identity ht = 1− ft. We can either substitute 1−
ht and 1 − ht−1 for ft and ft−1 in (VI-1), or we can reason directly as follows: with
probability 1/N the parents of the two individuals are the same, in which case h = 0.
With probability 1− 1/N the parents are distinct and randomly chosen, so that h = ht−1.
Then

ht =

(
1− 1

N

)
ht−1. (VI-2)

So 1/N of the non-identity is lost every generation. Since h0 = 1,

ht =

(
1− 1

N

)t
(VI-3)

Each generation, the population goes 1/N of the remaining distance towards complete
inbreeding. It is worth emphasizing that since the gene frequency in a population may
wander back and forth, there is no smooth uniform tendency to lose variation in a single
population. The approach to complete inbreeding given by (VI-2) and (VI-3) expresses an
average of what happens over many populations simultaneously evolving populations.

VI.3 Diploids

If we are discussing inbreeding coefficients it would be convenient to be working with
diploid populations. The following is a simple diploid model equivalent to the above
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haploid case. Consider a population of hermaphroditic diploids. In each generation the
following process takes place: each individual produces a vast (and equal) number of
eggs and a vast (and equal) number of sperm. The individuals all spawn into a common
gamete pool, like some sessile marine forms. The gametes are thoroughly mixed, so
that each of the vast number of juvenile zygotes formed may be regarded as formed
by union of a randomly-chosen egg with a randomly-chosen sperm. As in the haploid
model, density-dependent mortality acting at random without regard to genotype or
parentage, reduces the large number of juveniles to N surviving adults, who will be the
parents for the next generation.

This model has the property that if we examine the surviving adults, each may be
regarded as if its two parents were drawn from the previous generation independently
and at random. Note that it is quite possible for the two parents of an individual to
be the same, since the individuals are hermaphrodites, and no prohibition against self-
fertilization has been introduced into the model. Also note that when two gene copies
are in the same individual, their parents may be regarded as drawn at random, and
the same is true when the two gene copies are in different individuals. In effect, each
of the 2N gene copies in the population comes from a randomly-chosen parent. By
the rules of Mendelian segregation, this means that each of the 2N gene copies is copied at
random from one of the 2N gene copies of the previous generation. The resulting inbreeding
is straightforward: if we let ht be the probability of non-identity of two different gene
copies (irrespective of whether they are in the same or different individuals),

ht =
1

2N
(0) +

(
1− 1

2N

)
ht−1 =

(
1− 1

2N

)
ht−1, (VI-4)

so an hermaphroditic diploid organism, mating at random with selfing allowed in a
finite population of size N loses 1/(2N) of its remaining non-identity, and hence of
its heterozygosity, in each generation. In this respect a diploid population of size N is
equivalent to a haploid population of size 2N: when the number of gene copies at locus
is the same, so is the rate of inbreeding. Since h0 is usually taken to be 1, we have that

ht =

(
1− 1

2N

)t
, (VI-5)

and

ft = 1 −
(

1− 1
2N

)t
. (VI-6)

In equations like (VI-3) or (VI-5), we can easily find the number of generations which
will be required for half of the heterozygosity to be lost. In the diploid case, setting
ht = 0.5 in (VI-5), taking logarithms, and solving for t:

t0.5 =
− ln 2

ln
(

1− 1
2N

) (VI-7)
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Table 6.1: Half-life of population heterozygosity (or non-identity) using both
exact (VI-7) and approximate (VI-8) formulas, for various population sizes.

Half-life
N Approximate Exact
1 1.386 1
10 13.863 13.513

100 138.629 138.283
1000 1386.294 1385.948

Now when N is large, since ln(1− x) � −x,

t0.5 � − ln 2
1/(2N)

= −2N ln 2 = 1.386N. (VI-8)

This shows that the time scale for loss of heterozygosity is proportional to population
size. This fact, and the accuracy of the approximation (VI-8), are verified by the figures
in Table 6.1. Note that the error is never more than four-tenths of a generation.

VI.4 Genetic drift: the Wright-Fisher model

.

HAPLOIDY. We have obtained formulas for the rate of inbreeding due to finite popula-
tion size. We now want to examine the other side of the finite-populations coin: genetic
drift. The model we will introduce was stated by Sewall Wright (1931) and R. A. Fisher
(1930) and hence is called the Wright-Fisher model. It is precisely the model(s) of the
previous section. The difference is that we are following gene frequency, not inbreeding.
For simplicity we will deal only with cases of two alleles, although the Wright-Fisher
model is readily extended to multiple alleles.

Consider first the haploid case. We have a fixed population size, N, so that there are
only N + 1 possible gene frequencies: 0/N, 1/N, . . . , N/N. Thus, in investigating the
gene frequency of the A allele we can just as easily follow the number i of A alleles in
the population. Now let us assume that in some population there are presently i copies
of A and N − i copies of its allele a. What will happen to the gene frequency of A in
the next generation? Recall that we have N offspring, and that each will contain a copy
of a randomly chosen gene from the current generation. If p = i/N is the current gene
frequency of A, the next generation will represent N tosses of a coin, with probability
p that each toss comes up heads (A), for each offspring has the same independent and
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random possibility of being a copy of one of the currently-existing A genes. From this
we can see that unless p = 0 or p = 1 in the current generation, the gene frequency in
the next generation could assume any of the N + 1 possible values 0/N, . . . , N/N. For
however unlikely it is, it is still possible that all of the N coins will come up heads, or all
tails, or any outcome in between. We thus do not have a deterministic single outcome,
except when p = 0 or p = 1.

The best we can hope to do is to characterize the probabilities of the various out-
comes. We wish to calculate Pij, the probability that if there are i copies of A this gen-
eration, there will be j copies in the next generation. Note that this is a conditional
probability, the probability P(j|i) of j given i. By our coin analogy, which is a precise one
in the admittedly idealized world of the Wright-Fisher model, we want the probability
of obtaining j heads when in N tosses the probability of heads is p = i/N. This will be
straightforward: it is the binomial probability

Pij =

(
N
j

)
p j (1− p)N−j

=
N!

j! (N − j)!

(
i
N

)j (
1− i

N

)N−j
(VI-9)

(Recall that the notation (N
j ) is the number of combinations of N things taken j at a

time). Interestingly enough, formula (VI-9) works not only for the cases where both
alleles exist, but also for the cases where i = 0 or i = N. Then we find P00 = 1, but all
other P0j = 0, and PNN = 1 but all other PNj = 0. This is what is expected: once A or a
becomes fixed in a population, it will remain so forever, as there is no mutation in this
model.

DIPLOIDY. Before proceeding to see what we can find out from the Pij, it will be useful
to briefly consider the diploid case. Recall that each gene copy in the diploid offspring is
independently drawn from a randomly-chosen gene copy in the previous generation. So
if we ask only about the gene frequency in the next generation, without regard to how
these genes are arranged in genotypes, the result is equally simple. We have 2N tosses
of a coin whose probability of heads is p, so the probability of getting j copies of A out
of 2N is simply the binomial probability

Pij =

(
2N

j

)
p j (1− p)2N−j

=
2N!

j! (2N − j)!

(
i

2N

)j (
1− i

2N

)2N−j
(VI-10)

Thus the diploid case is the same as the haploid case, provided we compare cases with
equal numbers of copies of the gene, rather than with equal numbers of individuals.
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We could, if we wished, also compute the probability of getting m AA’s, n Aa’s, and
(N − m− n) aa’s in the next generation. The reason we will not bother to do so is that
the genotype frequencies in this case are an epiphenomenon of the underlying variables,
the gene frequencies. If we wanted to find the probability that an individual in the next
generation is AA, this depends only on the gene frequency in the current generation,
being of course p2. Since gene frequencies are the only variables which affect the status
of future generations, we can follow their evolution without ever asking about genotype
frequencies.

A MARKOV PROCESS. The Pij, taken together with the initial number of A alleles,
completely specifies the process of genetic drift. Because it is random it is called a stochas-
tic process. This particular process has the property that its future behavior depends only
on its current state (its current gene frequency), not on where it has been in the past.
This means that it is a Markov chain, named after the Russian probabilist A. A. Markov,
who first investigated the behavior of such systems. The states of a Markov process (in
this case the different possible numbers of A alleles) can be classified according to how
often the process is expected to visit the state. In this case we have two types of state.
The states i = 0 and i = 2N are absorbing states (we are thinking of the diploid case, but
the result is entirely analogous in the haploid case). Whenever the process enters either
of these states it will stay there forever. The other states are all transient states. They are
visited only a finite number of times, after which the process never returns to them. In
all states for which 0 < p < 1, there is a probability p2N of going to state i = 2N and
a probability (1− p)2N of going to state i = 0 in the next generation. Sooner or later,
therefore, the population must fix or lose allele A.

We can use matrix algebra to investigate the behavior of a Markov chain with finitely
many states. The reader who is allergic to matrices may wish to skip the rest of this
section, as the basic result will be simply that we cannot solve enough of the problem to
be of much use.

The basic recurrence equation is as follows. Let p(t)k be the probability that in gener-
ation t the process is in state k. Then

p(t+1)
k = ∑

j
p(t)j Pjk. (VI-11)

The logic of this equation is straightforward: to find the probability that the event is
now in state k, we sum over all possible places the process could have been in the
previous generation the probability that the process was there, times the probability that
it then moved to the state of interest. In matrix terms, if we let p(t) be the row vector
(p(t)0 , . . . , p(t)2N), and if we let P be the matrix [Pij],

p(t+1) = p(t) P

= p(0) Pt+1.
(VI-12)
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The vector p(0) is the vector specifying the composition of the population in the initial
generation. Many of the interesting properties of the Wright-Fisher model are reflected in
the sequence p(t), t = 0, 1, . . . of state distributions. The vector p(t) gives the distribution
of the different states at time t, over hypothetical replicates of the Wright-Fisher model,
all of which are assumed to start in the same state and are assumed to be subject to
the same transition probabilities. As t increases, the distribution of states ultimately
falls into some equilibrium distribution (p0, . . . , p2N). Removing the time indices t from
(VI-12), this equilibrium distribution must satisfy the matrix equation

p = p P. (VI-13)

This is the matrix equation p(I − P) = 0, which has an infinite number of solutions,
for if a given vector p satisfies it, so must all multiples of p. To narrow down to the
solution we want, we must add the side condition that the elements of the solution p
sum to one. When we do that, we can readily show that the solution p is a vector
with its first and last elements nonzero, and all others zero. In other words, it is of
the form (x, 0, 0, . . . , 0, 1− x). We will see in the next section that x can be determined
without recourse to matrix algebra. So far, all we have shown is that at equilibrium,
every population must be fixed for one allele or the other, which is hardly surprising.

EIGENVALUES AND EIGENVECTORS. The general method for working out the vec-
tors p(t) in cases like (VI-12) is to find all eigenvalues and left eigenvectors of the matrix
P. Then if x(k) is the k-th left eigenvector of P, and λk is its associated eigenvalue, if we
can represent the initial distribution of states p(0) by a linear combination of eigenvectors

p(0) =
2N

∑
1

ck x(k). (VI-14)

The vector p(t) can then be computed by multiplying each term by the t-th power of the
corresponding eigenvalue:

p(t) = ∑
k

ck λt
k x(k). (VI-15)

If we had expressions for the eigenvalues λk, the coefficients ck (corresponding to a
particular initial vector in which we were interested), and the left eigenvectors x(k), we
could write an explicit expression for the elements of p(t). This would give us much
information. The eigenvalues λk are in fact known. They are:

λ1, . . . , λ2N = 1, 1, 1− 1
2N

,
(

1− 1
2N

)(
1− 2

2N

)
, . . . ,

2N−1

∏
i=1

(
1− i

2N

)
(VI-16)

and were obtained by Feller (1951). (For a simpler derivation of these eigenvalues, see
Felsenstein, 1971).
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The right eigenvectors of P may also be obtained (see Karlin, 1966). But there are
no known expressions for the left eigenvectors, except for the first two. Those are the
eigenvectors corresponding to the absorbing states: (1, 0, 0, . . . , 0) and (0, 0, . . . , 0, 1). No
one has ever obtained an expression for the third eigenvector, which is the next most
interesting one. So the effort to compute p(t) has so far come to nought, and the same
holds for more complex quantities such as the t-step transition probability matrix Pt, or
the first-passage times for various states.

However, since we have the transition probabilities Pij, it is possible for small N to

compute the quantities p(t)k numerically, by the simple expedient of repeatedly multiply-
ing the vector p(0) by the matrix P in a computer. Figure 6.1 below shows an example
of the case N = 10 where there are initially 6 copies of A (out of 20 possible). Three
different times are shown. Note particularly that when almost all replicates are fixed,
the few remaining unfixed are spread out in a nearly uniform distribution over all the
unfixed states 1, 2, . . . , 2N − 1. This is a general pattern no matter what the initial gene
frequency (provided it is not 0 or 1).

VI.5 Inbreeding, variances, and fixation probabilities.

FIXATION PROBABILITY. The foregoing section is perhaps excessively gloomy. We
cannot find the exact distribution of gene frequencies among replicate populations in
the Wright-Fisher model at time t. But we can easily find the mean and variance of
the distribution as a function of t, and this gives us much information. Let’s start with
the mean, where the going is easier. Suppose that xt is a random variable representing
the gene frequency in a population of size N which has been undergoing genetic drift
starting at gene frequency p0. We want to find the mean (expectation) of xt. Suppose
that we knew the expectation of xt−1, and wanted to find the expectation of xt from this.
The expectation of xt−1, which we denote E(xt−1), is its mean over many replicates. In
each such replicate, if the current gene frequency is xt−1, the gene frequency in the next
generation can be written as xt = xt−1 + ε, where ε is the change of gene frequency in
that replicate population. Now the expectation of ε is zero for each given replicate. This
is because when we toss a coin 2N times with heads probability xt−1, the expectation of
the fraction of heads will simply be xt−1. (This property of the binomial distribution can
be proven algebraically, but we will not bother to do so here). So taking a given value
of the xt−1 for a single replicate, and averaging over all possible outcomes in the next
generation:

E(xt) = xt−1. (VI-17)

Now we can further take expectations of that over all replicates, which have different
values of xt−1, and we find

E(E(xt)) = E(xt−1) (VI-18)

260



Fr
eq

ue
nc

y

0 2 4 6 8 10 12 14 16 18 20

0.00
0.05
0.10
0.15

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Fr
eq

ue
nc

y

0 2 4 6 8 10 12 14 16 18 20

Number of copies of  A  allele

Fr
eq

ue
nc

y

0.05
0.10
0.15
0.20
0.25
0.30

0.00

0 2 4 6 8 10 12 14 16 18 20

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Figure 6.1: Distribution of gene frequencies (given as number of copies of
the A allele out of 20) among replicate populations in a diploid Wright-Fisher
model with N = 10 and initial frequency p0 = 0.3 after 2 (top), 10 (middle),
and 40 (bottom) generations. Note that when almost all populations are fixed
(T = 40) the remaining populations are distributed nearly uniformly over
the unfixed classes.

so that the net result is that the expectation remains the same:

E(xt) = E(xt−1) = . . . = E(x1) = p0. (VI-19)

The mean gene frequency over replicates stays at the same value, the initial gene fre-
quency. This has one immediate implication: the probability of fixation of A is the same
as its initial frequency. When all populations have become fixed for one allele or the
other, the mean gene frequency of A will be the same as the fraction of populations
which have fixed A. So this must be the same as the initial gene frequency, by (VI-19).
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This accords well with intuition. The process of genetic drift results in all gene copies
ultimately being derived from a single copy in the initial generation. The genetic identity
of the alleles in those initial copies has no effect on their chances of being the progenitor,
since there is assumed to be no natural selection occurring. Therefore the chance that
an A allele will be the one chosen to be the progenitor of the population is simply the
proportion of initial gene copies which are A. In this sense, although genetic drift makes
great changes of gene frequency within any one population, it does not discriminate in
favor of one allele as against another, so that over many replicates of the same process it
causes no average change in gene frequency.

VARIANCE. While the mean gene frequency remains unchanged, the variance increases
through time. Gene frequencies in different replicates are initially the same, and there-
after become more and more different. In generation t the different replicates will vary
in gene frequency. If measured in a great many replicates, there is an expected vari-
ance of gene frequency among populations, which we can call Var (pt). We have already
seen that there is also an expectation of gene frequency, and that it is the initial gene
frequency p0. The variance of gene frequency is the difference between the expectation
of p2 and the square of the expectation of p, so

Var (pt) = E[p2
t ] − p2

0. (VI-20)

We are going to derive a formula for this variance by using Wahlund’s Law, focusing
on the average frequency of homozygotes for this allele, averaging over replicates. In
the pool of gametes contributing to a replicate population in generation t, the expected
probability of an offspring that is a homozygote is p2, so that the overall frequency of
homozygotes is E(p2

t ), which by the above formula (and by equation (IV-7 for Wahlund’s
Law, which is equivalent) is

P(AA) = p2
0 + Var (pt) (VI-21)

We can also use Sewall Wright’s formula for the expected frequency of homozygotes
in a population that has been undergoing genetic drift until it has inbreeding coefficient
ft,

P(AA) = p2
0(1− ft) + p0 ft = p2

0 + ft p0(1− p0) (VI-22)

From equation (VI-6) we already have a formula for ft,

ft = 1 −
(

1− 1
2N

)t
. (VI-23)

Substituting it into equation (VI-22) and equating the two expressions, VI-21 and VI-22,
and eliminating the common term p2

0, we get that

Var (pt) = p0 (1− p0)

[
1 −

(
1 − 1

2N

)t
]

(VI-24)
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Notice that this formula is zero when t = 0 (as it should be), after one generation it
is p0(1− p0)/2N, the binomial variance in 2N trials (as it should be), and ultimately it
becomes p0(1− p0). This latter is precisely the variance of a distribution which a fraction
p0 of the time has the value 1, and has value 0 the rest of the time.

GENETIC DRIFT AND MEAN HETEROZYGOSITY. This is also related to the for-
mula for heterozygosity in inbred individuals, which we saw in equation (V-2) is 2p0(1−
p0)(1− f ). Using the value of f from (VI-23) for the case of genetic drift, we can see that
as the variance of gene frequencies among populations increases, the mean heterozy-
gosity decreases. This is, of course, consistent with the Wahlund Effect, as we saw in
equation(VI-8).

A COMPUTER SIMULATION. Figure 6.2 shows the outcome of computer simulation,
in eight replicates, of random genetic drift in a diploid population of size 10. Both the
individual gene frequencies and the means and variances are shown.

It is possible to continue this approach into examination of higher and higher mo-
ments of the gene frequency distribution. Although no general expression for the dis-
tribution exists, formulas exist for its mean, variance, skewness, and kurtosis. There
seems little point in examining the latter two properties here, for as we go beyond the
second moment (the variance), the formulas become more and more complicated and
the quantities less and less meaningful.

VI.6 Effective population number: avoidance of selfing,
two sexes, monogamy.

EFFECTIVE POPULATION NUMBER.
The particular model of the life cycle which was used in the previous section will

rarely apply. When it does not, a useful technique will be to compare the rate of in-
breeding (or of increase of gene frequency variance) in the more realistic model with
that in the idealized model we have discussed. A convenient way to express this is to
find that population number in the idealized model which will give the same rate of
inbreeding (or the same rate of increase of variance) as we observe in a more realistic
model. This is called the effective population number or, equivalently, the effective popu-
lation size. In what follows we will always compare rates of inbreeding, so that what we
will compute will be inbreeding effective population numbers, rather than variance effective
population numbers. These will sometimes differ, but do not in the cases covered in this
chapter. The distinction between these two kinds of effective population number was
introduced by Crow (1954). The reader will find some further discussion of this point in
Crow and Kimura (1970). Ewens (1982) introduced the concept of “eigenvalue effective
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Figure 6.2: Simulated genetic drift in 8 replicates of a diploid Wright-Fisher
model with N = 10 and p0 = 0.3. The upper graph shows the gene fre-
quencies in the eight replicate populations (lines) as well as the mean gene
frequency over those replicates (circles). The lower graph shows for the same
simulation the mean heterozygosity within replicates and the variance of gene
frequencies among replicates.
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population size” as a rigorization and replacement for the variance effective population
number.

SELFING NOT ALLOWED. In the idealized model, it was entirely possible that an
offspring could be the result of selfing as the result of random collision of an egg and
a sperm from the same hermaphroditic individual. If such selfing is impossible, but
mating otherwise continues at random, one imagines that the rate of inbreeding will
be reduced. By how much is not obvious. Examining this point will make it clear to
what extent inbreeding due to finite population size depends on randomly-occurring
selfing. Monecious organisms that have both sexes in each individual, but do not allow
selfing include earthworms, slugs, snails, and many angiosperms who have both ovules
and pollen in each flower. If selfing is prohibited in an hermaphroditic (monecious)
population of size N, when we look at two distinct gene copies, their probability of
identity by descent may be different depending on whether or not they are from the same
individual. After all, gene copies from the same individual cannot be derived from the
same individual in the previous generation, whereas copies from different individuals
can. Let us examine the change in probabilities of identity through time. Actually, we
will use probabilities of non-identity. Let ht be the probability of non-identity of distinct
gene copies from a single randomly-chosen individual. Let kt be the probability of non-
identity of copies chosen at random from two distinct individuals which are themselves
chosen at random.

Since distinct copies from a single individual must have come from randomly-chosen
distinct individuals in the previous generation.

ht+1 = kt. (VI-25)

As for two copies from different individuals, they have probability one-half of hav-
ing come from the same gene copy in that parent (in which case they cannot be non-
identical), and probability one-half of having come from different copies in that parent.
Otherwise they must have come from different parents. So

kt+1 =
1

2N
ht +

(
1− 1

N

)
kt. (VI-26)

Substituting (VI-25) into (VI-26) in the usual manner, we get first

kt+1 =

(
1− 1

N

)
kt +

1
2N

kt−1 (VI-27)

then as the asymptotic multiplier λ of non-identity, the solution of

λ2 −
(

1− 1
N

)
λ− 1

2N
= 0 (VI-28)
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Table 6.2: Comparison of exact and approximate value of effective population
size when selfing is prohibited.

Ne
N Approximate Exact
2 2.5 2.6180
5 5.5 5.5495

10 10.5 10.5249
100 100.5 100.5025

1000 1000.5 1000.50025

so that

λ =
1− 1

N +
√

1− 2
N + 1

N2 +
2
N

2
=

1− 1
N +

√
1 + 1

N2

2
(VI-29)

It is not hard to show that λ is approximately 1− 1/(2N + 1) except for very small N.
Since in the idealized model λ = 1− 1/(2N), the effective population number is

Ne � N + 1/2. (VI-30)

Table 6.2 compares (VI-30) with the exact value of Ne, computed using

Ne = 1/[2(1− λ)] (VI-31)

and (VI-29). Note the extreme accuracy of (VI-30). It should be clear that an increase of
effective population size by half an individual will hardly have any effect on the rate of
inbreeding unless N is very small. So randomly-occurring selfing is not a major source
of inbreeding with finite population sizes.

SEPARATE SEXES. Now suppose that in addition to preventing selfing, we divide the
N individuals into Nf females and Nm males. Each offspring is produced by a randomly
chosen female and a randomly chosen male. To analyze the rate of inbreeding, we
can use the same two quantities ht and kt as before. It might seem that we ought to
specify from which sex a gene comes. But the females are simply the first Nf offspring
produced, and the males the next Nm (this implicitly assumes that the locus we follow
is not sex-linked). Since ht is the probability of non-identity of the two gene copies from
an individual, again we have

ht+1 = kt, (VI-32)

the fact that the two parent are necessarily of different sexes not affecting the probability
of nonidentity of their genes.
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When two gene copies are in different individuals, they have chance 1/4 of both
coming from females, in which case they have a 1/Nf chance of coming from the same
female, and within that a 1/2 chance of coming from the same gene. There is a similar
set of probabilities for males. Half of the time the two gene copies come from parents of
different sexes. So

kt+1 =
1
4

[
1

2Nf
ht +

(
1− 1

Nf

)
kt

]
+

1
4

[
1

2Nm
ht +

(
1− 1

Nm

)
kt

]
+

1
2

kt (VI-33)

This can be rearranged into

kt+1 =

(
1

8Nf
+

1
8Nm

)
ht +

(
1− 1

4Nf
− 1

4Nm

)
kt (VI-34)

Comparing (VI-32) and (VI-34) respectively with (VI-25) and (VI-26), we can see that
they will be the same set of equations if we can find a population size N∗ such that

1
N∗

=
1

4Nf
+

1
4Nm

(VI-35)

so that (VI-34) will become (VI-26), but with N∗ instead of N. It has been conventional to
define N∗ as the effective population size of the population, but this involves a slight in-
consistency, for we are then declaring the no-selfing case to be the standard. To continue
using the simple Wright-Fisher model as the standard, we can (to good approximation)
add 1/2 to N∗, so that the effective number is (inverting the fraction in VI-35)

Ne �
4Nf Nm

Nf + Nm
+

1
2

(VI-36)

To compute Ne more precisely, one could use (VI-35) to get N∗, then replace N in (VI-29)
by that value. Table 6.3 shows how Ne, computed from (VI-36), is affected by different sex
ratios when a population of constant size is divided into different numbers of females
and males: Note that for extreme sex ratios the effective population number is closer
to four times the numbers of the sex in shortest supply, but when both are equally
frequent, it gets close to the total number of individuals, being N + 1/2 when both sexes
are equally frequent, just as it was when the individuals were hermaphrodites.

MONOGAMY. Another way in which the Wright-Fisher model departs from reality is
the absence of monogamy. Some non-human species form monogamous pairs for life.
In the models discussed so far, if one offspring comes from, say, parents #7 and #29,
the next offspring might well come from parents #7 and #18. We can instead imagine
a population with N/2 females and N/2 males, which are randomly formed into pairs
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Table 6.3: Approximate effective population number for different numbers of
females and males.

Nf Nm Ne

1 99 4.46
5 95 19.5

10 90 36.5
25 75 75.5
50 50 100.5

(without replacement). Each offspring is produced by choosing one of the N/2 pairs at
random and having it produce the offspring. This is done N/2 times, sampling pairs
with replacement. Once again, the only relevant distinction between gene copies will
be whether or not they are in the same individual. Without going into great detail, the
resulting equations are:

ht+1 = kt (VI-37)

and
kt+1 = 1

N/2 [ 1
2 · 1

2ht +
1
2kt] + (1− 1

N/2) kt

= 1
2N ht + (1− 1

N ) kt

(VI-38)

Comparison will show that these are precisely the same as equations (VI-25) and (VI-26)
so, surprisingly, enforcing monogamy has no effect on effective population number.

We have thus found that avoidance of selfing has little effect on effective population
number, that enforced monogamy has no effect, but that unequal sex ratios can have a
substantial effect, reducing the effective number.

HISTORY. Most of the work reported in this section was first done by Sewall Wright,
in his classic 1931 paper. The terminology of effective population number was intro-
duced later by Wright (1938b). The computations regarding monogamy seem to have
been done first by Moran and Watterson (1959), as this case was overlooked by earlier
workers. Crow and Kimura (1970) discuss the distinction between inbreeding and vari-
ance effective numbers more carefully. A careful comparison of the concepts of variance,
inbreeding and “eigenvalue” effective population sizes is made by Ewens (1982).

VI.7 Varying population size and offspring number.

VARYING POPULATION SIZE. When population size changes through time, the rate
of inbreeding, or of increase of gene frequency variance, will also vary. It is a simple mat-
ter to find that population number which would, over the same period of time, lead to
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the same amount of inbreeding in a simple Wright-Fisher model. Consider two Wright-
Fisher models, one of constant size Ne, the other having a series of sizes in successive
generations: N1, N2, N3, . . . There is no difficulty in defining the latter model: one simply
assumes that in generation t, from among the infinite numbers of zygotes produced by
random union of gametes of the previous generation, only Nt survive (at random) to
adulthood. In the constant size-population, after t generations the probability of non-
identity by descent is reduced from 1 to

ht =

(
1− 1

2Ne

)t
. (VI-39)

In the varying population, this probability is

ht =

(
1− 1

2N0

)(
1− 1

2N1

)
. . .
(

1− 1
2Nt−1

)
. (VI-40)

To find the effective population number, we must equate (VI-39) and (VI-40) and solve
for Ne. This we can do by first taking the t-th root of both expressions

1− 1
2Ne

=

[
t−1

∏
i = 0

(
1− 1

2Ni

)]1/t

(VI-41)

and then solving:

Ne =
1

2

(
1−

[
∏
i

(
1− 1

2Ni

)]1/t
) (VI-42)

A useful approximation may be developed as follows: when all of the Ni are large, we
can approximate (by a binomial expansion)(

1− 1
2Ni

)1/t
� 1− 1

2Nit
. (VI-43)

Putting this into (VI-41), after some rearrangement and discarding terms with 1/(Ni Nj),

Ne =
1(

∑
i

1
Ni

)/
t

(VI-44)

This formula computes the reciprocal of the average of reciprocals. Simply put, we go
onto the scale 1/x, average the values there, and then take this quantity and come back
to the original scale of values of N. This is a well-known quantity: it is known as the
harmonic mean of the Ni. A well-known property of harmonic means is that they are
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Table 6.4: Effective population number after bottlenecks in population num-
ber of varying length.

Number of generations at: Effective population number
Ni = 10 Ni = 1000 Ne (approximate) Ne (exact)

1 99 502.51 496.25
5 95 168.07 164.74

10 90 91.74 89.86
25 75 38.83 38.13
50 50 19.80 19.56
75 25 13.29 13.21
90 10 11.10 11.07
99 1 10.10 10.10

closer to the minimum of the quantities than is the ordinary arithmetic mean. We have
seen this property before: in the previous section, the effective population number with
two sexes was twice the harmonic mean of the number of the two sexes. In the present
case, the reason for using the reciprocals is that we are averaging the increases of the
inbreeding coefficient f , and in each generation these are approximately 1/(2Ni).

Table 6.4 gives some idea of the effects of varying population number: in it we sup-
pose that population number is 10 for a certain number of generations, and 1000 for the
rest of a stretch of 100 generations. The exact effective population number is also given.

Note the relatively strong effect of even a few generations of reduced population size.
Note that when half of the generations are at Ni = 10 and the other half at Ni = 1000,
the effective population number is much less than their average, which would be 505.
Note that the approximation (VI-44) is quite good. Since its accuracy depends on (VI-43),
which is accurate for large Ni, the approximation is better for larger Ni.

VARIATION IN FITNESS. Changes in population size might result from variation in
fitness from generation to generation. When fitness varies within a generation, this also
affects effective population number. If the variation is genetic, and is due to the genes
whose drift or inbreeding we are examining, then we are examining the interaction of
genetic drift and selection. We reserve this complex subject until the next chapter. For
the present we deal with the case where the fitness variation is not inherited.

Suppose that we have a population following a Wright-Fisher model with selfing
allowed, except that at the stage where games are produced, each individual produces
an infinitely large but different number of gametes. Suppose that the i-th individual
produces a number of gametes proportional to the fitness wi. It is clear that this can
affect the effective population number, since if wi is very small for all but one individual,
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so that this individual does most of the reproducing, the rate of inbreeding will be much
increased. We can compute the effective population number as a function of the mean
and variance of the wi within the generation. Since random selfing is allowed, we need
only one quantity, ht, to analyze inbreeding in this case. The probability that a random
gamete comes from the i-th individual is wi/ ∑i wi. The chance that both of two gametes
came from individual i is w2

i /(∑i wi)
2. The overall probability that two gametes come

from the same parent is ∑i w2
i /(∑i wi)

2. The equation for change of the probability of
nonidentity is:

ht+1 =

⎛⎝1− 1
2 ∑

i
w2

i

/(
∑

i
wi

)2
⎞⎠ ht. (VI-45)

Comparing this to the usual formula

ht+1 =

(
1− 1

2Ne

)
ht, (VI-46)

we find that

Ne =

(
∑

i
wi

)2/(
∑

i
w2

i

)
. (VI-47)

The variance of fitness is the difference between the expectation of the squares and the
square of the expectation, which is ∑i w2

i /N− w̄2. The mean fitness is (∑i wi)/N, so that
∑i wi = Nw̄, and using that we can rewrite the expression for Ne as

Ne = N2w̄2/(NVw + Nw̄2). (VI-48)

which after dividing the top and bottom of the fraction each by Nw̄2 reduces to

Ne = N/(1 + Vw/w̄2) = N/(1 + C2
w). (VI-49)

where C2
w is the squared coefficient of variation of fitness. Notice from (VI-49) that

variation in fitness reduces the effective population number: if the standard deviation
of fitness is half its mean, effective population number is reduced by 20%. Careful
consideration of this derivation will show that we can only use the expressions for w̄
and Vw if we assume that the sum of the wi is a fixed quantity in each generation.

We may prefer to express the variation in offspring number from individual to indi-
vidual directly, rather than in terms of Vw. Suppose that in a given generation, ni is the
number of gametes contributed to the surviving offspring (those that reach adulthood)
by the i-th parent. The number of ways to choose two distinct gene copies in the off-
spring is 2N(2N − 1). Of these, ni(ni − 1) are choices of copies from the same parent.
The total probability of choosing two gene copies from the same parent is

P =
∑i ni(ni − 1)
2N(2N − 1)

(VI-50)
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This quantity is the equivalent of 1/Nt, in the discussion of cases where Nt varies be-
tween generations. As we have seen a good (approximate) way of computing the effec-
tive number when Nt varies is to compute the harmonic mean of the Nt. This is

1
Ne

= E

[
1

Nt

]
= E

[
∑i ni(ni − 1)
2N(2N − 1)

]
=

E
[
∑i n2

i
]− E [∑i ni]

2N(2N − 1)
=

∑i E[n2
i ]− 2N

2N(2N − 1)
.

(VI-51)
Note that a sum of N identical terms is N times one of those terms, so that ∑i E[n2

i ] =
NE[n2

i ]. Now the variance of offspring number of a random individual from a random
generation is

Vn = E[n2]−E[n]2 = E[n2]− 22, (VI-52)

since the constancy of total population size necessarily implies that E[n] = 2. Solving
this for E[n2] and substituting, this into (VI-51), we can solve for Ne, getting:

Ne =
2N(2N − 1)

N(4 + Vn)− 2N
=

4N − 2
2 + Vn

. (VI-53)

This formula needs a bit of interpretation. Note that Vn is the variance of the number of
offspring of a randomly chosen individual, in the sense of the number of gametes con-
tributed to the next generation. Thus an offspring produced by random selfing counts
as two offspring. Note that as Vn increases, the effective population number declines. In
one extreme case, where all individuals contribute exactly two gametes to the next gen-
eration, Vn = 0, so that Ne = 2N − 1. This emphasizes that effective population number
need not always be less than census number. When the variance of offspring number
is determined by random sampling from a pool of gametes contributed equally by all
parents, we have the case of the Wright-Fisher model. There are 2N gametes sampled
from the pool, and on each draw a given parent has probability 1/N of having one of its
gametes chosen. The variance of offspring number is simply the binomial variance

Vn = 2N
(

1
N

)(
1− 1

N

)
= 2− 2

N
. (VI-54)

Substituting this into (VI-53) gives N, as expected. Note one important difference be-
tween (VI-48) and (VI-53). In the former case, variation in offspring number can never
increase Ne. This is because the random sampling of 2N gametes from the gamete pool
creates a certain irreducible variance in offspring number. Formula (VI-49) does not as-
sume this random sampling, so Vn can be smaller than 2− 2/N, which is the smallest
Vn achievable under the model of (VI-48).

We can regard changes in population size and variation of offspring number as ex-
amples of the same phenomenon: variation of the number of gametes contributed to the
next generation between random individuals chosen from random generations. When
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this variation exceeds the expected from the Wright-Fisher model, there is a reduction in
effective population size.

As with most results in this chapter, both (VI-44) and (VI-53) are due to Sewall Wright
(respectively 1931 and 1938b). Formula (VI-49) is a variation on a result of Alan Robert-
son (1961).

VI.8 Other effects on effective population number.

There are many other phenomena which can affect effective population number, and
too little space here to discuss them all. I hope to briefly touch on two: overlapping
generations and linkage.

OVERLAPPING GENERATIONS. When generations overlap, this may affect the varia-
tion of offspring number. One simple model of overlapping generations deserves special
mention: the model of P. A. P. Moran (1958). The model has many variants: we will con-
sider the variant which is closest in spirit to the haploid Wright-Fisher model. We have
a monecious haploid population of N individuals. In the Moran model, instead of all
parent individuals dying simultaneously upon the birth of the offspring generation, one
parent dies at a time. Time is divided into units, and at each unit of time, one individual
chosen at random dies. Before it dies, a parent chosen at random (with replacement –
selfing is allowed) produces the offspring which will replace it. Thus each time unit may
see either a small change in the genetic composition of the population or none at all. It
is not hard to show that if we choose two different gene copies from the population, and
call their probability of non-identity at time t, ht,

ht+1 =

(
1− 2

N

)
ht +

2
N

(
1− 1

N

)
ht =

(
1− 2

N2

)
ht. (VI-55)

The value 2/N2 is much smaller than 1/N, but the two cannot be compared, since one
time unit in the Moran model is far less than a generation. Since an individual lives an
indeterminate amount of time, we can only compute an average generation time. Since
death and reproduction each occur every time unit with probability 1/N, the average
generation length turns out to be the same as the average lifespan: N time units.

Equating the amount of reduction in ht in a generation with the corresponding value
in a haploid Wright model,

1− 1
Ne

=

(
1− 2

N2

)N
. (VI-56)

If N is large, the right-hand side of (VI-56) is nearly (1− 2/N), which means that

Ne � N/2. (VI-57)
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The effect of overlapping generations is to cut the effective population size in half. This
is not a general rule, although overlapping generations usually result in some reduction
of effective population size. There is a substantial literature on this subject (Kimura
and Crow, 1963; Nei and Imaizumi, 1966; Felsenstein, 1971; Crow and Kimura, 1972;
Hill, 1972c). Hill’s paper is worth particular notice because it expresses the effective
population number with overlapping generations in terms of the variance of offspring
number. This variance is the real reason for the effect of overlapping generations on
effective population number. In the Moran model given above, it is not hard to show
that the number of offspring of a given individual, over its lifetime, follows a roughly
geometric distribution with mean 1. This distribution has a variance of about 2, which is
twice as much as the binomial distribution of offspring numbers implied by the Wright-
Fisher model. It is precisely this factor of two which causes the reduction of Ne in the
Moran model.

More recent work on overlapping generations has generalized my model to diploids
(Emigh and Pollak, 1972) and combined it with Hill’s approach to more fully take vari-
ation of offspring number into account (Waples, 2007; Waples, Do, and Chopelet, 2011).
Olsson and Hössjer (2015) have incorporated overlapping generations into the estimation
of effective population number by temporal sampling in small populations.

LINKAGE. The effect of linkage on effective population number is more complex than
the effect of overlapping generations. A few heuristic examples will have to serve here.
The effect is not, strictly speaking, one of linkage alone, but rather of linkage of the locus
in question to nearby loci at which selection is occurring. This can greatly exaggerate
the effect of background variation in fitness. We have already seen in equation (VI-48)
the effect of variation in fitness on effective population number. But this variation was
assumed to be non-genetic: if the fitness of an individual was wi this generation, the
fitnesses of its offspring were assumed to be drawn at random. Nei and Murata (1966)
have shown that heritability of the fitnesses in the genetic background can exacerbate
the effect of fitness variation in increasing inbreeding. But when the background loci
are linked to the locus in question, the effect can be much more dramatic. This has
been investigated by Hill and Robertson (1966), in the course of computing the effect
of linkage on limits to artificial selection. Maynard Smith and Haigh (1974) have called
attention to essentially the same phenomenon, calling it the hitch-hiking effect. When
an advantageous mutant occurs at low frequency in the population, then rises to high
frequency, it carries with it alleles which happen to have been present at nearby loci in the
original set of chromosomes containing the favorable alleles. If the loci are weakly linked,
their random initial linkage disequilibrium rapidly breaks down: the association with the
favored allele causes increase of alleles at nearby loci only for as long as the association
persists. The more closely linked are the loci, the more dramatic the effect of the selected
locus on its hitch-hiking neighbor. The result is large random changes in gene frequency:
in effect a great reduction in effective population size. Wagener and Cavalli-Sforza (1975)
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have proposed that hitch-hiking can explain much of the variation in gene frequency of
genetic diseases (cystic fibrosis and Tays-Sachs syndrome, for example) between human
populations. As hitchhiking involves natural selection on linked loci, it will be covered
further in chapter VIII.

VI.9 Hierarchical population structure.

In the preceding sections we always used the population from which the initial gener-
ation is assumed to be drawn as our base populations. Now we want to explore the
consequences of considering different base populations. Suppose we have an infinitely
large total population, denoted by T, which consists of infinitely many subpopulations.
We let S stand for a randomly selected subpopulation. Now let

hI = the probability of non-identity of gene copies from
a randomly selected individual,

hS = the probability of non-identity of distinct gene copies sampled
from a random subpopulation,

and hT = the probability of non-identity of two distinct gene copies sampled
at random from the total population.

Note that since there are infinitely many subpopulations, gene copies sampled from
the total population at random are certain to come from different subpopulations.

Now define three quantities:

HIT = hI/hT ,

HIS = hI/hS,

HST = hS/hT .

(VI-58)

It is an algebraic necessity that
HIT = HIS HST. (VI-59)

The interest in this computation lies in the definition of the quantities HIT, HIS, and
HST. Suppose that the total population T was the base population for computation of
inbreeding. Then by definition hT = 1, so HIT is simply the probability of non-identity
of individual I. What is not perhaps as easy to see is that even when T is not the base
population, HIT tells us what the probability of non-identity of I would be if T were the
base population. We will not try to prove this, since to do so we would have to redefine
the H’s in terms of correlations rather than probabilities. It is at least reasonable to make
this interpretation of HIT, since clearly hI/hT is a measure of whether I is more inbred
than T, and such a measure is what is required. When S is a population ancestral to
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the current population but descended from the original base population, the principle is
easily established, as

Prob (The two genes in S are descended from distinct genes in the base population)

= Prob (They were descended from distinct genes in T and Those were in turn
descended from distinct genes in the base population)

= Prob (They were descended from distinct genes in T)
× Prob (Randomly chosen distinct genes in T are

descended from distinct genes in the base population)

So if H∗ is the measure we are looking for measuring the non-identity of S relative to
T as the new base population:

hS = H∗ hT (VI-60)

so that HST is the quantity we seek which we have called H∗. There is an implicit
assumption here which we must mention: that the two gene copies in S may be regarded
as descended from randomly chosen copies in T if they are descended from distinct
copies in T. This is what allows us to take the product of probabilities.

We can regard HIT, HIS, and HST as probabilities of non-identity (at least when they
are between 0 and 1). They can be written in terms of the corresponding values of F:

(1− FIT) = (1− FIS)(1− FST). (VI-61)

The quantity FST measures how much more inbred two genes from the same sub-
population are than two genes from different subpopulations. It can be regarded as a
measure of the extent to which the subpopulations are differentiated from each other.

POPULATIONS SEPARATED FOR t GENERATIONS. We can get some sense of
the meaning of FST from the following. Suppose that we start with an infinitely large
population within which the probability of identity by descent of two random gene
copies is fw0. We divide it into an infinite number of subpopulations of size N, and
each then undergoes inbreeding (and genetic drift) according to a simple diploid Wright-
Fisher model for t generations with no intermigration. Initially the probability of identity
of two distinct genes in the same subpopulations is fw0. After t generations it is (from
(VI-5))

fwt = 1− (1− fw0)

(
1− 1

2N

)t
. (VI-62)

If we choose two gene copies from different populations at time t, their probability of
identity is not a function of t, for each was descended from some randomly-chosen copy
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in the zero-th generation of its subpopulation, and those had probability fw0 of identity.
So if fbt is the between-population inbreeding coefficient in generation t,

fbt = fb0 = fw0. (VI-63)

Now considering the subpopulations at time t as being the subpopulations S, and the
total collection of subpopulations as being T,

hI = hS = 1− fwt

hT = 1− fbt = 1− fw0.
(VI-64)

So from (VI-62)

FIS = 1− HIS = 1− hI/hS = 0,

FIT = 1− HIT = 1− hI/hT

= 1− (1− fwt)/(1− fw0) = 1−
(

1− 1
2N

)t

FST = 1− hS/hT = 1− hI/hT = 1−
(

1− 1
2N

)t
.

(VI-65)

These tell us the following: since FIT = FST, gene copies from the same individual
are no more inbred than are copies from different individuals, so that the inbreeding
coefficient of individuals in a Wright-Fisher model relative to their own subpopulation
is FIS = 0. The quantity FST is a measure of the accumulated inbreeding, or alternatively
the amount of genetic divergence of the populations. This computation makes explicit
that all of the inbreeding which accumulates as a result of genetic drift is the result of
random changes in gene frequency: the individuals in a subpopulation are not inbred
when their own population’s current composition is taken as the base population.

Exercises

1. How many generations will it take for a diploid Wright-Fisher model population
to lose 90% of its initial heterozygosity?

2. Why isn’t the process of genetic drift like that of tossing a coin repeatedly with
probability of heads p? In that case we would expect in the long run to get a
fraction p of heads, rather than ultimately getting a run of heads (fixation of A) or
of tails (a). Where does the analogy break down?
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3. In a sample of size N = 1 from a random-mating population of size, in which
there are found to be one A and one a gene, what will you compute from the gene
frequencies to be the expected proportions of the three genotypes? Why does the
observed genotype depart from Hardy-Weinberg expectation? Ask and answer the
analogous question for N = 2. What is the average fraction of Aa individuals in a
sample of size N = 2 produced by a Wright-Fisher model,

(i) Given that we find pA = 0.5 in that sample?
(ii) Given that pA = 0.5 in the population?

(This can be done by enumerating all possibilities. Be careful to weight them by
their probabilities of occurrence.)

4. A new mutant occurs as a single gene copy in a diploid population of size N. What
is the probability that it will drift to fixation?

5. As a rare allele happens to drift to fixation, heterozygosity obviously increases at
first, then decreases. How can this be reconciled with the notion that f always
increases through time?

6. Is there any of the cases we have covered in this chapter which is the same, for
a particular value of N, as repeated full-sib inbreeding? Find it and compare the
numerical results given in this chapter with those given in chapter V.

7. In an organism like fur seals, perhaps 10% of the bulls do all the breeding in each
generation. By how much does this affect effective population number?

8. Wild cheetahs (Acinonyx jubatus) have almost no natural genetic variation. They
were formerly distributed in Africa, the Near East, and South Asia and had an
estimated population size of 100,000. Now they are down to about 10,000 individ-
uals. Someone suggests that this bottleneck of population size explains the loss of
genetic variation (as indicated, for example, by their level of heterozygosity). If the
reduction of population size to 10,000 happened 100 years ago, and that popula-
tion size has been maintained since then (with a cheetah generation being about
7 years), by what fraction would the resulting genetic drift (and inbreeding) have
reduced their original heterozygosity? What does this imply about this suggested
explanation for the loss of cheetah genetic variability?

9. A flock of finches flies to an island and there founds a large population. It is at
population size 10 for the first 5 generations and then suddenly grows to a large
population size and stays there. What fraction of the heterozygosity at an unse-
lected locus will be expected to have been lost in passing through this bottleneck?
Would this mean that most loci would lose all their variability in this event?
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10. Suppose that a large diploid population is reduced to a single mating pair, then
population sizes doubles every generation thereafter until the original population
number is reached. How much inbreeding accumulates during the crisis? How
does this compare with the amount of inbreeding which would have accumulated
if after the reduction to a single pair, the population had instantly returned to its
original size? You can use equation (VI-44) as a starting point. (No, I am not going
to specify the original size except to say that it is large).

11. Suppose that in a large population of size N, in each generation one-half of the
individuals happen to find good nesting sites and have an average fertility of 3,
while the other half of the individuals find inferior nesting sites and have an aver-
age fertility of 1. So the gamete pool consists of 3(N/2)G gametes from the lucky
ones, who all contribute equally, and (N/2)G gametes from the unlucky ones, who
all contribue equally. G is very large. Each generation the parents die off, and there
is no correlation between the goodness of the nesting site of the parent and that
of its offspring. What is the effective population size as a function of N ? (Hint:
you can follow these steps and not use any formula from the book: (1) Try to compute the
probability that two gametes drawn at random from the pool come from the same parent, (2)
equate that to 1/Ne, and (3) solve for Ne. To do step (1) compute the probability that both
gametes are ones that came from lucky individuals, and the probability that both came from
unlucky ones. Keep in mind that there are N/2 lucky parents and N/2 unlucky parents.
For each of those cases compute the fraction of those times that they came from the same
individual parent. Then multiply and add appropriately).

12. Among human males in this country, under the traditional naming system, family
names behave as if they were Y-linked. What does genetic drift theory tell us about
how rapidly diversity of names should disappear if the population stays the same
size? if it grows exponentially at a constant rate?

13. If a population starts out at size N and grows by 2% per generation without limit,
how much inbreeding will ever accumulate in it? Use an approximation for large
N, summing a geometric series.

14. Suppose that in a population with N adults, each parent produces 4 offspring,
and 50% of the offspring (taken at random) die before maturity. What will be the
effective population size? (Remember that it need not be true that exactly two
offspring from each parent survive?).
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Complements/Problems

1. If we have a population of diploids who reproduce according to a Wright-Fisher
model, but all reproduction is asexual apomixis (clonal reproduction), what are the
equations for ft and gt be if the population is of size N?

2. See if you can obtain (VI-5) using the probabilities of identity ft and gt.

3. How long will it take a diploid population following a simple Wright-Fisher model
to lose all but 1/e = 1/2.71828 = 0.36789 of its initial heterozygosity, if N is large?
(Express this as a multiple of N).

4. Suppose that we have a discrete-generations random-mating population of N diploid
individuals, except that in each generation there is a constant probability s for each
individual that it is produced by selfing. This happens independently for each in-
dividual, independently of the others and of whether its own parent was produced
by selfing. Consider the probability of non-IBD for two copies in the same individ-
ual, and the probability of non-IBD for two copies in different individuals. Work
out equations for their change from generation to generation. What is the effective
population size as a function of N and s?

5. In a diploid population with random mating, suppose that all matings are monog-
amous. That is, the individuals are formed randomly into N/2 pairs, and offsping
are produced by drawing a random pair, having them produce an offspring, and
then returning the pair to the pool of pairs. This is done N times. Work out the
equations for non-IBD in this population. How does the effective population size
compare with the no-selfing-allowed case? (Hint: you will need to follow two quanti-
ties).

6. Mitochondria are effectively haploid (in that all the mitochondria in an individual
are usually copies of one which occurred in the egg). All of them come from the
female parent. Suppose that we have a population in which there are Nf females
and Nm males in each generation, but which otherwise follows a Wright-Fisher
model.

(i) What is the equation for change of non-IBD for a gene located on the mitochon-
drion (as these are haploid, we of course mean non-IBD between copies from
mitochondria in two random individuals)? What is the effective population
number for these genes?

(ii) Suppose that there is actually a small probability m that an individual has its
mitochondria coming from the male parent (and that this event is indepen-
dent in different individuals). Derive the equations for change of non-IBD
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between genes on mitochondria in two different individuals. How many non-
IBD quantities do you need to follow? Do you need to have different variables
for non-IBD in two males, in two females, or in one male and one female?

(iii) What is the effective population size for a mitochondrial locus as a function
of Nf , Nm, and m? Do small values of m make a dramatic difference in the
effective population size?

7. An otherwise-idealized infinitely-large population goes through a bottleneck, drop-
ping to 100 individuals, and then increases immediately back up to infinity in the
next generation.

(i) How much inbreeding accumulates in the population?
(ii) If we consider a period of T generations that includes this bottleneck, what is

the effective population size of the population? (You can use the harmonic mean
formula)

(iii) Suppose that the population, after this bottleneck, does not go up to size
infinity immediately, but instead grows by a fraction r each generation, so
that k generations later it is size 100× (1 + r)k. What is the effective pop-
ulation size over a period of T generations (using the harmonic mean for-
mula)? [You will need to sum a geometric series using 1+ x + x2 + x3 + · · ·+ xn =
(1− xn+1)/(1− x) ]

(iv) Using this result, if we consider that case and also a case where there is a
bottleneck to size 100 for G generations (and then size returns immediately
to infinity), is there some relationship between the growth rate r and G that
would give the same effective population size (and hence the same amount of
inbreeding accumulated)?

8. In the diploid Wright-Fisher model, find the expression for the probability of get-
ting k AA and � Aa individuals (out of N) in the next generation, given that there
are currently i AA and j Aa individuals out of N. Prove from this, if you can, that
formula (VI-10) is correct.

9. In a population of size N which has been produced according to a Wright-Fisher
model, if we have k A alleles and 2N − k a alleles, what is the probability that in
that same population there are i AA, j Aa, and N − i− j aa genotypes?

10. Show that if, in the notation of section VI.4, if we define the mean number of A
alleles as

n̄A =
2N

∑
k=0

k p(t)k

that n̄A does not change with t in the Wright-Fisher model.
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11. If we have a 3-allele Wright-Fisher model with the initial frequencies of the 3 alleles
being q1, q2, and q3, what are the probabilities of fixation of these three alleles?
What is the equation corresponding to (VI-10) in the three allele model?

12. Why didn’t we try N = 1 in Table 6.2?

13. Suppose that we have a simple Wright-Fisher model with initial frequency of A
being p0. Consider the following three assertions:

(i) In the first generation (the offspring of the initial generation), the expectation of
the genotype frequency of AA is p2

0.

(ii) In this first generation, the inbreeding coefficient is f1 = 1/(2N).

(iii) In this first generation, the expectation of the genotype frequency of AA is
p2

0(1− f1) + p0 f1.
Are these consistent? If not, where is the fallacy? Are we conditioning on
something in one of these cases?

14. Check (VI-53) by direct computation in the case where in each generation, a ran-
domly chosen individual has N offspring, and all the rest of the individuals in that
generation have no offspring.

15. From (VI-53), what can we conclude about how much of the inbreeding in a finite
population reproducing according to a Wright-Fisher model comes from random
variation in offspring number, and how much comes from the random nature of
Mendelian segregation? (Try abolishing one of these effects).

16. In a population in which population size varies randomly from generation to gen-
eration, but in which selfing is not allowed, where should we add the 1/2 to correct
for the absence of selfing – to each of the values of N or to the final effective pop-
ulation size?

17. What does it mean when HIS, HIT, or HST > 1?

18. In a case of a population, T, composed of two subpopulations of equal sizes, com-
pute fT as a function of the within- and between-subpopulation inbreeding coeffi-
cients fw and fb.
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Chapter VII

GENETIC DRIFT AND OTHER
EVOLUTIONARY FORCES

VII.1 Introduction

We have already seen the effects of genetic drift when it is the only evolutionary force
acting. Its effects are to change gene frequencies in a random and unpredictable manner,
resulting in fixation of one allele or another. The other evolutionary forces we have ex-
amined (natural selection, migration, and mutation) tend to change gene frequencies in
a determinate way, or to push them towards an equilibrium value and hold them there.
Genetic drift is the one force which can act as the “thermal noise” in the evolutionary
machine. The relative strength of this “noise” compared to the nonrandom forces will
determine to what extent the random effects of genetic drift will override other evolu-
tionary forces. The general objective in this chapter will be to try to find simple rules
indicating when each evolutionary force will prevail in the face of random genetic drift.
(If physicists are listening, it is particularly important to say “random genetic drift” since
in their subject “drift” is the name of a nonrandom force).

A subsidiary objective will be to introduce the mathematical technology for treating
the interaction of random and systematic processes. This will be done by example, with-
out more than a sketchy treatment of any but the simplest cases. The first evolutionary
forces we will treat, mutation and migration, can be investigated in detail by considering
only means and variances of gene frequencies (or alternatively, by considering probabil-
ities of identity by descent). When we consider natural selection, this sort of treatment
is no longer possible, and we must use the more complicated branching process and
diffusion-equation methods.

It is worth reminding the reader that in section VI.4 we saw that there is no general
formula for the probability, in a haploid Wright-Fisher model, that a population goes
from having i copies of the A allele to having j copies in t generations. Starting with
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an initial frequency i/N of the A allele, we cannot predict the distribution of possible t-
generation outcomes exactly. This is at the root of the difficulty. Unable to solve exactly
for the behavior of a Wright-Fisher model with no mutation, migration, or selection
present, we have little hope of achieving exact solutions in the more complicated case
when those forces are present. Thus we must rely on partial or approximate solutions.
Fortunately, these are available, as they were when only genetic drift was present, and
they are quite accurate approximations.

VII.2 Drift versus mutation

THE INFINITE-ALLELES MODEL. The simplest model we can make of the interaction
of drift and mutation involves a Wright-Fisher model with N diploid individuals. To
simplify things, we allow selfing at random. The model of mutation is different from
that used in Chapter III. It is known as the “infinite-alleles” model, or sometimes as the
“infinite-isoalleles model”. Isoalleles, because all alleles are assumed to be selectively
equivalent, there being no fitness differences. Infinite, because each mutation is to a com-
pletely new allele. There are thus an infinite number of possible alleles. The same allele
never recurs twice in different mutations. Thus we need only know whether two differ-
ent mutational events occurred in the ancestry of two gene copies to know whether they
are different alleles. The model is intended as a rough approximation to what would be
seen in a stretch of DNA sequence, where most mutations will be in different sites.

This model of mutation makes it particularly easy to work out the consequences of
mutation and random genetic drift. We deal in this section only with that information
which can be gleaned from means and variances, which fortunately is quite a lot. A
more complete set of information can be gained by the diffusion method, as we will
discuss later in this chapter. Equivalent to a consideration of means and variances of
gene frequencies is a consideration of identity by descent. Suppose that we were to ask
what was the probability Ft that two gene copies, randomly chosen without replacement
from the same population, are identical by descent. If the occurrence of mutations had
no effect on whether we counted genes as identical by descent, then the quantity Ft
would follow the same course that it would in a Wright-Fisher model without mutation.

We could simply use (VI-4) to get

Ft+1 =
1

2N
+

(
1− 1

2N

)
Ft, (VII-1)

the usual Wright-Fisher model formula.
But now suppose instead that each time a mutant were to occur, the new allele was no

longer counted as being identical by descent to any of the copies of the allele from which
it arose. After, all it is our prerogative to define identity by descent any way we choose,
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so we may as well try that. The consequences are straightforward. We have to modify
(VII-1) as follows. That equation regards two genes as identical by descent provided
that they either descended from the same gene copy in the preceding generation, or
else came from distinct gene copies which were themselves identical by descent (these
possibilities correspond to the two terms of (VII-1)). Now we must add an additional
requirement: that neither of the two genes we choose can be a new mutant. We have
ruled out the possibility that the new mutants could be identical by descent to any of the
other genes in the population, or to each other. The occurrence of mutation is supposed
to be random, unconnected with which parental gene is being copied. Each copy of the
gene in generation t + 1 has an equal and independent chance u of being a new mutant.
It now follows directly that the right-hand side of (VII-1) must be multiplied by the
probability that neither of the two gene copies is a new mutant, so that

Ft+1 = (1− u)2
[

1
2N

+

(
1− 1

2N

)
Ft

]
. (VII-2)

With the occurrence of mutation, we now find a new behavior of the quantity Ft. It
no longer automatically rises towards 1. In fact, it will always reach an intermediate
equilibrium value between 0 and 1, provided that N is finite and u is not zero. We can
solve for the equilibrium by realizing that at it Ft+1 = Ft = F. Then we can remove the
subscripts on F in (VII-2) and rearrange to get

F
[

1− (1− u)2
(

1− 1
2N

)]
= (1− u)2 1

2N
(VII-3)

so that

F =
(1− u)2

2N − (1− u)2(2N − 1)
(VII-4)

We will be interested mostly in cases where u is very small (10−8 being a typical value
for a single base, and 10−5 for a whole locus). So we can ignore terms in u2 compared
to those in u, so that we can replace (1− u)2 by 1− 2u to get the approximation (after a
little rearrangement)

F � 1− 2u
1− 2u + 4Nu

(VII-5)

The terms 2u will then be far smaller than 1, so that we can drop them to obtain the
further approximation

F � 1
1 + 4Nu

(VII-6)

Table 7.1 gives some numerical comparisons of (VII-4) with the approximation (VII-6).
Note how good the approximation is. Note also that the predominant feature of (VII-6)
is a very good approximation: that the probability of identity by descent is a function
of N and u only through their product, Nu. Thus the equilibrium identity by descent is
maintained approximately the same by doubling N and halving u (or vice versa).
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Table 7.1: Equilibrium probability of identity by descent for two distinct gene
copies drawn from the same population in an infinite-alleles model. The exact
values are from equation VII-4 and the approximate values from equation
VII-6.

N = 100 1000
u = Exact: 0.71398 Exact: 0.19975
0.001 Approx.: 0.71429 Approx.: 0.20

Exact: 0.96153 Exact: 0.71426
0.0001 Approx.: 0.96154 Approx.: 0.71429

FINITE NUMBERS OF ALLELES. So far our model of mutation has been the infinite-
alleles model. It might seem that the fact that an infinite number of alleles are possible
allows a much greater amount of variability to exist than if there were only a few possible
alleles. This is not so. Suppose that there were only K different alleles, and mutation
among these is symmetric. If a mutation carries a gene from one allelic state to one
of the others, chosen at random, then we can easily modify the argument to allow this
model. In equation (VII-2) the term (1− u)2 is the probability that neither gene is a new
mutant, for if so they cannot be identical. But that is only true under the infinite-alleles
model. Under the K-alleles model, when one of the alleles mutates it cannot end up
being the same allele as the other, but when both mutate this is possible. So the (1− u)2

becomes (1− u)2 + u2/(K − 1). But an additional term also arises, for now two genes
which were different alleles before mutation can be the same after mutation. This yields
the recurrence relation

Ft+1 =
[
(1− u)2 + u2/(K − 1)

] [ 1
2N + (1− 1

2N )Ft

]
+
[
2u(1− u)/(K − 1) + u2(K− 2)/(K − 1)2] [(1− 1

2N )(1− Ft)
] (VII-7)

(I leave it to the reader to work out all the terms). If we proceed a bit roughly and drop
terms in u2, and in u/N, this boils down to the approximation

Ft+1 � 1
2N

+
2u

K− 1
+ Ft

[
1− 1

2N
− 2u

(
K

K− 1

)]
(VII-8)

which gives the equilibrium solution on setting Ft+1 = Ft and solving to obtain

F =
1 + 4Nu/(K − 1)

1 + 4NuK/(K − 1)
. (VII-9)
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Table 7.2: Equilibrium homozygosities for finite alleles models with different
numbers of alleles

K
4Nu 2 4 8 16 ∞
0.1 0.9167 0.9118 0.9103 0.9096 0.9091
0.5 0.75 0.70 0.6818 0.6739 0.6667
1.0 0.667 0.5714 0.5333 0.5161 0.5000

10.0 0.5238 0.3023 0.1954 0.1429 0.0909

Of course, a more accurate but far more complicated formula can be produced directly
from (VII-7) by including all terms.

When u is small (VII-8) is quite a good approximation, and we can use it to investigate
the effect of the number of possible alleles, K. Note that when K is large the term 1/(K−
1) in the numerator will be very small, and the term K/(K − 1) in the denominator is
nearly 1, so that (VII-8) must approach (VII-6) as K becomes large. Note also that as
4Nu becomes large the numerator is nearly 1/K the denominator. This is as it should
be, for in this case the two genes we draw from the population will have quite unrelated
mutational histories, with many intervening mutations. The chance that they end up
being the same allele is thus 1/K, which is what it would be if each represents one of
the K alleles drawn at random and drawn totally independently of each other.

The qualitative rules for when mutation will maintain variability in the face of genetic
drift are hardly affected at all by having only K possible alleles. Here are some values of F
from (VII-8): Note that when K is of even moderate size the probability of homozygosity
is nearly unaffected by increases in K. A more careful consideration of the Table and
of (VII-8) will also show that the conclusion stated above is still valid when K is finite.
We can still intuit the behavior of the selectively neutral alleles model in terms of the
numbers of new mutants per generation being greater than or less than one.

THE ELECTROPHORETIC LADDER. In the past it was difficult to distinguish alleles.
Using protein electrophoresis, alleles that did not differ in the charge of the protein
were indistinguishable. Ohta and Kimura (1973) have investigated the effect of this
“electrophoretic ladder” on the number of distinguishable alleles. With the availability
of population samples of DNA sequences, all alleles can be distinguished. We will
discuss further models and methods of analysis for these data in Chapter X.

RATE OF SUBSTITUTION OF ALLELES. So far our discussion of the interaction of
mutation and genetic drift has dealt only with equilibrium conditions. With the infinite
isoalleles model, the equilibrium of the quantity F does not represent a true equilibrium
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of allele frequencies. There is constant turnover of alleles, as new mutations replace pre-
existing ones. It is clearly of interest to know how rapidly this turnover occurs. This is a
particularly relevant question to protein evolution, since Kimura (1968a) and King and
Jukes (1969) have proposed that the bulk of evolutionary amino acid changes in proteins
result from the substitution by genetic drift of selectively neutral mutants.

The computation is surprisingly simple. There are two general ways of establishing
the same result. The first is a prospective argument. In the current generation we
expect there to be 2Nu neutral mutants occurring (provided u counts the rate of only the
selectively neutral mutations). How many of these are destined to be substituted for the
existing alleles? It should be kept in mind that what we are interested in is whether the
particular amino acid or nucleotide substitution becomes incorporated into the whole
population. Further mutants will occur, so that a given mutant allele may never reach a
frequency of 100%. The question we seek to answer is: will the whole population become
descended from this particular mutant? If so, then the DNA will show that the population
has undergone a substitution at that site. Thus we must ignore further mutations when
asking whether a given mutant becomes “fixed”.

This allows us to take our result directly from the discussion surrounding equation
(VI-19) above. The 2N copies of the gene in question each has an equal probability of
fixation. So each mutant has a probability 1/(2N) that it will be the progenitor of future
populations. The expected number of mutants arising in the current generation which
will substitute throughout the population is therefore 2Nu× 1/(2N) = u. So the rate of
substitution of neutral mutations is equal to the neutral mutation rate per haploid genome.

The reasonableness of this result will be more apparent if we consider the other way
of obtaining it: retrospectively. Consider a gene in the current population. Ask how
many mutations have occurred since T generations ago. Following the line of ancestry
back from a current gene copy, we find that in each generation there was only one gene
copy directly ancestral to that gene. Thus there was exactly one opportunity in each
past generation for mutation to occur that would affect this particular gene copy. So
the average number of mutations affecting this gene will be u in each generation. Thus
we can think of the rate of neutral mutant substitution as being u because of an exact
cancellation of two effects of population size, one increasing the number of mutants
occurring and the other decreasing their chances of fixing, or alternatively we could
see the absence of a population size effect as the consequence of there being only one
ancestral copy for each gene copy in a population.

A convenient way of seeing what this means in any given case is to notice that the
expected number of new mutations each generation is 2Nu (as there are 2N genes and
a fraction u of these are expected to mutate). So the effective number of alleles at equi-
librium depends mostly on the number of new mutants arising each generation. This
number expresses the balance of forces between genetic drift and mutation, and makes
it clear that two populations with different sizes and mutation rates may nevertheless

288



be expected to have the same amounts of variability, provided that they have the same
expected number of new mutants per generation. We may state a qualitative conclusion:

Substantial genetic variability will be maintained in a
population by mutation provided 2Nu  1, that is,
provided there is more than one new mutant at the
locus per generation.

It is important to understand what (VII-6) does and does not mean. It gives average
homozygosities under genetic drift and mutation, but these are only expectations. If we
draw individuals repeatedly from the same population, we will not necessarily obtain
the expected proportion of homozygosity. Any one population may go through periods
when all but one allele have been lost, and periods when a spate of recent mutations have
drifted to high frequencies, leaving it very polymorphic. As we follow the population
through time, F will vary above and below expectation, averaging out to the value given
in (VII-6). By the same token, if we examined a series of populations simultaneously,
where each was isolated from its neighbors and none exchanged migrants, then we
would find the gene frequencies and the homozygosity F to vary from population to
population, averaging out to its expectation. Thus (VII-6) gives an average over time
(once the initial conditions are lost) and also an average over replicate populations.

RESPONSE TO POPULATION SIZE BOTTLENECKS. Another aspect of the time-
dependent behavior of a neutral mutation model which may be of interest is how rapidly
the level of polymorphism responds to changes in population size. Suppose that we have
a population of large size which has been at that size for a very long time, so that 4Nu
is large. If we reduce population size, how rapidly will variability be lost? Suppose Ft
is small, and we have just reduced population size so that N is now small. By equation
(VII-2), in the next generation

Ft+1 � (1− u)2 1
2N
� 1

2N
(VII-10)

so that if N is small Ft+1 may increase substantially in one generation fairly quickly
(i.e. if N = 10 it will increase by about 0.05 per generation). Once Ft comes to its new
equilibrium at a large value, little variability is present. Suppose now that the population
size grows back to its old value, so that now 4Nu is large again. How rapidly will Ft drop
back down to its old value? From (VII-2), if Ft � 1, Ft+1 � (1− u)2 which will usually
be very close to 1. Thus F is decreasing by only 2u per generation, so that it could take
millions of generations to recover the variability. The effect of a bottleneck of population
size is thus to rapidly reduce variability, but the rate of recovery after restoration of the
population size is slow, as we must wait for new alleles to occur by mutation and to drift
to high frequency.
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This may seem biologically reasonable, but counterintuitive. The mathematics is,
after all, simply that of equation (VII-2). This is a simple linear recursion of F. How can
it approach its equilibrium more slowly on one side than on the other? This paradox is
resolved if we note that the departure from the equilibrium value of (VII-2), is multiplied
each generation by

(1− u)2
(

1− 1
2N

)
.

When N is small, this is dominated by the terms in N, and change is rapid. But when
N is large enough that a substantial amount of variability is expected at equilibrium,
2u > 1/(2N), and the mutational factor is the dominant one. The reason approach to
equilibrium from the two sides differs so much in rate is that N is much different in the
two cases. We have compared apples to oranges.

Nei, Maruyama, and Chakraborty (1975) have presented computations for the effects
of bottlenecks of population size. These are particularly relevant to human populations,
which are now much larger than they were only 100 generations ago.

REFERENCES. The equations for the neutral mutation model were first worked out
by Malécot (1948), although apparently without any idea of presenting this process as a
model of the maintenance of protein variation in natural populations. Kimura and Crow
(1964) obtained similar results independently, as a byproduct of an investigation into the
effects of genetic drift on the maintenance of multiple alleles in a population by natural
selection. Kimura (1968b) presented the analysis of the effects of assuming a maximum
of K alleles. The rate of substitution of neutral mutants was first given by Kimura
(1968a) when he famously proposed neutral mutation as the main source of both protein
polymorphisms in natural population and the reconstructed rates of amino substitution
through evolutionary time. Lewontin and Hubby (1966) had earlier discussed neutral
isoalleles as a possible explanation of the electrophoretic variability they observed, in
what was the first coherent description of the neutral mutation theory of polymorphism.

We have here been concerned only with a pure Wright-Fisher model. In most cases,
more complex models of population reproduction (overlapping generations, varying
population size, variation in offspring number, etc.) one can simply replace 4Nu by
4Neu throughout the argument without difficulty. Chia and Pollak (1975) present a de-
tailed discussion of varying population size which verifies that one can use the effective
population size Ne if the population size does not vary greatly. As we shall see in chapter
VIII, linkage is another matter. Linkage of one neutral locus to another is irrelevant, but
the presence of a locus with naturally selected variation near a neutral locus can greatly
reduce or greatly increase the effects of genetic drift.
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At a functional locus which has mutation occurring, there will be a pool of delete-
rious mutations in the population. If the selection coefficient against these alleles is
substantially larger than the mutation rate, this pool will be a small fraction of all
copies. How different will these mutant alleles be from each other? If we make two
assumptions: that the mutant alleles are all equally deleterious, and that the pool of
mutant alleles is roughly constant in size, we can use the neutral mutation model.

We simply pretend that the pool of mutant alleles is a population. New mutant
alleles are entering it, approximately 2Nu of them per generation. Within the pool the
mutant alleles drift, and some are lost. If the pool of mutant copies is a fraction q of
all copies at the locus, then there are Nq copies in the pool. The entry of new mutants
from outside of the pool looks as if a fraction u/q of the 2Nq copies in the pool had
mutated. Thus, considering the pool as if it were a population of Nq individuals,
fraction of pairs of copies in it that are expected to come from the same mutational
event is

F =
1

4Nq(u/q) + 1
=

1
4Nu + 1

(VII-11)

which is the predicted probability of homozygosity under neutral mutation at rate u
in the full population. Of course, the rate of deleterious mutation u may be different
from the rate of neutral mutation.
This result was obtained by Hartl and Campbell (1982). Robertson and Hill (1983) did
the corresponding calculation for individually recessive alleles. Slatkin and Rannala
(1997) showed that the sampling distributions used for neutral mutants also apply to
a pool of equally-deleterious mutant alleles.
As an example, if N = 107 and u = 10−7, we predict that two deleterious mutants
will come from the same mutational event with probability F = 1/5. In a larger
population, there will be even more heterogeneity among mutant alleles. Treating
change in the pool of deleterious mutants as if it were neutral mutation is thus an
illuminating approximation.

We will see later in this chapter that the assumption of approximate constancy of the
size of the pool of mutant alleles is justified if 4Nu is substantially greater than 1. For
the smaller value of population size in the above examples, this is dubious. So, of
course, is the assumption that all deleterious mutants have equal fitnesses.

Box 2: Application: heterogeneity of deleterious mutations
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VII.3 Genetic distance

Suppose that we observe two populations, one with gene frequencies x1, . . . , xk of k
different alleles, the other with gene frequencies y1, . . . , yk. We may wish to estimate
FST for the two populations as a measure of genetic divergence, under the assumption
that they have diverged from some initial gene frequencies z1, . . . , zk, which we do not
know, by a process of genetic drift in isolation. If they have, then we should be able to
use the current gene frequencies to estimate the accumulated inbreeding. If we have a
good estimate of the population sizes, then this will allow us to calculate the time since
divergence of the populations. Measures which estimate FST or some function of it are
called genetic distances. Their elaboration was a favorite sport of population geneticists
in the early 1970’s. The reader will find some discussion of various distance measures in
the symposium edited by Crow and Denniston (1974). The literature of genetic distances
is very tough sledding because scarcely anyone in it states clearly what problem they are
designed to solve.

In fact, there seem to be two classes of genetic distances. One measures whether
the heterozygosity between populations is substantially greater than that within popu-
lations. The other measures whether homozygosity within populations is substantially
greater than that between populations. You might imagine that these are identical ques-
tions, but they are not. For example, if the homozygosity within populations is 0.10, and
between populations it is 0.05, the homozygosity is twice as great within as between. But
the heterozygosities are then respectively 0.90 and 0.95, so the heterozygosity between
populations is only 0.95/0.90 = 1.0555 times as great as within populations!

In fact, it is not obvious that every genetic distance must use heterozygosity or ho-
mozygosity – in general these are not “sufficient statistics” that contain all the relevant
genetic information. Some of the genetic distances mentioned below will not be func-
tions of the heterozygosity or the homozygosity. Nevertheless, they are useful quantities
to examine.

CHANGES OF HETEROZYGOSITY AND HOMOZYGOSITY. If the expected het-
erozygosity and expected homozygosity within populations are respectively hw and fw,
and those between populations are respectively hb and fb, we can ask about different
evolutionary forces, and seek to make a measure of divergence time between two iso-
lated populations. Initially the two population are the same, so that superscripting each
with its generation number, f (0)w = f (0)b and h(0)w = h(0b . With both genetic drift and an
infinite isoallele model operating, we can find equations for two populations of equal
effective size Ne: From equation (VII-2) the expectation of fw will be:

f (t+1)
w = 1− h(t+1)

w = (1− u)2
[

1
2Ne

+

(
1− 1

2Ne

)
f (t)w

]
(VII-12)
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By considering that any two genes randomly sampled from different populations were
descended from two genes randomly sampled from those same populations one genera-
tion earlier, we see that they are just as likely to be the same allele as they were, provided
that neither has mutated:

f (t+1)
b = 1− h(t+1)

b = (1− u)2 f (t)b (VII-13)

Note that the derivation of equations (VII-12) and (VII-13) does not assume that the
initial population is in any particular equilibrium state, or that the sizes of the two
populations (both Ne) continue to be the same as they were before the populations split.
This approach can thus be used for populations that may have recently split into small
isolates, where we may be able to ignore mutation.

DIVERGENCE BY GENETIC DRIFT ONLY. There are two cases of particular interest.
Suppose that there is no mutation (u = 0). Then the equations reduce to

h(t+1)
w =

(
1− 1

2Ne

)
h(t)w (VII-14)

h(t+1)
b = h(t)b (VII-15)

In that case, if the two populations start out identical to each other, so that h(0)b = h(0)w

we find that since h(t)b = h(0)w ,

h(t)w =

(
1− 1

2Ne

)t
h(t)b (VII-16)

A measure of how much greater heterozygosity is between than within is then

(
h(t)b − h(t)w

)
/h(t)b = 1− h(t)w /h(t)b = 1−

(
1− 1

2Ne

)t
(VII-17)

It increases by an amount t/(2Ne) per generation at first. Thus if we could somehow
measure 1 − h(t)w /h(t)b we could solve for t

2Ne
to obtain a measure of genetic distance

between isolated populations that would for a while increase linearly with time. Note
that (VI-65) shows that this measure of genetic distance simply computes FST .

On might think that this makes finding good measure of genetic distance is easy:
simply find the average heterozygosity within populations for the finite set of loci we
are observing:

Hw = 1− 1
2

(
∑

i
x2

i +∑
i

y2
i

)
(VII-18)
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and the average heterozygosity between populations

Hb = 1−∑
i

xiyi, (VII-19)

assume that these estimate h(t)w and h(t)b , and then compute the genetic distance between
populations as

D = 1− Hw/Hb. (VII-20)

This seems straightforward, but some questions arise. The quantities hw and hb are not
the heterozygosities within and between populations, they are the expected heterozygosi-
ties. Even if we assume that the infinite isoallele model is exactly correct, we need to use
many loci, should we average the values of Hw and Hb, then compute D, or should we
average the values of D for each locus? Also, if we have population samples of different
sizes at each locus, how should we weight these? Once these questions are entertained,
the door is opened to an endless array of genetic distance measures. We will not attempt
to untangle this literature here.

DIVERGENCE BY DRIFT AND MUTATION. The second major approach to genetic
distance is due to Nei (1972). It allows for the effects of mutation, but at the cost of
having to assume that Ne has been the same for a long time in the progenitor of the two
populations as it is in them. It yields a result that is mostly useful when the neutral
mutation rate is the same at all loci. If we assume that the base population had a level of
homozygosity f (0)w that is at equilibrium under neutral mutation, then (VII-12) reduces
to

f (t+1)
w = f (t)w = . . . = f (0)w (VII-21)

Combining this with (VII-13) we find that

f (t)b = (1− u)2 f (t−1)
b = (1− u)2t f (0)b (VII-22)

and since f (0)w = f (0)b and since f (t)w does not change through time, we also get that

f (t)b = (1− u)2t f (0)w = (1− u)2t f (t)w , (VII-23)

so that, taking logarithms

− ln

(
f (t)b

f (t)w

)
= −2t ln(1− u) (VII-24)

Since u is usually quite small, − ln(1− u) � u so that

− ln
(

fb
fw

)
� 2u t (VII-25)
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Thus one approach to genetic distance measures the difference in heterozygosity
between populations, the other the difference between homozygosity between them. The
first is expected to cope well with differences in size between the base population and
the two populations that originate from it. But it does not allow for mutation at the loci.
The second approach (Nei’s approach) allows for mutation, but assumes that mutation
rates are the same at different loci, and that population sizes have not changed from the
ancestral population sizes since the populations diverged.

SOME WIDELY-USED MEASURES. A practical genetic distance of the first sort
(though not using heterozygosities or homozygosities) is that due to Cavalli-Sforza and
Edwards (1967):

DCSE = 4

[
1−∑

i

√
xiyi

]
. (VII-26)

The prescribed method of combining results at different loci is to average the values of
D.

Nei’s distance measure (Nei, 1972) is in practice:

DN = − ln

[
∑

i
xiyi

/((
∑

i
x2

i

)1/2(
∑

i
y2

i

)1/2
)]

(VII-27)

The prescribed method of combining results at different loci is to average the values of
∑ xiyi, ∑ x2

i , and ∑ y2
i .

The behavior of DCSE has been intensively investigated by Heuch (1975). Nei’s dis-
tance is discussed in his books (1975 and 1987). I have also (Felsenstein, 1985) investi-
gated the behavior of a number of genetic distances under divergence by genetic drift. It
is worth pointing out that each of these measures is not expected to perform well when
the situation is that appropriate for the other one.

It is well when reading the genetic distance literature to keep the following points in
mind:

1. All genetic distance measures which are derived with the intention of measuring the in-
breeding due to genetic drift are roughly proportional to each other when gene frequency
differences between populations are small. In this case it does not matter much which
one you use if you want to know whether populations A and B are much more
different in gene frequencies than are A and C.

2. All seem to have various problems when gene frequency differences are large. I have inves-
tigated numerically (Felsenstein, 1985) the way they break down as gene frequen-
cies become large.

3. Some genetic distance measures are actually measuring other quantities than FST: for ex-
ample measures of the probability that two genotypes chosen at random in the populations
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are the same. It seems sufficient that a formula be zero when all the xi equal the yi,
and positive otherwise, that it be called a “genetic distance”. In this sense, you too
can have your own genetic distance measure:

DU =

[
∑

i
(xi − yi)

2H

]1/(2H)

, (VII-28)

where H is the number of Hairs in your nose, or if you don’t know that, your
House number (rounded to the nearest integer), or the last three digits of your
Home telephone number.

4. All genetic distance measures which estimate FST do so under the implied assumption that
all genetic change is due to random genetic drift. If the gene frequencies in the two
populations are diverging due to natural selection, or are being held at constant
values by balancing selection, the genetic distance measure ceases to be related to
divergence time of the population. It may be taken to be an empirical measure of
“genetic distance”, but if so, care should be taken to make clear to the reader of
the resulting paper why the distance measure is in any way preferable to formula
(VII-28) above.

There is much more to say about genetic distances – we have only scratched the
surface here. In the Problems/Complements at the end of this chapter you will find some
questions about the behavior of these two classes of genetic distance measures when
their assumptions are violated. But it is not clear that going deeply into the properties
of genetic distance measures is worthwhile, since there are now more powerful methods
of inferring population parameters that do not use them, as we will see in chapter X.

VII.4 Drift versus migration.

A ONE-ISLAND MODEL. As there is a balance between mutation and genetic drift, so
also is there a balance between migration and genetic drift. We can investigate this most
simply in a one-island model. We have an island with N diploid individuals reproducing
according to a simple Wright-Fisher model. Nearby lies a continent which has a constant
gene frequency p̄. Immigrants from the continent affect the island gene frequency, but
the continent is too large for the emigrants from the island to alter its gene frequency.
We will assume that the immigrants arrive as gametes (this is biologically dubious but
mathematically convenient). Since the island follows a Wright-Fisher model, we assume
that there is an infinite pool of gametes before the density-dependent death of all but
N individuals. A fraction m of the gametes are replaced by immigrants. So if pt is the
frequency of allele A among the gametes before immigration, afterwards it is

p∗t = (1−m) pt + m p̄. (VII-29)
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The gametes combine at random to form diploid individuals, and all but N of these
die during the density-dependent mortality on the island before adulthood. The gametes
in the pre-immigration pool of the next generation are contributed equally by these
surviving adults, so that pt+1 will be the same as the gene frequency in the adults of
generation t. This will be the result of binomial sampling of 2N genes from a pool with
gene frequency p∗t . The expected value of the post-sampling gene frequency is just p∗t ,
so that from (VII-29),

E(pt+1) = (1−m) E(pt) + m p̄ (VII-30)

(since we can take the constant (1−m) outside of the expectation, and p̄ is itself also a
constant and therefore has expectation p̄). We will concentrate on the “stationary state”
in which all of this has gone on for long enough that the effects of the initial frequency p0
on the island have been lost. In the stationary state we can assume that E(pt+1) = E(p).
From (VII-30) we then have

E(p) = p̄. (VII-31)

The expected gene frequency on the island is thus the same as on the continent. This is
a reasonably intuitive result (if you think about it). Most genes on the island came from
the continent. If we trace back the ancestry of a gene, at each stage there is probability m
that the ancestor was on the continent. Sooner or later every gene on the island turns out
to be of continental origin. So it cannot be surprising that the expected gene frequency
on the island is the continental gene frequency.

VARIATION OF GENE FREQUENCY. Of course the island will not be exactly at gene
frequency p̄. This is only the expected gene frequency. Genetic drift will continually move
the island gene frequency away from its current value. Migration from the mainland
will continually pull the island gene frequency back towards p̄ by diluting out the island
genes with mainland genes. The interesting question is: how far will the island genes be
from p̄? This can be addressed by asking about the variance of the island gene frequency
around its expected value p̄. The easiest way to investigate this seems to be to look at the
deviation of each population’s gene frequency from p̄. Let x = p− p̄ be the deviation of
a population from the expected gene frequency p̄. Since we obtain the x’s by subtracting
a constant (p̄) from the p’s, the variance of the p’s will be the same as the variance
of the x’s. Note that when we talk of the variance we are, as in the previous section,
discussing the variance among independent replicate populations each undergoing the
same process, or else the variance in the gene frequency of a single population through
time.

From (VII-29) we find that after migration but before genetic drift

p̄ + x∗t+1 = (1−m) (p̄ + xt+1) + mp̄ (VII-32)

so that
x∗t+1 = (1−m) xt+1. (VII-33)
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and therefore after genetic drift

xt+1 = (1−m) x∗t + εt (VII-34)

where εt is the change in gene frequency caused by random sampling of 2N gametes
from a population whose gene frequency is x∗t . As in we saw when we discussed the
expectations, it is easy to demonstrate that εt has expectation zero, and also that it is
uncorrelated with x∗t : knowing that x∗t in a particular population is positive tells us
nothing about whether ε∗t will be positive. All of which is by way of hand-waving our
way to the following:

E(xt+1
2) = (1−m)2

E(x∗t
2) + 2(1−m)E(x∗t εt) + E(ε2

t ) = (1−m)2
E(x∗t

2) + E(ε2
t ),

(VII-35)
since the cross-product E(x∗t εt) will be zero if εt is uncorrelated with x∗t , as we claim.
Notice that E(ε2

t ) in a population is p∗t (1 − p∗t )/2N, the binomial sampling variance
based on a current gene frequency of p∗t . When the expectation is taken over all replicates
(which may have different values of p∗t ) throughout equation (VII-35) we get

E(x2
t+1) = (1−m)2

E(xt
2) + E[(p̄ + x∗t )(1− p̄− x∗t )/2N]. (VII-36)

Note that since x∗t has expectation zero by (VII-31), E(x∗2t ) is simply the variance of x∗t
and therefore also the variance of p∗t . This is the the variance (over all replicates) of the
gene frequency immediately after migration, and before the adult stage of the life cycle.
This will be (1− m)2Vt. From (VII-36), making use of the fact that x∗t has expectation
zero, we get

Vt+1 = (1−m)2 Vt + [p̄(1− p̄)/2N − (1−m)2Vt/2N]. (VII-37)

The rest is straightforward: we are interested in the variance of the adult gene frequen-
cies pt when a stationary state is reached (i.e. when the initial conditions have become
of no importance, when the mean and variance of pt have reached equilibrium val-
ues, although individual population gene frequencies continually vary and do not reach
equilibrium). This we get by solving (VII-37) for Vt+1 = Vt = V:

V (1− (1−m)2(1− 1/(2N)) = p̄(1− p̄)/2N (VII-38)

so that with some rearranging

V =
p̄(1− p̄)

2N − (2N − 1)(1−m)2 . (VII-39)

Note that (VII-39) checks with intuition in those cases where we know the answer. When
m = 0, so that only genetic drift is operating, V = p̄(1− p̄), which is the variance among
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a set of populations each of which has probability p̄ of being fixed for A. (This is not
quite kosher since, when m = 0, then p̄ is not the expectation of the pt, but let that
pass). When m = 1, so that every generation the island consists of only immigrants and
then we observe these immediately after genetic drift occurs, V = p̄(1− p̄)/(2N), which
is simply the binomial variance after one generation of genetic drift starting from the
continental gene frequency,

When m is small and N is large, we can simplify (VII-39). When terms in m2 and
m/N are ignored,

V ≈ p̄(1− p̄)/(4Nm + 1). (VII-40)

Note the term 4Nm, which looks suspiciously like the 4Nu which appeared in our dis-
cussion of the infinite isoallele model. Now we are ready to answer the question as
to when immigration will override the effects of genetic drift. When there is no immi-
gration 4Nm = 0 and we find that the variance of gene frequencies among different
realizations of this process will be p̄(1 − p̄), indicating that all islands will be fixed,
some for A, some having lost A. Only when 4Nm is not much smaller than 1 will immi-
gration from the mainland pull the island gene frequency closer to the mainland gene
frequency p̄. When 4Nm + 1 is large, there will be little variation of the island gene
frequency around the continental value. Note that 2Nm is the expected number of genes
among the adult survivors of population size regulation which are immigrants, so that
(although it is gametes which migrate in this particular model), the level of immigration
is roughly equivalent to Nm individuals per generation.

We want a crude rule to serve as a rough guide, so that we will regard the immigra-
tion rate at which 4Nm = 1 as being close to the rate at which Nm = 1, so that we can
state another principle:

Migration will have a substantial effect in counteracting the effects
of local random genetic drift provided that there is one or more
immigrant individual into the population each generation.

Like the principle stated in the last section for mutation, this is only a rough guide,
but is surprisingly useful in practice.

VII.5 Drift vs. Migration: the Island Model

THE MODEL. may recall the discussion in Chapter IV of different models of migration.
In our discussion of the interaction between genetic drift and migration, we have so far
used only the simple one-island model. Now we want to look at the n-island model. One
limitation of the one-island model was that the genetic drift on the island caused gene
frequency changes, but these were not exported back to the mainland. Now suppose
that there are n islands, each reproducing according to a simple diploid Wright-Fisher

299



model with population size N. Let us introduce migration by assuming that, in the
gamete stage of the life cycle, a fraction m of the gametes in each population is removed
and replaced by gametes randomly and independently sampled from the other n − 1
populations. Mating follows the migration. We allow mutation to occur before mating,
according to the infinite isoalleles model. Thus the model of reproduction is:

Adults
(N)

meiosis−−−−→ Gametes
(∞)

migration−−−−−−→ Gametes
(∞)

mutation−−−−−−→ Gametes
(∞)

mating−−−−→ Adults
(N)

Why are we bothering to look at this case? We have a group of populations, in each
of which genetic drift is being counteracted by mutation. If there were no migration,
each population would come to contain different alleles, in a balance between mutation
and drift. But migration will spread the same alleles into different population. It will
increase the number of alleles present in any one population, but at the same time will
make the populations more similar. At what point, at what amount of migration will the
set of n populations begin to behave like a single large population of Nn individuals?
This question has no particular meaning in the one-island model. The n-island model is
the simplest in which we can investigate it.

Note that if the number of islands is infinite (n = ∞), the calculations of the previous
section apply. The average gene frequency of all islands then stays precisely constant at
the initial frequency. We can call this p̄. Equation (VII-29) and all the other equations of
that section apply. Drawing a random gene from the archipelago is the same as drawing
it from a continent whose gene frequency never changes.

To analyze the case where n is not infinite, we make use of two quantities, FW and
FB. These are the probabilities of identity of two genes drawn at random (respectively)
from the same population (FW) and from different populations.

Qian Sophia Zhang has suggested a derivation in terms of the probability that two
gene copies that are in the same population are descended from copies that were in the
same population in the previous generation. Let’s call this Pw. We can also make a
similar computation for two copies that were in different populations – the probability
PB that the copies ancestral to them were in the same population. We will compute
these shortly. Before we do, note that when two copies are independently drawn from
the same population, their probability of having identical alleles, if there has been no
mutation yet, is

Q =
1

2N
+

(
1 − 1

2N

)
Fw (VII-41)

This can be seen since there is a chance 1/(2N) that the two copies are drawn from the
same ancestral copy, in which case they must have the same allele; if they are drawn
from different copies, the probability that they have the same allele is FB.

For two copies whose immediate ancestor copies were in different populations, the
probability that they have the same allele is simply FB. Putting all this together, the
probability that we find the same allele in copies from the same population, and in
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copies from different populations can be written simply as:

F∗B = Pw Q + (1− Pw) FW
F∗W = Pb Q + (1− Pb) FW

(VII-42)

The asterisked quantities F∗W and F∗B are the probabilities of two copies having the same
allele in this offspring population, given that they have not yet mutated.

Let us use an infinite-alleles model of mutation. In that model, two gene copies in
the offspring can have the same allele only if neither has mutated since the previous
generation. Thus, after the stage at which mutation occurs, the probabilities of having
the same allele are:

F′B = (1− u)2 (Pw Q + (1− Pw) FW)
F′W = (1− u)2 (Pb Q + (1− Pb) FW)

(VII-43)

We still need to obtain the probabilities Pw and Pb. We already have Q.

EQUILIBRIUM SOLUTION. For the moment, we’re interested in the equilibrium state
in which F′W = FW and F′B = FB. We have two equations in two unknowns, and these can
be solved to obtain explicit formulas for FW and FB in terms of m, u, n, and N. The results
are rather complicated formulas which are not easy to look at. Instead, let us approx-
imate, considering only those cases in which m, u, and 1/N are small. This will quite
often be biologically realistic. The squares and products of these small quantities, m2, u2,
mu, m/N, and u/N, can be ignored as compared to m, u, and 1/N themselves. When
this is done we get the considerably simpler-looking approximate equations (dropping
primes since we assume that the quantities FW and FB are at equilibrium)

FW = 1
2N + (1− 2u− 2m− 1

2N )FW + 2m FB

FB = [1− 2u− 2m/(n− 1)] FB + [2m/(n− 1)] FW .
(VII-44)

The second equation immediately yields (dividing every term by FW and solving for
the ratio FB/FW )

FB

FW
=

m/(n− 1)
u + m/(n− 1)

. (VII-45)

The quantity FB/FW is a measure of how similar genes are between populations, as
compared with how similar they are within populations. We call it ρ. It is closely related
to Nei’s measure of genetic distance, which would be − ln ρ if enough loci were able
to be measured to determine ρ accurately. If genes from different populations are totally
unrelated, then FB = 0 so that ρ = 0. When the genetic contents of the different islands
are so thoroughly similar that we are no more likely to find the same allele simply by
virtue of looking in the same population, then FW = FB so that ρ = 1.

301



The first result we obtain from the analysis is that this measure of the similarity of
population is independent of N (to good approximation). It reflects only the balance be-
tween the rate at which alleles are exported into another population (governed by m)
and the rate at which they become new alleles (governed by u). Note that the quantity
m/(n − 1) is the immigration rate from one population to one particular other popula-
tion.

The second result follows easily from the first equation of (VII-44). We notice from
(VII-45) that FB is by definition equal to FWρ. Making this substitution in the first equa-
tion of (VII-44), we get a simple linear equation for FW so that

FW =
1

1 + 4Nu + 4Nm(1− ρ)
. (VII-46)

Now this has a very familiar look to it. It is essentially a modified version of the equation
for F in the one-population isoallele model, (VII-6). The relationship between these two
equations has a reasonably straightforward verbal interpretation. We simply have to
recognize that in the n-island model new alleles are introduced into a population by two
routes. One is mutation, an event which occurs with probability u and also occurs in the
one-population model. The second route is by migration, which brings in alleles which
may or may not be different. Note that ρ is a measure of how much different the alleles
in the other populations are. Since FB = ρFW , it is as if the immigrant alleles, whose
probability of identity with a random resident is FB, were a mixture of residents and
new mutations. If they were such a mixture, with ρ being the proportion of them which
are not mutants, then we would have ρ FW + (1− ρ) 0 = ρ FW as their probability of
identity with the residents. All of which is by way of justifying the assertion that when
immigration occurs, it brings in new alleles at a rate which is equivalent to a mutation
rate of m(1− ρ). So the presence of migration has the effect of increasing the effective
mutation rate from u to u + m(1 − ρ). When we make that replacement in equation
(VII-6), we get precisely the equation for the present model, (VII-47). Note that ρ itself
depends on m and u.

A NUMERICAL EXAMPLE. Equations (VII-45) and (VII-46) provide a good approxi-
mation when m, u, and 1/N are all small. Table 7.3 shows a series of values of FW and
ρ obtained from the numerical solution of the exact equations (VII-44) for the equilib-
rium values. The Table is organized with reference to the case where N = 200, n = 10,
m = 0.001, and u = 10−4. The different parts of the Table show the effects of varying
each of these parameters. The numbers in parentheses are the results of the approximate
formulae (VII-45) and (VII-46), presented to show that they are reasonably close to the
exact solutions. Let us consider the effects of varying each parameter. When we increase
N, the population size of an island, we increase the genetic variability maintained in a
single population, which is to be expected since we are weakening the effect of genetic
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Table 7.3: Effects of varying different parameters in an n-island infinite isoal-
lele model when the parameters are (unless otherwise specified) N = 200,
n = 10, m = 0.001, u = 10−4. The values in parentheses are those computed
from the approximations (VII-45) and (VII-46), presented to show their level
of accuracy.

Changes in N: N FW ρ

10 0.9775 (0.9776) 0.5267 (0.5263)
100 0.8132 0.5267
200 0.6852 0.5267
500 0.4655 0.5267

1000 0.3033 0.5267
2000 0.1788 (0.1789) 0.5267 (0.5263)

Changes in n: n FW ρ

2 0.8675 (0.8675) 0.9093 (0.9090)
5 0.7641 0.7147

10 0.6852 0.5267
20 0.6231 0.3452
50 0.5729 0.1697

100 0.5532 0.0919
1000 0.5338 (0.5342) 0.0099 (0.0099)

Changes in u: u FW ρ

10−6 0.9921 (0.9921) 0.9911 (0.9911)
10−5 0.9310 0.9176
10−4 0.6852 0.5267
10−3 0.3962 0.1002
0.01 0.1007 0.0111

0.1 0.0104 (0.0122) 0.0012 (0.0011)
Changes in m: m FW ρ

0 0.9259 (0.9259) 0 (0)
10−6 0.9252 0.0011
10−4 0.8680 0.1002
10−3 0.6852 0.5267
0.01 0.5742 0.9187

0.1 0.5572 0.9925
0.9 0.5555 (0.5558) 1.0000 (0.9990)

303



drift. But we have almost no effect on ρ, as predicted from the approximate formula
(VII-45) which does not contain N. Thus as the similarity between genes from the same
population decreases, the similarity of genes in different populations decreases at the
same rate. On the other hand, when we increase n, the number of islands, ρ drops
toward zero. This it does because the amount of migration between any two given pop-
ulations is m/(n − 1), which declines to zero as n is increased. Thus as n increases the
islands becomes less and less similar. As this happens, new immigrants become more
and more equivalent to mutants. The similarity of alleles in a population drops toward a
limit, which can be found simply by replacing u by u + m in the one-population isoallele
model (VII-6). If we compute 1/[1 + 4N(u + m)] in this case, it is 0.5319, very close to
what is observed when n is large.

When u is varied, as expected there is less and less gene identity within a population.
The quantity ρ also drops as mutation provides a stronger and stronger force differenti-
ating populations. Finally, the effect of increasing the rate of migration m is to increase
the genetic similarity between populations, as one might expect. As migration becomes
a stronger force, the set of n populations becomes more and more nearly a single ran-
dom mating population. When m = 1− 1/n, so that m = 0.9, each gene in a population
came from one of the other populations chosen at random, so that our archipelago of is-
lands is one random-mating population. In that case the amount of variation in a single
population is precisely what would be predicted from an infinite isoalleles model with
Nn individuals. The approximation formulae (VII-45) and (VII-46) do a good job for
parameters in the ranges we have considered. As expected, they begin to lose accuracy
when m, u, or 1/N become large.

The reader should be clear about the significance of quantities like FW and ρ. They
are not expected to have these values in any one population or even when averaged
over pairs of genes at one locus drawn from the populations of any one archipelago. In
the derivation of the equations for these quantities we considered the probability that
two genes drawn from a random population and from a random realization of the process
were identical. It is much the same as in the infinite isoalleles model: the probabilities
are only expectations. An individual realization of the process could, as a result of
random genetic drift, come to contain only the same one allele in all populations, despite
the fact that FW < 1. The values of FW and FB are averages over all possible pairs of
genes sampled from all possible replicates of the process. As such they indicate only
the expected course of events and not the fluctuations we should expect around those
averages.

We have dealt only with equilibrium situations in this section. With three evolu-
tionary forces operating, there will be a variety of time scales on which the system will
respond to perturbation. If all variability is lost, the rate at which new variability reenters
the whole system will obviously be governed by the mutation rate u. If the populations
become excessively differentiated, the rate at which migration re-mixes the genetic con-
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tents of the populations will be governed by m. If the populations become excessively
similar (although containing variability) the rate at which they differentiate by genetic
drift will be governed by 1/N. A complete analysis of rates of return to equilibrium is
beyond our scope here: there is insufficient space to discuss it.

RATE OF LOSS OF VARIABILITY WITHOUT MUTATION. However, a body of
work is available on the rate of approach to equilibrium in one set of cases of particular
importance. These are when there is no mutation (u = 0). Then the variability in
the populations will be lost as FW and FB approach one. The questions which arise
immediately are: (1) at what rate will the whole archipelago fix for the same allele, and
(2) as the variability of the set of populations is being lost, will the residual variability
represent mostly between-population variability, or will all populations have similar
genetic composition? We will only sketch the methods used to answer these questions,
as they are fairly straightforward. When u = 0 equations (VII-44) can be used to show
that the equilibrium values of FW and FB are both 1. Substituting HW = 1− FW and
HB = 1− FB into these equations, we find that they give two linear recurrence equations
in two unknowns. These can be solved by matrix methods in the manner discussed
above in Chapter V, in section V.11. Both HW and HB decline towards zero, and the
rate of decline becomes geometric, so that after a while H′W � λHW and H′B � λHB.
The value of the largest root of the characteristic equation of the matrix which is found
tells us the answer to the first of the two questions posed above. The smaller is this λ,
the more rapidly variability (as expressed by either HW or HB) is lost. We can write
out the quadratic equation with coefficients depending on N and m, and solve it either
analytically or numerically.

The result shows an interesting transition, and a behavior somewhat different from
the isoallele-mutation case just discussed. When Nm is large, the whole population drifts
as if it were a single random-mating population. If it were, then clearly the value of λ

would be 1− 1/(2Nn), since this panmictic population would contain Nn individuals.
As m is decreased, the rate of loss of variation stays near this value for some time. But
there is a rather sudden transition in a particular range of values of m. Below this range,
the rate of loss of variation begins to decline. Furthermore, it comes to depend on m, but
not on N, whereas before it depended on N but not on m. When

λ � 1− 1
2Nn

(VII-47)

and when m is small

λ � 1− 2m
n− 1

. (VII-48)

Figure 7.1 shows this transition, by graphing the rate of loss of variability, 1− λ, as a
function of m. Clearly the critical range of values of m is near the intersection of the two
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Figure 7.1: Rate of approach to fixation in an island model with n = 10 and
N = 100. The squares are the result of exact calculation of eigenvalues. The
curve is the approximation (VII-51).

asymptotes, at the point when (VII-47) equals (VII-48). So it is where

1
2Nn

=
2m

(n− 1)
(VII-49)

which is where
4Nm =

n− 1
n

. (VII-50)

So we can state the principle that the population drifts as if one panmictic population
provided Nm is large, but geographic structuring of the population impedes the spread
of one or another allele if Nm is small. This is certainly consistent with the behavior of
the one-island model. In fact, Nagylaki (1977a) has proven that any reasonable connected
geographic structure behaves as if panmictic if the population sizes are large enough,
which implies that all the Nmij are large.

As an aside, it may be worth noting that a good approximation to λ over all ranges
of m is

λ � 1− 1
2Nn + n−1

2m
(VII-51)

It is very much as if when m is large the population drifts with an effective population
size near Nn, and when m is small it drifts with an effective population size of (n −
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1)/(4m). An even better approximation for all values of m is the sum of these two
effective sizes.

All of the above statements may be verified by consideration of approximations to the
full equation for λ, but we shall not do this here. The remaining aspect of the approach
to fixation of an n-island model is the extent of geographic differentiation of the islands.
This turns out to be completely concordant with the above rules. When the population
has effective population size Nn, it shows little geographic differentiation, as judged by
the ratio HW/HB, which will then be near unity. But when geographic subdivision is
effective in impeding genetic drift, then there will be substantial differentiation, with far
more heterozygosity if two genes are drawn from different populations than if drawn
from the same population.

The populations then become differentiated from each other, and the whole species
then has its mean gene frequency drift until it is 0 or 1. The differentiation arises much
faster than the whole species drifts. It arises in a number of generations which is a
small multiple of the local population size N. A good approximation to the extent of
differentiation is that HW/HB � 4Nm/(4Nm + 1).

REFERENCES. The n-island model was first envisaged by Sewall Wright (1931), who
dealt only with the case n = ∞ when effectively it will behave like a one-island model
in many respects. P. A. P. Moran (1959) first pointed out the transition in the rate of
approach to homozygosity as m is varied. Maynard Smith (1970) gave an approximate
solution, very much like the one here, to the island model with infinite isoallele mutation.
Maruyama (1970) gave a less approximate treatment. The exact solution was given by
Nei and Feldman (1972) and also by Latter (1973), who approximated the time dynamics
of the model more fully. The intuitive discussion presented here owes much to the
treatments by Maynard Smith (1970) and Spieth (1974). Robertson (1964) presented a
general rule relating the extent of geographic differentiation to the rate of approaches of
the whole species to fixation.

VII.6 Drift vs. Migration: the stepping stone model.

THE MODEL. We have gone into the island model in some detail because all the
phenomena seen there also occur in the more complex spatial models. The island model
has no geography: each population is in effect equidistant from each other population.
There are many models of geographic population subdivision. The best investigated of
these are the stepping stone models. We now look briefly at some of the results from
this model. Our lengthy discussion of the island model will help us distinguish those
effects due to the subdivision of the species into local populations from those which also
require a particular geographic arrangement of the populations.
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We concentrate first on the simplest case of the stepping stone model. We imagine
that there is an infinite chain of equally spaced populations, each of size N. The model
of population reproduction is a Wright-Fisher model with immigration, as it was in the
island model. The difference is that of the m immigrant gametes, a fraction m/2 comes
from the neighboring population to the left of the population, and a fraction m/2 comes
from the neighbors on the right. This is shown diagrammatically in Figure 4.3. The
chain of populations is assumed to be infinitely long.

Let us consider the equilibrium state of an infinite isoalleles model in an infinitely
long stepping stone model. As before, this will not be an equilibrium of individual
allele frequencies, but of the amounts of variability as measured by probabilities of allele
identity. The probabilities we use are the Fij, the probability that a gene drawn at random
from population i will be the same allele as one drawn at random from population j, the
sampling being without replacement if i = j.

AN ASIDE: THE GENERAL MIGRATION MATRIX MODEL. For any arbitrary ge-
ographic structure there is a general equation which the Fij must satisfy at equilibrium.
Using a sequence of lifestages in which the juveniles migrate:

Juveniles
(∞)

sampling
−−−−→Adults

(N)

meiosis
−−−→Gametes

(∞)

mutation
−−−−→Gametes

(∞)

mating
−−−→Juveniles

(∞)

migration
−−−−−→Juveniles

(∞)

the equation is

Fij = (1− u)2 ∑
k

∑
l

MikMj�

[
Fk� + δk�

(
1− Fk�

2N

)]
. (VII-52)

This complex-looking equation is actually rather simple. The factor (1− u)2 comes, of
course, from the isoallele mutation model. Mik is the probability that a gene found in
population i came in the previous generatian from population k. When i = k it gives the
probability that the gene is not a new immigrant. Mj� is defined similarly. The quantity
in brackets is easily interpreted. δk� is called the Kronecker delta function. It is simply a
bookkeeping device. It is zero when k �= � but one when k = �. This means that when
k �= � the quantity in square brackets is simply Fk� but when k = � it is

1
2N

+

(
1− 1

2N

)
Fk� .

This quantity should be familiar to us by now. Thus the double summation in (VII-
53) simply keeps track of all possible places in which the two genes could have been in
the previous generation. MikMj� is the probability that genes now respectively in i and
j came from k and �, and the quantity in square brackets is their probability of identity
if they came from k and �.
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THE STEPPING STONE MODEL AGAIN. In this general migration matrix model with
an arbitrary number of populations and an arbitrary migration scheme given by the Mij,
there is no simple expression giving the solution of (VII-53). But in the one-dimensional
linear stepping stone model, things simplify. Each gene can only have come from three
possible places, the population where it was found and its two neighbors. So there are
nine terms in the double sum:

Fij = (1− u)2
[
(m2/4)F∗i−1,j−1 + (m2/4)F∗i−1,j+1 + (m2/4)F∗i+1,j−1 + (m2/4)F∗i+1,j+1

+ (m/2)(1−m)F∗i+1,j + (m/2)(1−m)F∗i−1,j + (1−m)(m/2)F∗i,j−1

+ (1−m)(m/2)F∗i,j+1 + (1−m)2F∗i,j

]
.

(VII-53)
We have assumed that the populations are numbered in order by integers: -3, -2, -1,
0, 1, 2, . . . Recall that the three possible migration events of a gene have probabilities
m/2, 1−m, and m/2 respectively. The asterisks on the F’s indicate that each of these is
a quantity like the one in square brackets in the preceding equation, being either F or
1/(2N) + [1− 1/(2N)]F depending on whether or not the two subscripts of F are equal.

Now we can both simplify and approximate. We simplify by assuming that at equi-
librium the probability of allelic identity is dependent only on how far apart are the two
populations. So Fij = Fi+1,j+1 = Fi+2,j+2 = . . . = Fi−1,j−1 = Fi−2,j−2, etc. If we let
Fij = fi−j the set of values of the f ’s will tell us all the values of the F’s. So we need only
solve for the fi, the probability of identity between two genes drawn from populations
i steps apart. In addition to this simplification we also approximate by assuming that
m, u, and 1/N are small, and ignoring products and squares of these small quantities.
After all of this (VII-53) becomes the set of equations

f0 =
(

1− 2m− 2u− 1
2N

)
f0 + 2m f1 +

1
2N

f1 = m f0 + (1− 2m− 2u) f1 + m f2
...

fk = m fk−1 + (1− 2m− 2u) fk + m fk+1.
...

(VII-54)

We have used in the first of these equations the fact that f1 = f−1, so that we only need
to know fi for positive values of i.

Notice that all but the first equation are identical in pattern. If we consider what will
happen to fk as k becomes large, it is intuitively clear that fk will decline to zero. The
farther apart are two genes, the more certain that mutation will have occurred to one or
the other since they last had a common ancestor. We can assume that the decline of fk is
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geometric, so that (for large k) fk+1 � λ fk � λ2 fk−1. Since from (VII-54)

m fk+1 − 2(m + u) fk + m fk−1 = 0, (VII-55)

after substituting λ2 fk−1 for fk+1 and λ fk−1 for fk, we obtain the quadratic equation

mλ2 − 2(m + u)λ + m = 0 (VII-56)

so that

λ =
m + u±√(m + u)2 −m2

m
. (VII-57)

The relevant root is the smaller one. (The full solution of the difference equation (VII-55)
is a linear combination of powers of the two roots, but the larger root is greater than 1
and it can be shown that it must have a coefficient of 0, as fk declines to 0 as k increases).
We can approximate the smaller root when u� m by

λ � 1−√2u/m (VII-58)

so that fk, which should (for large k) be proportional to λk is approximately

fk � f0 exp[−k
√

2u/m], (VII-59)

This argument has been a bit fast and loose, making many assumptions and approxima-
tions. But we have gone through it because it is one result which can be obtained fairly
easily. The expression for f1, which is in terms of f0, can also be substituted back into
the first equation if we use our approximation to compute f2 from f1 and we can then
use (VII-54) to obtain an expression for f0.

FURTHER RESULTS. Many variants of the stepping stone model have been treated in
the literature. The methods needed to solve for equilibrium levels of variability or for
rates of approach to homozygosity are rather tedious and difficult. Rather than attempt
to present them here, we will simply present the main conclusions which have come out
of this body of work. References to the work will be found at the end of this section.

As we have seen, in the infinite isoalleles model in a one-dimensional infinite stepping
stone model, the identity of alleles in two populations will decay at the same rate as
exp[−k

√
2u/m] for large distances between the populations. This exponential decline is

not quite true for a two dimensional stepping stone model. A two-dimensional stepping
stone model is defined similarly to the one dimensional case. It is assumed that a fraction
m of gametes in a population are replaced by gametes from the four neighbors. Each
neighbor in the grid of populations contributes a proportion m/4 of the gametes. If
we express the probability of identity as a function of the distance between the two
populations, we find that when k is large, fk is

fk = c f0 e−k
√

(4u/m)

/√
k (VII-60)
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where the constant c is a rather messy expression depending on both u and m, but not
on N.

In both cases, more exact formulas are available for computing the fk, but they yield
little in the way of insight. We have dealt only with infinitely long one- and two-
dimensional stepping stone models. Models of finite extent (lines, circles, rectangles
or tori of populations) have also been analyzed and show similar patterns. Note that
although there is no analogue in the n-island model for the rate of decline of allelic iden-
tity with distance, there is one direct parallel. Like FB/FW , fk/ f0 depends only on the
relation between u and m, and not on N to any extent.

RATE OF LOSS OF VARIABILITY. A clearer picture is obtained by eliminating muta-
tion from the models, and asking at what rate the allelic identity fk approaches 1 (i.e.,
how rapidly does the population fix for one allele). Like the island model, after an initial
period the rate of decline of variability, both within a single colony and throughout the
species range, settles down to a constant rate. The rates of decay of variability show
a transition behavior similar to that seen in the island model. Note that we can most
meaningfully discuss the approach to fixation in a species of finite extent (a line, circle,
rectangle, or torus of populations), for in an infinitely long stepping stone model the
whole species can never fix for one allele. When m is large, the whole species drifts
as if one panmictic population, with very little geographic differentiation. When m is
small, there is local geographic differentiation during the fixation process. The process
of fixation then consists primarily of the spread through the species of a patch of nearly-
fixed populations. Each population is fixed one way or another, and the patches of fixed
populations each spread or shrink until all populations are fixed for one allele.

This transition from the one behavior to the other is qualitatively like that seen in the
n-island model. We can define an effective population size for this process of genetic
drift, and approximate it for large and small m. As in that case, the effective population
size is well approximated by the sum of these. Figure 7.2 shows the transition undergone
by the rate of decay of variability (more properly, the rate of approach of the F’s to 1 per
generation).

In the one-dimensional case, when there are n populations in a line, the effective pop-
ulation size is approximately (when there are a reasonably large number of populations)

Ne � n2

π2m
+ Nn (VII-61)

while in a two-dimensional rectangle of nl × n2 populations we have

Ne � 2n1n2

m
+ Nn1n2 (VII-62)

Note that when m becomes large the second term in each of these expressions predom-
inates. It is the total number of individuals in the species. When m is small the first
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Figure 7.2: Rate of approach to fixation in a one-dimensional stepping-stone
model with n = 50 and N = 1000. The circles show exact values computed
using equation (VII-52), the curve uses an approximation based on equation
(VII-61), and the dashed lines are the rates based on the two parts of that
equation.

terms, which do not depend on the local population size N, dominate. A particularly
interesting phenomenon occurs when we look at the point at which the transition to
effective panmixia occurs. We can find this by finding the value of m at which the two
asymptotes in Figures 7.2 intersect. This is the same as the point at which the two
terms of (VII-61) or of (VII-62) are equal. For one dimension the transition occurs when
Nm = n/(2π2). For two dimensions we require Nm = 2. Note the difference in behavior
of the one- and two-dimensional cases. When we have a rectangle of populations, it will
drift as one panmictic population whenever there are (substantially) more than two im-
migrant individuals (four surviving immigrant gametes) expected per generation. This
will hold no matter how many populations there are in the rectangle. Nm > 2 is enough
to “thoroughly mix” even a very large species. But in the one-dimensional case, when
we increase n, we also increase the amount of migration needed to make the species
drift as if one large population. So for a fixed amount of migration, a long enough line
of populations will show local genetic differentiation during the fixation process. But a
large enough square or rectangle may not show genetic differentiation unless Nm < 2.
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Note by comparing these results to (VII-51) that the n-island model behaves much more
like a two-dimensional than a one dimensional model. This seems to be related to the
fact that in both the island and the two-dimensional model there are many routes from
one population to another via chains of other populations, while in the one-dimensional
model there is only one route.

RELATION TO THE EQUILIBRIUM WITH MUTATION. Now we can relate these
results about the rate of genetic drift to the equilibrium variability under an isoallele
model. When the mutation rate is so small that we expect far fewer than one mutant
per generation in the whole species (i.e., 2Nnu << 1), after each mutation there will be
a prolonged period of genetic drift. Thus the species will be quite likely to drift to
fixation or loss of the allele before the next mutation occurs at the locus in question.
Thus if we ask whether we will see geographic differentiation with u very small, this
will be nearly the same as asking whether we see geographic differentiation during the
process of approach to fixation of one allele. Nearly, but not quite, the same. When
we ask about geographic differentiation with small u, we must also include those cases
in which the species has reached fixation. If we use the ratio fk/ f0 as a measure of
geographic differentiation, we will find that since we are by and large examining totally
fixed species, fk � f0 � 1. Thus this measure will show little geographic differentiation.
A gene from a distant population is just as likely to be the same allele as one from the
same population.

But there is another, equally relevant measure of genetic differentiation, related to
the ratio HW/HB discussed in the section on the island model. This is (1− f0)/(1− fk),
which compares the heterozygosity within a population to that between populations. Now
the instances in which the species is totally fixed contribute no heterozygosity to either
1− f0 or 1− fk. So in examining this quantity we are, in effect by asking only about
those generations during which heterozygosity exists, looking only at those cases not
yet fixed. This quantity, which will be substantially less than 1 when there is more
heterozygosity between than within populations, behaves just as it does when there
is no mutation. There will be found to be a transition between local differentiation and
effective panmixia as m is increased, and it will occur at the same value of m as discussed
above.

When 4Nnu > 1 (one dimension) or 4Nn1n2u > 1 (two dimensions) the entire anal-
ogy between the equilibrium and the approach to fixation breaks down, and we can no
longer look to fixation rates for insight into geographic differentiation of populations.

REFERENCES. We have so far deferred citing the actual literature on the stepping
stone model. It was first formulated by Kimura (1953) and independently by Malécot
(1950), who obtained the first approximate solutions. Earlier Sewall Wright (1940, 1943,
1946) propounded a model of individuals distributed in a spatial continuum, as did
Malécot (1948, 1969). We have not covered the continuum models since they involve a
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questionable assumption (Felsenstein, 1975), but they were the first models of genetic
drift in a truly geographically subdivided population.

Kimura and Weiss (1964; Weiss and Kimura, 1964) presented a more detailed analy-
sis of the infinite-length stepping stone models. Malécot (1950, 1951) obtained solutions
for the equilibrium in some finite-length cases, and Maruyama (1970) first obtained the
rate of loss of variability in finite-length stepping stone models. Maruyama has also
written many papers providing detailed solutions and approximations to a wide variety
of stepping stone models. Readers will find references to these and related papers in
his monograph (1977) and also in my own review paper (1976) which contains some
erroneous formulas. I have more recently (2015) presented approximations for finite 1-
and 2-dimensional stepping-ston models that improve on Maruyama’s. The transition
in behaviors of the stepping stone model was first discussed by Kimura and Maruyama
(1971) and also by Maruyama (1972). Korolev et al. (2010) have found a similar transi-
tion in stepping stone model behavior in a continuous approximation using stochastic
differential equations. The interpretation of the transition in terms of effective popu-
lation numbers is my own, and is published here. Nagylaki (1976, 1977a, Nagylaki
and Barcilon, 1988) has used continuous-space approximations to investigate the rate of
convergence of a stepping-stone model to its equilibrium. This can take quite long.

VII.7 Probability of Fixation of a Mutant

When genetic drift acts in opposition to mutation or to migration, it is possible to gain
a clear picture of events by investigating the behavior of means and variances of gene
frequencies, or equivalently of probabilities of allelic identity. When natural selection
and genetic drift are the forces present, the methods become more complex, leading us
ultimately to the diffusion equation methods, the most sophisticated mathematics used
in population genetics. We will ease into this morass by considering first the simplest
models containing both drift and selection. These treat the probability that a rare advan-
tageous allele introduced into a large population will successfully fix.

PROBABILITY OF FIXATION. Consider an allele introduced as a single copy into a
very large population which is reproducing according to a Wright-Fisher model (dis-
crete generations, random mating, no mutation), and which is otherwise totally fixed for
the other allele. One might think that if the population were large enough, the course of
change in gene frequency would follow the expectation which we get from the determin-
istic models of Chapter II. But a moment’s reflection will suffice to see that this cannot
be so. If the gene is very rare (and it is) and has relative fitness 1+ s when heterozygous,
then the results of section II.6 tell us that we expect the gene frequency to be multiplied
by approximately 1 + s per generation. This means that if we now have one copy of the
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allele, then in the next generation, is s = 0.2, we should have 1.2 copies. This is clearly
impossible.

The paradox is partially resolved when we realize that the relative fitness 1 + s is
only an expectation. On average the carriers of our allele A will have 1+ s times as many
offspring as the homozygotes for a. But a single Aa individual may have no offspring,
or a few, or a great many. It is only necessary that the mean number of survivors work
out to 1 + s (relative to aa). If there is any chance at all of having no surviving offspring,
then it is possible for the allele A to be lost in the first generation. Even if it survives, it is
quite possible for the survivors to themselves all have no surviving offspring. It is clearly
quite possible that a new mutant allele will die out as a result of these chance events,
even though it is selectively advantageous and occurs in an infinite population. We will
try to find the probability that the allele survives long enough, and comes to exist in
enough copies, to ultimately complete the process of substituting itself for the existing
allele. We return later to the question of how this random process may be reconciled
with our notion that when the population size is very large there should be little or no
genetic drift.

THE BRANCHING PROCESS. We take as our starting point the probabilities p0, p1, p2, . . .
that an individual A allele in an adult Aa gives rise to 0, 1, 2, . . . copies of the A gene
among the adults of the next generation. We then return to compute these probabilities
after doing the analysis in terms of them. We seek the probability of long-term survival
of the A allele. The easiest way to find this is to consider instead the probability λ that
the A gene is ultimately lost. These two probabilities (of loss and of survival) must sum
to unity. Given a single Aa individual, A will be ultimately lost if it has no offspring
in the next generation, an event whose probability we have assumed to be given by p0.
But it may also be lost if it gives rise to only one A in the next generation. That event
has probability p1. Knowing that there is only one A in the next generation, so that it
must be in a Aa individual, we can see that since by assumption the relative fitness of
Aa remains constant at 1 + s, the probability that that single Aa offspring contains an A
gene which is ultimately lost is λ. So we can put this together to say that the chance that
our original A gene dies out through a series of events which start by only one offspring
containing A being produced is the product p1λ. Note that in trying to compute λ we
are in the process finding a formula for it that itself involves λ. This will work out.

It is also possible for there to be two copies of A in the next generation. Since the A
allele is extremely rare, it is overwhelmingly likely that these A-bearing adult offspring
are both Aa individuals. The probability that there are two A-bearing offspring is p2.
Now to have the A allele be lost, neither of those A genes can give rise to a lineage
which ultimately survives. The critical assumption we now use is that, since these two
individuals are each diluted out in a very large population, they do not interact in any
way with each other, nor do their descendants. If this assumption holds, then the event of
the dying out of one A line occurs independently of whether the other A line dies out.
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Each of these lines is again a line started from a single gene. So the probability that each
one dies out is λ, and the probability that both die out is (by independence of these two
events) λ2. Thus the probability that the original A gene has two descendants and that
neither of these ultimately has surviving A-bearing offspring is p2λ2.

By simple extension of this argument we can see that the probability that the lineage
of A’s has 3 offspring, whose descendants all die out is p3λ3, and so on. We have now
computed λ in terms of itself as:

λ = p0 + p1λ + p2λ2 + p3λ3 + · · ·+ pkλk + . . . , (VII-63)

the summation continuing to the largest number of offspring the original gene could
possibly have. This process, in which a single particle (in our case, a gene) can repro-
duce different numbers of offspring, each of which independently gives rise to a line of
offspring according to the same process, is called a branching process. The probability of
death of a lineage founded by a single gene is found by solving (VII-63) for λ, if that is
possible. There will always be a root λ = 1 in (VII-63). When the chance of survival is
greater than zero, there will also be another root in which λ < 1.

THE WRIGHT-FISHER MODEL WITH SELECTION. Now let us put some flesh on
the bones of equation (VII-63) by specifying values for the pk. We recall that the original
A is in an adult, that the population reproduces according to a Wright-Fisher model, and
that the relative fitness of Aa is (1 + s). To find the probability that there are n Aa adults
in the next generation, we must specify what we mean by a Wright-Fisher model when
there is natural selection. Recall that in a Wright-Fisher model, it is as if an infinite pool
of gametes were produced, these combine at random, and then N surviving adults are
chosen by the lottery of density-dependent population size regulation. To incorporate
fitnesses into the scheme, we need only assume that in the production of the gamete pool
and in subsequent events up to but not including population size regulation, natural selection (or
migration, or mutation) is at work. Our life cycle diagram is:

Adults
(N)

selection
meiosis,−−−−−−−−→
(fertility

differences)

Gametes
(∞)

random
union−−−−−−→ Zygotes

(∞)

selection−−−−−−−−→
(viability

differences)

Late
preadult
zygotes
(∞)

density
regulation−−−−−−−→ Adults

(N)

Thus having one copy of A with relative fitness of its bearers being 1 + s will lead,
whether by fertility or viability effects, to a proportion (1 + s)/N of the late preadult
zygotes being heterozygotes Aa, where N is the population size, assumed large. On each
of the N “draws” which determine survivors’ genotypes, the chance of getting a Aa is
(1 + s)/N. The average number of A genes surviving is thus N(1 + s)/N = 1 + s. Thus
in a Wright-Fisher model under these conditions, the number of Aa survivors is drawn
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from a binomial distribution with N trials and the probability (1 + s)/N of success on
each trial.

But we have assumed that N is very large. These conditions (very small probability of
success on each trial) are precisely those in which the number of surviving offspring will
nearly follow a Poisson distribution with mean number of offspring 1 + s. The validity
of this approximation will increase as we consider cases of larger and larger N. Thus the
number of offspring Aa is k with probability

pk = e−(1+s)(1 + s)k/k!, (VII-64)

these being the Poisson probabilities when the mean is 1 + s. To find λ, we substitute
these for the pk in (VII-53). We find that

λ = e−(1+s) + e−(1+s)(1 + s)λ + e−(1+s)(1 + s)2λ2/2 + . . . + e−(1+s)(1 + s)k/k! + . . .

= e−(1+s) [1 + (1 + s)λ + (1 + s)2λ2/2 + · · ·+ (1 + s)kλk/k! + . . .
]

.
(VII-65)

The power series 1 + x + x2/2 + · · ·+ xk/k! + . . . is simply the Taylor series expansion
of ex, and we can thus write (VII-55b) as

λ = e−(1+s) eλ(1+s)

= e(λ−1)(1+s).
(VII-66)

The value of λ is found by solving (VII-66) for λ, given the value of s. Unfortunately
there is no closed-form expression for λ.

AN APPROXIMATION. An approximate solution can be obtained when s is small by
expanding the right side of (VII-66) as a power series in (λ − 1) and dropping terms
beyond the square. This involves the assumption that λ is near 1. We get

λ � 1 + (λ− 1)(1 + s) + (λ− 1)2(1 + s)2/2 (VII-67)

or
(λ− 1)

[
1− (1 + s)− (λ− 1)(1 + s)2/2

]
� 0 (VII-68)

which is solved either when λ = 1 or when

1− λ � 2s
(1 + s)2 (VII-69)

Our analysis shows that when s is small, the probability of survival of a new mutant (for
that is what 1− λ is) is nearly 2s. When s is negative, the only acceptable solution of
(VII-68) is λ = 1.
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Table 7.4: Comparison of exact probability of survival in a branching process
with two approximations.

Exact
s Probability 2s/(1 + s)2 2s
0 0 0 0
0.01 0.01973 0.01922 0.02
0.02 0.03896 0.03845 0.04
0.05 0.09370 0.09070 0.10
0.10 0.17613 0.16529 0.20
0.20 0.31369 0.27778 0.40
0.50 0.58281 0.44444 1.00
1 0.79681 0.50000 2.00

Clearly a new mutant in a very large population has a nonzero chance of spreading
only when s > 0. This is certainly consistent, in a qualitative sense, with the determin-
istic results for selection in an infinite population. Table 7.4 compares exact solutions of
(VII-66) with the approximations 2s and 2s/(1 + s)2. The exact probability of survival is
between the two approximations, somewhat closer to (VII-69).

When s is small, clearly 2s is close enough to the probability of survival to serve as a
working rule of thumb. It is worth considering how small a probability of survival this
is. When s = 0.01, only one new mutant in 50 will succeed in spreading, despite the fact
that all are advantageous. Even with s as large as 0.1, large enough to guarantee fairly
rapid change in gene frequencies in the deterministic case, only one new mutant in six
will establish itself. Obviously, genetic drift is a powerful force when only a few copies
of an allele are in existence. Only rarely will an allele, even if advantageous, escape
from the risk of loss due to the randomness of births and deaths, and of Mendelian
segregation.

But once an advantageous allele reaches a substantial number of copies, its continued
survival is better assured. If there are n copies of an allele, it can only be lost by all n
lineages of A-bearing individuals going extinct. The probability that this will happen
is λn, since we still assume that the population is so vast that these different lineages
do not interact, and survive or are lost completely independently of one another. The
probability that an allele represented initially by n copies is lost is

λn � (1− 2s)n. (VII-70)

Once 100 copies of an allele exist, when s = 0.01, the probability that it is lost is only
0.14, and once 1000 copies exist, the probability that it will be lost thereafter is less than
3× 10−9. This provides us with some insight into the time dynamics of the process of
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establishment or loss of a new advantageous mutant.
As 1− 2s � e−2s, The quantity (1− 2s)n can be approximately written as e−2ns. If 2ns

is substantially greater than 1, this means that the favored allele is very unlikely to be
lost. This is true when n > 1/(2s). Thus when the number of copies of the advantageous
allele substantially exceeds 1/(2s), the allele is virtually guaranteed to fix. This is true
even if it is as yet still at a low gene frequency. So most of the loss of advantageous
alleles takes place while these alleles are still present in only a few copies (this is not as
silly a statement as it sounds). This in turn must be during the first few generations. An
allele present in only one or a few copies is constantly at risk of being lost and could
not last long in that state. If it survives many generations it must therefore be fortunate
enough to have drifted to a larger number of copies.

NUMBER OF COPIES PRESENT. We can now get some insight by asking, not about
the probability of survival, but about the average number of copies which we expect to
be present after t generations. Starting with one mutant copy of A, we expect to have an
average of 1 + s copies in the next generation. These in turn each will have an average
of 1 + s A-bearing offspring, and so on. After t generations there should be an average
of (1+ s)t copies of A. Consider a large value of t, say 1000 generations. If s = 0.01, then
we expect an average of 20,959 copies of the allele to exist after 1000 generations. But
this is an average both over cases in which the allele has been lost and those in which it
still survives. The process of loss of the allele will have mostly run its course long before
1000 generations. So, since 1− 0.01973 = 0.98027 of the time the allele will be lost, this
average of 20,959 represents an average of numbers which are zero 0.98027 of the time!
Thus if there are any A alleles around at all (an event which happens only 0.01973 of the
time), there must be (on average) 20,959/0.01973 = 1,062,299. Thus the figure of 20,959
will not be typical of any particular population. A few populations will have 50 times
that many alleles, but in most cases there will be no A copies left after 1000 generations.

A more careful analysis of the branching process shows that loss does indeed occur
within a few generations of the initial occurrence of the allele, if it is going to occur at
all. In those cases in which there is survival of the mutant, it drifts upwards in numbers
until a substantial number of copies (as we have seen, about 1/(2s) of them) are available.
Thereafter it increases relatively smoothly by a fraction of s per generation.

This latter is precisely the behavior expected from the deterministic selection equa-
tions. We are still left with the problem of how to reconcile the deterministic prediction
with the results from the branching process, as both are supposed to apply when N is
large. The paradox is resolved by focusing on the number of copies initially present.
When there are only a few, the branching process accurately indicates that most likely
the favored allele will be lost, and that in any case genetic drift will be a major influence
on gene frequencies in early generations. But recall that we have assumed a vast popu-
lation. Even if the initial gene frequency is pA = 0.01, this will represent a large number
of copies of A. In that case A is expected to increase its frequency smoothly, and have
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little chance of being lost. Even if we have a new mutation coming into a population
which lacks it, if 2Nu 1 there will be many copies of the mutant even during the first
generation, and these mutants will follow deterministic patterns as a result. Thus there
is no contradiction between the results of the branching process and of the determinis-
tic treatment. However very large population sizes (109) will often be required to get
this consistency, and otherwise the branching process will more accurately reflect what
happens when only a few copies of an allele exist.

REFERENCES. The branching process was introduced by Francis Galton and the Rev-
erend Thomas Watson (Watson and Galton, 1874) in the last century to model the ex-
tinction of family surnames (the problem had been worked on earlier by I. J. Bienaymé,
as pointed out by Heyde and Seneta, 1977). It was first applied to the problem of extinc-
tion of a gene by R. A. Fisher (1922), who treated only neutral genes. Haldane (1927)
extended the treatment to advantageous genes and obtained the approximation 2s. The
number-of-copies argument of the previous paragraphs is given by John Maynard Smith
(1971).

VII.8 The Diffusion Approximation to Fixation Probabili-
ties.

THE WRIGHT-FISHER MODEL WITH SELECTION. The weakness of the branching
process approach to fixation probability is that it assumes that all the different copies
of the allele reproduce independently of each other. This can be a good approximation
only if the allele is at low frequency in a very large population. In this section, we begin
to develop the diffusion approximation, which will work for any initial gene frequency
of the allele.

Before doing so, it is worth looking at the Wright-Fisher model with selection. Is
there any hope of finding the fixation probability exactly? We assume that the life cycle
is that given in the last section. We will also restrict consideration to the case where
only the viability stage of the life cycle is affected by the genotype. We do not consider
fertility differences, which we assume do not exist. Suppose that the viabilities of AA,
Aa, and aa are respectively wAA, wAa, and waa. These give the probability that a zygote
of a certain genotype survives to the life stage where the density-regulation random
sampling starts. The sampling itself is simply random choice of N individuals. Now
suppose that we know the numbers of AA, Aa, and aa adults in generation t, and wish
to find the probabilities of various outcomes in generation t + 1.

The first thing to notice is that gametes are being produced, the proportion of A
genes among them is the same as the gene frequency of A among the adults that pro-
duced them. So the future behavior of the population depends, in this case, only on the
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current gene frequency and not at all on the current genotype frequencies. This allows
us to shift our attention to the number of A genes out of the 2N gene copies present
in the adults. Suppose that there are i copies of A. Among the gametes, p = i/(2N)
are A, since the gametes are produced without fertility differences. The gametes com-
bine at random to form the zygotes (which is of course the same as having each zygote
formed by two randomly-chosen adults). So the newly formed zygotes are in Hardy-
Weinberg proportions at gene frequency p. Natural selection acts on the infinite popula-
tion of zygotes. After selection acts, the AA, Aa, and aa survivors are in the frequencies
p2wAA/w̄, 2p(1− p)wAa/w̄, and (1− p)2waa/w̄ respectively, where w̄ is the mean fitness
p2wAA + 2p(1− p)wAa + (1− p)2waa. The N surviving adults are then determined by
random sampling from these infinitely many survivors. Thus the probability of finding
n1, n2, and n3 survivors of genotypes AA, Aa, and aa is the trinomial sampling probabil-
ity (the probability of these numbers of outcomes if we toss a three-sided coin)

P(n1, n2, n3) =
N!

n1! n2! n3!

[
p2wAA/w̄

]n1
[
2p(1− p)wAa/w̄

]n2 [
(1− p)2waa/w̄

]n3

(VII-71)
In practice we are only interested in what the gene frequency among adults in the next
generation is. So we are interested in the total probability of all those combinations n1,
n2, n3 in which we have a total of j copies of the A allele, i.e., in which 2n1 + n2 = j. So
if we have i copies of A in the present generation, the probability that we have j copies
in the next generation is

P(j|i) =
j/2

∑
k = 0

P(k, j− 2k, N − j + k), (VII-72)

the three arguments of P on the right side being determined by the requirements that
n1 + n2 + n3 = N and that 2n1 + n2 = j. Recall that p = i/(2N) in (VII-71).

There is a great deal more to say about the Wright-Fisher model with selection, but
little space here to say it. Equations (VII-72) and (VII-71) allow us to calculate the tran-
sition probabilities P(j|i) of going to j copies of A from i copies. Versions of the model
allowing fertility selection as well can also be written down, but we will not do so here.
It is worth pointing out that the sampling which takes place in choosing N adults is not
the same as sampling 2N genes from the zygotes. If the zygotes had not undergone a
round of selection, the two processes would be the same, since the two genes in a single
individual might as well be sampled independently. But if natural selection gets the
population out of Hardy-Weinberg proportions, there is a lack of independence between
the two genes in an individual: knowing whether one is A tells us something about
whether the other is A also. As an extreme example, if wAA = waa = 0 so that only
heterozygotes Aa survive selection, then all N adults must be Aa, so that sampling does
not alter the gene frequency from 0.5 at all. Conversely, if no heterozygotes survive, then
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each surviving individual sampled contains two A or two a genes, which means that the
effect of sampling in changing gene frequencies is twice as great as we might imagine
just by looking at the number of genes.

EXACT FIXATION PROBABILITIES. Once we know the transition probabilities P(j|i),
we could hope to use them to work out the fixation probabilities. These will be a set
of quantities ui, giving the probability that A becomes fixed given that we start with i
copies of A. For each value of i we have the following basic equation:

ui = ∑
j

P(j|i) uj. (VII-73)

These equations are analogous to equation (VII-63) in the branching process calculation.
They express the fixation probability as an average of the fixation probabilities uj from
all gene frequencies (or gene numbers) to which the population could change from its
starting point in one generation, with these being weighted by the probabilities P(j|i)
that this particular one-generation change will take place.

Two of the values of the ui are known in advance. When there are no copies of A
present, the gene cannot fix, so that u0 = 0. When all genes in the population are A,
the gene has already fixed, so that u2N = 1. With the P(j|i) known, and with these two
“boundary conditions”, equation (VII-73) specifies a set of 2N − 1 equations in 2N −
1 unknowns (two of the ui have been determined). In any particular case for which
fixation probabilities are needed, if N is not too large one can determine the coefficients
P(j|i) numerically, and solve for the ui by numerical methods. Even with a computer
it is difficult to deal with cases in which N > 100. Unfortunately, there is no known
algebraic expression in terms of N, waa, wAa, and waa which solves (VII-73) for the
fixation probabilities.

THE DIFFUSION APPROXIMATION. We are therefore faced with the necessity of ap-
proximating. The approximation we present here is the diffusion method, which we will
also use in the next section to determine equilibrium distributions of gene frequencies.
We start by expressing the fixation probability as a function of gene frequency rather
than of numbers of copies of the allele. Let U(p) be the fixation probability given that A
starts out at gene frequency p. Then ui = U(i/(2N)). We also replace the quantity P(j|i)
by the probability of that particular change in gene frequency. Let us call it Pp(Δp).
We are still on a gene frequency scale that has only 2N + 1 possible values of the gene
frequencies, one for each possible number of A alleles possible in the population, so
the summation is still discrete and the values of P are still probabilities, not probability
densities. Then P(j|i) = Pi/(2N)[(j − i)/(2N)], although we will not need to use this
relationship. Equation (VII-73) now becomes

U(p) = ∑
Δp

Pp(Δp) U(p + Δp) (VII-74)
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So far we have simply re-expressed (VII-73) without approximating at all. Note that the
summation over Δp is over all possible changes in gene frequency. (These Δp are not
infinitesimal quantities).

We now approximate U(p + Δp) by replacing it by the first three terms of its Taylor
series. Indicating derivatives with respect to p by primes,

U(p + Δp) � U(p) + Δp U′(p) +
(Δp)2

2
U′′(p) (VII-75)

When we substitute this into (VII-74) we get

U(p) � ∑
Δp

Pp(Δp) U(p) + ∑
Δp

Pp(Δp)Δp U′(p) +
1
2 ∑

Δp
Pp(Δp)(Δp)2 U′′(p). (VII-76)

Noting that U(p), U′(p), and U′′(p) do not contain Δp, we move them outside the
summations:

U(p) � U(p)∑
Δp

Pp(Δp) + U′(p) ∑
Δp

Pp(Δp) Δp +
1
2

U′′(p)∑
Δp

Pp(Δp) (Δp)2 (VII-77)

Now note that ∑ Pp(Δp) is simply the sum of the probabilities of all conceivable changes
in gene frequency. This must be 1. The quantity ∑ Pp(Δp)Δp is the weighted average
of all the changes Δp in gene frequency. It is the expected change in gene frequency,
E(Δp), which we will call M(p). Finally, the term ∑ Pp(Δp)(Δp)2 is the expectation
of the squared change in gene frequency, E[(Δp)2 ], which we call V(p). Note that we
express M and V as functions of the current gene frequency p because these expectations
of Δp and of (Δp)2 are different for different gene frequencies. Now (VII-76) becomes

U(p) � U(p) + U′(p) M(p) +
1
2

U′′(p) V(p), (VII-78)

or
M(p) U′(p) +

1
2

V(p) U′′(p) � 0. (VII-79)

This equation is called (in a slightly more general form) the Kolmogorov Backward
Equation. (We shall see the Kolmogorov Forward Equation in the next section). Here-
after we drop the � in favor of =.

Before we solve it, it is worth inquiring what we have assumed. In dropping terms
from the Taylor series for U(p + Δp), we in effect assumed that the terms which con-
tributed the bulk of the quantity U(p) in (VII-74) involved small values of Δp, which
is to say that Pp(Δp) is small except when Δp is small. In other words, p is changing
only by small amounts in any one generation. This amounts to the assumption that pop-
ulation sizes are large and selection coefficients small. Of course, our derivation here
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is heuristic. Advanced population genetics texts (e.g. Ewens, 2004, section 4.5) may be
consulted for a more formal treatment.

Equation (VII-78) is easily solved to give U(p) in terms of M(p) and V(p). It can
be rearranged (unless U′(p) = 0 or V(p) = 0), using the fact that U′′(p)/U′(p) is the
derivative of ln U′(p), to be

−2M(p)/V(p) = U′′(p)/U′(p) =
d

dp
[ln U′(p)] (VII-80)

and we then integrate to get

−2
∫ x

c
M(p)/V(p) dp = ln U′(x)− ln U′(c) (VII-81)

or

U′(x) = U′(c) exp
[
−2

∫ x

c
M(p)/V(p) dp

]
(VII-82)

where the lower limit of integration c is not specified yet. We can call the right-hand side
of (VII-82) U′(c)G(x). Then integrating (VII-82) from 0 to p we get

U(p)−U(0) = U′(c)
∫ p

0
G(x) dx. (VII-83)

We know that U(0) = 0. The pesky constant U′(c) can be eliminated by noting that since
U(1) = 1, we can set p = 1 in (VII-83) and solve for U′(c). Then finally

U(p) =
∫ p

0
G(x) dx

/∫ 1

0
G(x) dx (VII-84)

where

G(x) = exp
[
−2

∫ x

c
M(y)/V(y) dy

]
. (VII-85)

This can be put into (VII-84) to get the solution we sought. Note that we have changed
the variable of integration in (VII-85) to y to avoid having p appear in more than one
context. If you are worried by the persistence of c, you may care to take time out to
persuade yourself that it will introduce only a multiplicative constant into the expression
for G(x), so that as long as we use the same value of c in the G(x) in both numerator
and denominator of (VII-84), it will not matter what value of c we use.

A SPECIFIC CASE. All of which is all very well, but we would prefer to know the
fixation probabilities in terms of population sizes and selection coefficients, not in terms
of the rather mysterious M(p) and V(p). It remains to determine M(p) and V(p) in the
particular case we are interested in. The case most easily solved is simple multiplicative
selection, where wAA = (1 + s)2, wAa = 1 + s, and waa = 1. The expectation of Δp
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is simply the deterministic change in Δp, since this is the process at work among the
zygotes before sampling occurs, and sampling does not alter the gene frequency on
average. Then from (II-42) we have

M(p) = E(Δp) =
sp(1− p)

1 + sp
(VII-86)

As for V(p), it is the mean of (Δp)2. This latter is the sum of the variance of Δp and the
square of its expectation. Now the variance comes entirely from the sampling. As we
mentioned, the variance is not the same as what we would get by sampling 2N gametes
from a pool with frequency p. For one thing we are sampling after selection, when the
gene frequency has changed a bit. For another, there may be a lack of independence
between the two genes sampled in one individual. The first effect is small if E(Δp)
is small, which we have to assume to justify the diffusion approach. One can also
show rather easily from (VII-71) that in the case of multiplicative fitnesses there is still
independence of the presence or absence of A in the two genes of an individual. For other
patterns of selection this is not true, but assuming it will give a good approximation as
long as selection coefficients are small.

The upshot of this is that

V(p) � p(1− p)/2N + M2(p), (VII-87)

but since M2(p) contains an s2 and we are assuming s is small we will ignore this term.
Then

V(p) � p(1− p)/2N. (VII-88)

We also approximate (VII-86) by

M(p) � sp(1− p), (VII-89)

since s is assumed small. Then for (VII-86) we have

2M(y)/V(y) � 4Ns. (VII-90)

Now it is easy to evaluate the fixation probability from (VII-84) and (VII-85). It turns out
to be

U(p) � 1− e−4Nsp

1− e−4Ns (VII-91)

NUMERICAL EXAMPLES. How good is the diffusion approximation in this case? Table
7.5 shows a comparison between exact numerical solution of (VII-73) and the diffusion
approximation when N = 10 and with two values of s. When s = 0.01 the approximation
is remarkably good. Considering that N is quite small, this is an amazing performance.
When s = 0.1 the approximation is not doing quite so well, but is still far better than we
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Table 7.5: Comparison of exact fixation probabilities for a Wright-Fisher
model with diffusion approximation. Multiplicative selection. N = 10.

s = 0.01
p exact U(p) approx.
0.05 0.06002 0.06006
0.1 0.11885 0.11894
0.2 0.23305 0.23321
0.3 0.34279 0.34300
0.4 0.44825 0.44848
0.5 0.54959 0.54983
0.7 0.74056 0.74077

s = 0.1
p exact U(p) approx.
0.05 0.17873 0.18465
0.1 0.32602 0.33583
0.2 0.54756 0.56095
0.3 0.69830 0.71184
0.4 0.80100 0.81299
0.5 0.87107 0.88080
0.7 0.95166 0.95671

have any reason to expect. This is a fairly general property of the diffusion approxima-
tion. Even though it assumes that the gene frequency changes in myriad small jiggles,
it does a remarkably good job of predicting what will happen even when the gene fre-
quency is actually changing by a few large jumps. It is possible to improve the accuracy
of the approximation by even more elaborate efforts, but this seems a waste of time since
the biological conclusions are in no way altered by that increase in accuracy.

Let us turn to examining the implications of (VII-91). A question which immediately
arises is: when will natural selection make any substantial impact on the probability that
a new allele fixes? Figure 7.3 shows the fixation probability U(p) plotted as a function
of p for various values of 4Ns. When 4Ns = 0, the fixation probability is the same as the
initial gene frequency. We saw this result in section VI.5 above. It can also be obtained
from (VII-91) by taking the limit of U(p) as s → 0. When s = 0 both the numerator and
denominator of (VII-91) are zero, but we can use L’Hôpital’s Theorem to obtain the limit

U(p) =
4Np
4N

= p (VII-92)

which is the same as the exact result obtained from the Wright-Fisher model. When
4Ns > 0, the fixation probability is increased by natural selection (which is hardly sur-
prising). When 4Ns = 0.01 there is a rather small effect of selection, but when 4Ns = 100
it is dramatic. We can tentatively conclude that 4Ns = 1 is a reasonable value at which to
recognize selection as beginning to have a significant impact. Although our experience
is limited to one case as yet, we make so bold as to state this as a general principle. It is
interesting to examine how many individuals are dying as a result of natural selection
when 4Ns = 1. If the population consisted entirely of the less fit genotype, we note that
its fitness is a fraction 1/(1 + s)2 � 1− 2s of the fitness of the most fit genotype. We can
say rather hazily that the amount of selection 4Ns = 1 (so that s = 1/(4N)) would be
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Figure 7.3: Probability of fixation of an allele with multiplicative fitnesses.
Results from the diffusion approximation for various values of 4Ns and p are
shown. The values of 4Ns are shown next to the nine curves, except for the
diagonal, which has 4Ns = 0.

equivalent to the death or sterility, from genetic causes, of 2sN = 2(1/(4N))N = 1/2 of
an individual per generation. So we can state our conclusion:

Natural selection will be effective in the face of ge-
netic drift if at the locus at least one individual ev-
ery two generations dies or becomes sterile from
genetic causes.

This is hardly a precise quantitative rule but certainly can be used to give us a rapid
idea of whether selection will be effective. If we knew, for example, that there were 10,000
animals in a population, and that a certain locus has selection coefficients of about 0.01,
then simply by observing that 4Ns = 400 we know that genetic drift will be so weak an
effect that natural selection would make a dramatic impact on gene frequencies in the
long run. This strength of selection could be thought of as being equivalent to the death
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of (2s)N = (0.02)(10, 000) = 200 individuals per generation if all were of the inferior
genotype.

DEPARTURES FROM THE WRIGHT-FISHER MODEL: EFFECTIVE POPULATION
NUMBER. We have been using here the population size N as a measure of the strength
of genetic drift. It is natural to ask how things are altered if we do not have a pure
Wright-Fisher model of population reproduction. Suppose that any or all of the forces
discussed in Chapter VII alter the effective population size (for example unequal num-
bers of the two sexes, prohibition of selfing, monogamy, varying population size, vari-
ability of offspring number, or fitness variation at nearby genetic loci). Can we correct
for this in some way? The key to coping with these complexities is to notice that in the
diffusion approximation, the population size enters in only through its effect in deter-
mining the variance of gene frequencies introduced in each generation by genetic drift.
The relevant quantity is V(p), the relevant equation is (VII-87). Now recall that when
we discussed effective population number, we said that there is usually little distinction
between the inbreeding effective number and the variance effective number. The latter
is simply that value Ne which gives the correct variance of gene frequencies created by
genetic drift in one generation when we predict the variance to be p(1− p)/(2Ne). In
most of the cases we treated, the two different definitions of the effective number have
the same value, so that we can employ the effective numbers computed from inbreeding
considerations to predict variance of gene frequencies. The result of this chain of reason-
ing is straight-forward: usually we can simply substitute the effective population size
Ne for N and obtain as our criterion for the effectiveness of natural selection 4Nes > 1.
Thus in our hypothetical animal population of 10,000 individuals, if departures from
a Wright-Fisher model reduced the effective population size to 3,000 individuals, we
still have 4Nes = 120 which implies that selection will be effective, though not quite
so effective as would be implied by our computation that it is as if 200 individuals per
generation are dying or being made sterile as a result of natural selection.

SELECTION AGAINST A MUTANT. We may also inquire into the effects of selection
against an allele on its chances of fixation. Figure 7.3 shows several such cases. It is
clear that as 4Ns falls below −1 selection starts to have a substantially reduced chance of
fixation, reduced far below the initial frequency of the allele. For example an allele with
an initial frequency of p = 0.5 and 4Ns = −100 has only a chance of 1.92875× 10−22

of being fixed! Clearly the rule that 4Ns  1 implies strong effects of selection works
in this context as well: if s is negative we need only focus our attention on the other
allele, which will be favored by selection, and ask when natural selection makes that
allele likely to fix, which must also tell us when our original allele is likely to be lost.

ACCURACY OF THE BRANCHING PROCESS APPROXIMATION. Of course, even
if natural selection is predicted to be effective, genetic drift will still have an effect. This
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effect will loom larger the lower is the initial frequency of the allele. In Figure 7.3 all
curves U(p) drop towards zero as p approaches zero. It is relevant to ask whether this
behavior is essentially that found in the branching process approximation. Does a single
new mutant have a probability of fixation near 2s, or has the finiteness of N dramatically
altered the prospects for fixation? For what size populations will we obtain roughly
correct results from the branching process approximation? To check this we can look at
formula (VII-91) when p = 1/(2N), so that we start with only one copy of the allele in
the population. Then

U
(

1
2N

)
=

1− e−2s

1− e−4Ns (VII-93)

When 4Ns is large, the denominator is nearly 1, even for 4Ns as small as 10. Then

U
(

1
2N

)
� 1− e−2s. (VII-94)

But since e−x � 1− x for small x, we have

U
(

1
2N

)
� 2s. (VII-95)

So we can obtain this approximation to the branching process result by assuming 4Ns >
10 and s small. In fact a comparison of the fixation probabilities obtained from (VII-94)
with the exact results of the branching process in Table 7.3 shows that it is an even better
approximation to the branching process results than is (VII-95). For example, with s =
0.01 the diffusion approximation is 0.01980, compared to 0.01973 for the exact Wright-
Fisher model, 0.01922 for the approximation 2s/(1 + s)2, and 0.02 for the approximation
2s. So the branching process becomes relevant for large values of N, but only requires
4Ns to be 10 or more. Note that the branching process predicts no chance of fixation
at all when s is negative. This is certainly close to the diffusion equation prediction if
4Ns < −10, as Figure 7.3 will testify.

WEAK SELECTION: AN INTUITIVE RESULT. The process of interaction of genetic
drift with natural selection must surely seem the hardest process to intuit in population
genetics. There is, however, a case where we can get some insight. This is when 4Ns
is small, so that selection has relatively little effect. If we expand the e−4Nsp in the
numerator of (VII-91) and the e−4Ns in the denominator both as power series in 4Ns, and
take terms up to (4Ns)2, dropping the rest by assumed smallness of 4Ns, we get

U(p) � 1− (1− 4Nsp + 8(Nsp)2)
1− (1− 4Ns + 8(Ns)2)

� p(1− 2Nsp)/(1− 2Ns).

(VII-96)
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We can approximate this when 4Ns (and hence 2Ns) is small by

U(p) � p + 2Nsp(1− p). (VII-97)

This result can be justified by intuition in the following way. Clearly the first term, p,
is simply the fixation probability when there is only genetic drift. The second term is
2N times (approximately) the expected change of gene frequency by natural selection in
one generation, starting at the initial gene frequency. It is as if genetic drift is acting by
first allowing the gene frequency to change deterministically by selection for about 2N
generations, then suddenly fixing the population in a burst of activity.

Note that to good approximation the expected change of gene frequency by selection
is sp(1− p), where p is the current gene frequency in the population. Since the heterozy-
gosity in the population is 2p(1− p), this indicates that the change of gene frequency is
expected to be proportional to the heterozygosity. Now if natural selection is having little
effect on the gene frequencies, we expect heterozygosity to decline by a fraction 1/(2N)
every generation as a result of genetic drift. Since there should be (1− 1/(2N)) as much
heterozygosity around after one generation of drift, there should be a correspondingly
smaller amount of change of gene frequencies, averaged over all possible replicates of
the process. The total response to natural selection should then be

sp(1− p)

[
1 +

(
1− 1

2N

)
+

(
1− 1

2N

)2

+ . . .

]
.

The quantity in brackets is a simple geometric series which is easily summed, and we
get 2Nsp(1 − p). That will be the average over all replicates, of the amount by which
selection changes the gene frequency. But recall from Section VI.5 that the average gene
frequency over all replicates must be the fixation probability, if the average is taken
after the process of genetic drift is complete. So the final result is that the fixation
probability is increased by 2Nsp(1 − p) above the initial gene frequency if drift and
selection essentially occur independently of one another. This is precisely the result of
equation (VII-97).

So we can think of genetic drift as simply having the effect of eroding the stock
of genetic variability on which natural selection acts, with the resulting total amount of
natural selection being equivalent to 2N generations of selection. Although this principle
is valid only for weak selection (4Ns < 1) it can be used to obtain useful approximations
in many complicated cases in which the diffusion equations cannot be solved (e.g. with
multiple alleles or multiple loci).

One interesting subcase is when we have only a single mutant gene initially. When
p = 1/(2N), (VII-97) gives

U
(

1
2N

)
� s +

1
2N

, (VII-98)
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ignoring terms in s/N, on the assumption that these will be small. Looking back at Table
7.5 we can see that the fixation probability is, when p = 1/(2N), being increased by s
over the initial frequency by the presence of selection. Once again we get the impression
that, with weak selection, genetic drift and selection are working roughly independently
of one another. Of course, (VII-98) is valid only when 4Ns is small. Otherwise we get a
better approximation from the branching process result U(1/(2N)) � 2s.

For an exhaustive (and exhausting) discussion of various approximation formulae
that can replace (VII-98) with much greater accuracy, and preserving desirable properties
of the process, you may wish to consult the paper by McCandlish, Epstein, and Plotkin
(2014). Their paper treats the related case of a haploid Moran model.

DOMINANCE, RECESSIVENESS, AND OVERDOMINANCE. The case of multiplica-
tive selection has provided us with the diffusion approximation (VII-91), which we have
seen gives us some insight as to the domains of validity of other approximations. When
we introduce dominance into the fitness scheme the result is less simple. Suppose that
the fitnesses are

AA Aa aa
1 + s 1 + hs 1

so that h measures the dominance of A over a. By dropping terms in s2 on the assumption
that these are far smaller than terms in s, we find that

M(p) � sp(1− p)[p(1− 2h) + h] (VII-99)

and when we use V(p) � p(1− p)/(2Ne), we find that after a bit of algebra we get from
(VII-85) using c = 0,

G(x) = exp[−2Nes(1− 2h)x2 − 4Neshx] (VII-100)

This function has no explicit integral, so we must use numerical integration methods to
obtain the integrals in equation (VII-84). Although we have no explicit solution for the
function U(p) we can investigate its numerical value in any specific case.

When h � 1 so that the mutant allele A is dominant, and when p is small, then
particularly when 4Nes is large there is little difference from the multiplicative case. This
reflects the importance of the early generations, when all that matters for the process of
loss of the allele is the difference hs in fitness between Aa and aa, as the AA genotype
is hardly ever present. To good approximation the fixation probability per copy will be
twice the effective selection coefficient so that

U(p) � 2hs× 2Np = 4Nhsp (VII-101)

for small p and large 4Nehs. For larger initial values of p the numerical values of U(p)
obtained reflect the lessening of the strength of selection as the gene frequency rises. But
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since we are primarily interested in small initial values of p, the biological significance
of the result can be most succinctly stated by saying that new mutants are effectively
“screened” by the population on the basis of their fitness in heterozygotes.

Recessiveness. When h = 0 matters are more complicated. A new rare recessive
allele will experience very little selection. Only when it rises to a high enough frequency
as a result of genetic drift will selection begin to operate. We should expect that such an
allele will have a very low chance of fixation. These expectations are borne out by the
numerical evaluation of (VII-84). A useful approximation can be developed for s > 0
and 4Nes large in the recessive case:

U
(

1
2N

)
�

√
2s

Nπ
, (VII-102)

provided Ne � N.
As N becomes large, this probability declines. For example, when s = 0.01 then a

dominant allele will have fixation probability near 0.02 for any large value of N. But
when the allele is recessive with the same value of s, the fixation probability is approx-
imately 0.0025 when N = 1000 but drops to 0.00008 when N = 106. Clearly a totally
recessive allele has very little chance of surviving long enough to drift to a high enough
frequency that selection becomes effective in fixing it. If the allele is not completely re-
cessive, the effect of the allele in the heterozygote becomes a far more significant force
determining its chance of fixation, and for a single initial mutant formula (VII-101) will
be appropriate.

Balancing selection. In both overdominant loci and the simplest forms of frequency-
dependent balancing selection selection, diffusion approximations are the same. The
function M(p) = p(1− p)[(s + t) − t p] in both cases, where s and t are positive. This
will have the effect that if 4Ns and 4Nt are large, the gene frequency will tend to move
near the value which is the equilibrium of deterministic selection. There it can stay for
a long time – for large values of 4Ns and 4Nt the process can stay near there for ge-
ologically long periods. Although a new mutant can be lost early on, once it reaches
the vicinity of the equilibrium, after that the ultimate probability of it fixing does not
depend on the initial gene frequency. There is no algebraic formula for the fixation
probability, but it can be evaluated by numerical integration of the integrals in equation
(VII-84). The fact that overdominance and frequency-dependent balancing selection have
the same diffusion approximation means that it will be very hard to tell which of these
two forms of balancing selection is acting by observing gene frequency values or gene
frequency changes. More direct measurement of fitnesses at different gene frequencies
would be needed.
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HISTORY AND REFERENCES. The diffusion approach to examining evolution in fi-
nite populations was pioneered by Fisher (1922), but his equations contained an error.
This was corrected, and the approach put on a sounder footing by Sewall Wright (1931)
in a classic paper. Both papers were largely concerned with equilibrium distributions,
which we discuss in the next section. Fisher (1930) did, however, concern himself with
an equilibrium under a constant flux of mutations. This amounts to consideration of
fixation probabilities, since it asks what will be the rate at which new mutations des-
tined to be fixed occur, and this should be near 2NuU(1/(2N)). Both Fisher (1930) and
Wright (1931) obtained 2s/(1− e−4Ns) for the probability of fixation in the multiplicative
case. But Fisher was primarily interested in the gene frequencies to be expected under
such a flux of mutations. Wright (1938, 1942) treated cases of irreversible mutation and
obtained an approximation to the probability of fixation of an advantageous recessive
allele. Haldane (1927) had already obtained by branching process methods a similar
approximation differing only by a factor of

√
2. Motoo Kimura obtained the present

formula (VII-102) from a diffusion equation (1957). In 1962 he gave a solution to the
general Kolmogorov Backward Equation for fixation probabilities (VII-84, VII-85) which
is the basis for most contemporary work on fixation probabilities. In particular, Alan
Robertson (1960) has used Kimura’s results, as well as stating equation (VII-97), in an
imaginative application of this approach to finding systems of artificial selection which
maximize the probability of fixation of genes favorable to livestock productivity.

We will defer to the next section further discussion of the history of the diffusion
methods, since the bulk of early work with these was concerned not with fixation prob-
abilities but with equilibrium distributions of gene frequencies.

VII.9 Approximation to Equilibrium Distributions.

INTRODUCTION. When mutation continually re-introduces alleles into a population,
or when migration continually brings them in from a population which itself remains
unfixed, then there is no such thing as a probability of fixation. The very concept of
fixation then exists as only a temporary state: a population may arrive at a state of
fixation for one allele, but sooner or later new mutations or immigration will re-introduce
other alleles and thus move the population out of its state of fixation. In these cases we
are not dealing with the evolution of gene frequencies as a temporary phase which
ends in a state of fixation. Instead gene frequencies continue changing back and forth
indefinitely. One naturally wants to know what sort of gene frequencies will be found
in a population under such circumstances. Sometimes it will be reasonable to assume
that the population has existed at approximately its present size, under more or less the
same environment, for a long enough time that we may consider it to be in equilibrium
for most alleles. Of course this equilibrium assumption has its risks: the desk on which
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this is written would have been under a mile of ice only 500 human generations ago!
Nevertheless the equilibrium distribution of gene frequencies is of great interest and

provides much information. We shall first briefly examine the treatment by means of a
Wright-Fisher model. As in the case of fixation probabilities, this yields only numerical
solutions at best. But it is useful to help clarify the logic of the underlying process.
As before, the treatment here will be confined to the case of two alleles in a diploid
population.

THE WRIGHT-FISHER MODEL. We have already defined the diploid Wright-Fisher
model with selection in the previous section. When mutation and migration are added
in, nothing really changes. If mutation occurs in the gamete or in the zygote stage
of the life cycle, and if natural selection occurs at the viability stage of the life cycle,
and before N adults are randomly sampled to survive density-dependent population
size regulation, then we can compute transition probabilities in much the same way as
before. The transition probability P(j|i), the probability that there will be j copies of the
A allele next generation if there are i now among the 2N genes in adults, is obtained by
the following process:

1. Compute the gene frequency p = i/(2N) in the adults of the current generation.
2. The proportions of A and a among the infinite number of gametes produced by

these adults will then be p and 1− p.
3. If a fraction u of the A’s mutate to a and a fraction v of the a’s mutate to A, after

mutation the gamete frequency of A will be p′ = (1− u)p + v(1− p).
4. If a fraction m of the gametes are replaced by immigrant gametes whose gene

frequency of A is fixed at pI , then after immigration the gamete frequency of A
gametes is altered to p′ = (1−m)p + m pI .

5. Compute the genotype frequency among newly fertilized zygotes by assuming
random combination of gametes, producing Hardy-Weinberg proportions at the
new gene frequency p′.

6. Now apply the natural selection. Multiple the frequency of each genotype by its
fitness, then divide each by the mean fitness. This gives the proportions of the
genotypes among survivors of natural selection. Suppose that these are P, Q, and
R respectively for AA, Aa, and aa.

7. The probability that among the N surviving adult zygotes there are k AA, � Aa,
and N − k− � aa is the trinomial sampling probability

N!
k! �! (N − k− �)!

Pk Q� RN−k−�

8. To find the probability that there are j A genes among the N adults, sum these
probabilities over all combinations of k and � that have 2k + � = j.
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When natural selection is multiplicative it is not hard to show that the process of
sampling N adults is exactly the same as sampling 2N genes. When selection is not mul-
tiplicative, this is only approximately true, but it is a better approximation the weaker is
the natural selection (for after all, no selection at all is a case of multiplicative fitnesses).
We will make use of this later, as we did in the previous section.

These prescriptions for computing transition probabilities assume one particular kind
of life cycle. Similar computations can be made with other life cycles, although in some
of these (particularly with fertility differences among genotypes) we will no longer be
able to summarize this whole Markov process by simply looking at the gene frequencies
i/(2N) and j/(2N) in adults. In these other cases the probability of a given genetic
composition in the next generation may depend not only on how many A genes there
are but on whether they are concentrated in AA homozygotes or spread among Aa het-
erozygotes. This makes things more difficult. It is also possible to compute transition
probabilities for multiple-allele Wright models, or even for multiple-locus Wright-Fisher
models. If overlapping generations are preferred, it is even easier to compute the tran-
sition probabilities of a Moran model (see section VI.8), for there are fewer of them as
only one individual dies during any time interval.

Once we have the transition probabilities, the equilibrium distribution of gene fre-
quencies (actually, of gene numbers) is given by the solution of

f j =
2N

∑
i = 0

fi P(j|i), j = 0, 1, . . . , 2N (VII-103)

where fi is the equilibrium probability that there are i A genes in the population. If
we let a population evolve long enough that it has lost all effects of its initial gene
frequency, then fi is the probability that its gene frequency is i/(2N). There are actually
only 2N equations in 2N + 1 unknowns (the fi) in equation (VII-103), as one equation is
redundant. But once we add the requirement that the fi must sum to one, the equations
are determined and can be solved. At least, can be solve numerically.

The problem is that no case of any biological interest has an explicit algebraic so-
lution. The set of equations also can be solved numerically in cases with rather small
population sizes. When N = 10, there are 21 equations in 21 unknowns. When N = 50,
101 equations in 101 unknowns. Present-day computers can solve these equations for
values of N in the thousands. If natural selection occurs by fertility differences, the cases
which can be treated are even smaller, for then there are many more states of the pro-
cess which must be distinguished for a given N. When N = 10, there are 66 different
combinations of genotype frequencies possible, so that with fertility selection there will
be 66 equations in 66 unknowns. When the states of the process correspond to genotype
frequencies rather than gene frequencies, it will be difficult to rapidly solve numerically
cases larger than N = 14.

These numerical calculations are a useful check on the accuracy of approximations,
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but it is approximations which will provide us with insight into the interaction of evolu-
tionary forces.

THE DIFFUSION APPROXIMATION. Fortunately, a good diffusion approximation
can be developed for the equilibrium distribution. We will only sketch the derivation
here, as it is fairly tedious. It uses much the same methods as in the previous section.
We start from a version of the exact equation (VII-103). We replace fi by a function f (p)
of the gene frequency, and replace P(j|i) by the probability Pp(Δp) of the change Δp in
gene frequency given that the gene frequency before the change is p. So

f (p) = ∑
Δp

f (p− Δp)Pp−Δp(Δp) (VII-104)

where the sum is over all changes in gene frequency which could have resulted in the
current gene frequency p. This is a set of equations like (VII-103). Now we approximate
f (p) by a continuous density function φ(p). Since φ(p) must be multiplied by the width
of the gene frequency intervals to obtain the probability of being in the particular interval
around p, let us take the width of the intervals to be a quantity δp. Note that it is not
the same as Δp. So we replace f (p) by φ(p)Δp. So

φ(p) δp � ∑
Δp

φ(p− Δp)Pp−Δp(Δp) δp (VII-105)

Leaving out δp, we can write the density function φ(p) as follows. We approximate
each of the functions φ(p− Δp) and Pp−Δp(Δp) by the first three terms of a Taylor series
expansion around p, so that

φ(p) � ∑
Δp

[
φ(p)− Δp φ′(p) +

(Δp)2

2
φ′′(p)

] [
Pp(Δp) − Δp P′p(Δp) +

(Δp)2

2
P′′p (Δp)

]
,

(VII-106)
where primes denote derivatives with respect to p. Collecting terms, ignoring those
containing (Δp)3 or (Δp)4 and making use as before of

M(p) = E(Δp) = ∑
Δp

Pp(Δp)

V(p) = E((Δp)2) = ∑
Δp

Pp(Δp)(Δp)2
(VII-107)

and

∑
Δp

Pp(Δp) = 1 (VII-108)
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as well as of
M′(p) = dM(p)

/
dp = ∑

Δp
P′p(Δp)Δp

V ′(p) = dV(p)
/

dp = ∑
Δp

P′p(Δp)(Δp)2

V ′′(p) = d2V(p)
/

dp2 = ∑
Δp

P′′p (Δp)(Δp)2

(VII-109)

we obtain after multiplying out the expressions in equation (VII-106) and using these
relationships to replace terms:

0 � − d
dp

[M(p)φ(p)] +
1
2

d2

dp2 [V(p)φ(p)] (VII-110)

This is known as the Kolmogorov Forward Equation. The term “forward” comes from
equation (VII-105) where as one moves from the right to the left-hand side of the equa-
tion one moves forward in time.

The solution of this equation to obtain φ in terms of M and V is a bit obscure. We
can integrate (VII-110) once with respect to p to obtain

C � −M(p)φ(p) +
1
2

d
dp

[V(p)φ(p)]. (VII-111)

The constant C is then found by imposition of a rather mysterious “zero probability
flux” condition. This step (for which interested readers may consult Crow and Kimura,
1970, section 8.3 or Ewens, 2004, section 4.5) rules out the possibility that the density of
gene frequencies on the (0,1) interval is maintained by a steady creation of mass at 0 and
its flow across the interval and ultimate destruction at 1, or the reverse. In effect, it is a
“conservation of matter” condition requiring that populations not be created or lost at
the endpoints 0 or 1 of the gene frequency scale. C turns out to be 0.

With that done, equation (VII-111) is a simple, first-order linear differential equation.
Its solution is fairly easy. If we define f (p) = φ(p)V(p), equation (VII-111) becomes

2M(p)
V(p)

f (p) =
d f (p)

dp

and dividing by f (p) it becomes

2M(p)
V(p)

=
1

f (p)
d f (p)

dp
=

dln f (p)
dp

.

Integrating that, the solution turns out to be

φ(p) =
K

V(p)
exp

[
2
∫ p

c
M(x)/V(x) dx

]
. (VII-112)
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The constant K is simply a scaling parameter that is fixed by the requirement that φ,
being a density function, has area 1 between p = 0 and p = 1. The lower limit of
integration c can be taken to be anything reasonable, as it is in effect part of the constant
K.

The remainder of this section will be concerned with finding M(p) and V(p) in
a number of cases of biological interest, using (VII-112) to find φ(p), and examining
the shape of φ(p) to gain some insight into the simultaneous operation of multiple
evolutionary forces. Solution of (VII-112) is relatively easy once M(p) and V(p) are
known, as it involves only one integration. Readers who are intimidated by differential
equations may be able to resume following the narrative here.

MUTATION AND DRIFT. we have two alleles with probability u of changing by
mutation to a a, and probability v that each a will mutate to an it A, then from the
consideration in chapter III we find that the deterministic change in gene frequency is

pt+1 = (1− u) pt + v (1− pt) (VII-113)

so that
M(p) = E(Δp) = −u p + v (1− p) (VII-114)

and the quantity V(p) = E((Δp)2) is also determined exactly, but we can approximate
it by

V(p) � p(1− p)
2Ne

(VII-115)

This involves (1) ignoring a term involving M2(p) on the grounds that squares and
products of mutation rates such as u2, v2, and uv may safely be ignored in comparison
to quantities like u and 1/Ne, and (2) ignoring the fact that the p in the right side of
(VII-115) should in reality be p + δp, on the grounds that since u is small we may ignore
terms like u/Ne.

Now the computation of φ goes through straightforwardly:

2M(x)
V(x)

=
−2ux + 2v(1− x)

x(1− x)/2Ne
=
−4Neu
1− x

+
4Nev

x
, (VII-116)

so that ∫ 2M(x)
V(x)

dx = 4Neu ln(1− x) + 4Nev ln x (VII-117)

and
φ(p) =

K
p(1− p)

exp [4Neu ln(1− p) + 4Nev ln p] (VII-118)

where we have absorbed a number of inconvenient constants into K which we shall leave
undetermined. The final equilibrium density is

φ(p) = Kp4Nev−1(1− p)4Neu−1 (VII-119)
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Figure 7.4: Equilibrium distribution of gene frequencies under mutation and
genetic drift. In this case 4Neu = 4Nev. The values of 4Neu are shown next to
the curves.

A set of curves for various values of 4Neu and 4Nev are given in Figures 7.4 and 7.5.
These will allow us to obtain some insight into the behavior of mutation when interacting
with genetic drift.

Numerical examples. Examine first Figure 7.4, where 4Neu = 4Nev (so that mu-
tation is pressing the gene frequency toward an equilibrium at p = 0.5). When 4Neu
is large, the equilibrium density of gene frequencies is tightly clustered around the de-
terministic equilibrium. Clearly in these cases genetic drift can hardly ever move a
population’s gene frequency far from equilibrium before recurrent mutation pushes it
back. When 4Neu is small, the equilibrium distribution is U-shaped, with most of the
mass concentrated near p = 0 or p = 1, with occasional movement from one tail of the
curve to the other when a new mutant succeeds in spreading through the population.
Remember that we are approximating a discrete histogram by a continuous density func-
tion, so that although the diffusion approximation never predicts a frequency exactly at
0 or 1, it has a certain fraction of the area under the curve so close to 0 or 1 that this
proportion of replicates (or of generations) would be predicted to have gene frequency
0 or 1. Note that when 4Neu = 4Nev = 1, the equilibrium distribution of gene frequen-
cies is a flat rectangle with neither peak nor tails. This lends weight to our assertion
that 4Neu = 1 is a rough dividing line between cases in which genetic drift overpowers
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Figure 7.5: Equilibrium distribution of gene frequencies under mutation and
genetic drift. In this case 4Neu = 3(4Nev). The values of 4Neu are shown next
to the curves.

mutation and cases in which mutation overpowers genetic drift.
Figure 7.5 shows cases in which 3u = v, so that the deterministic equilibrium in an

infinite population would live at v/(u + v) = 0.75. Again when 4Neu and 4Nev are large
the gene frequencies lie near their deterministic mutational equilibrium. When 4Neu
and 4Nev are both small, we again find a U-shaped distribution, only now with tails of
unequal size, so that the average gene frequency over generations (or over replicates)
will not be 0.5 (in fact it will be 0.75). We find that 4Neu = 1 and 4Nev = 1 are the points
at which the tails of the distribution disappear. But now these are not both true at the
same time, as witness the case where 4Neu = 0.5 and 4Nev = 1.5.

In fact, equation (VII-119) describes a well-known statistical distribution, the Beta
distribution, whose properties were worked out long ago. The expectation of the distri-
bution, which will also be its mean p̄ over many independent replicates, is precisely

E(p) =
4Nev

4Neu + 4Nev
=

v
u + v

(VII-120)

which is precisely the mutational equilibrium gene frequency. This established that even
when genetic drift carries the gene frequency far from its equilibrium value, the average
gene frequency over generations or over replicates will still be the same. The variance of
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the equilibrium gene frequency distribution is also well-known. It turns out to be

Var (p) =
(4Neu)(4Nev)

(4Neu + 4Nev)2(4Neu + 4Nev + 1)
(VII-121)

which can also be written

Var (p) =
p̄(1− p̄)

1 + 4Neu + 4Nev
(VII-122)

where p̄ is the mean E(p). Since p̄(1− p̄) would be the variance of a set of populations
which are all fixed, a fraction p̄ of them for allele A, this equation for the variance is
consistent with out picture that populations will be at or near fixation when both 4Neu
and 4Nev are small and near p̄ when both are large.

It can be seen that the results are very consistent with those that we obtained in
section VII.2 by looking at the probabilities of identity of two alleles. This is far more than
a coincidence: the two-allele model which gives equation (VII-8) is essentially identical
to the present model. There is a close connection between probabilities of identity of
alleles and variances of gene frequencies, so that we expect (and find) a good consistency
between the variance of the gene frequency distribution and the probability of identity.

MIGRATION AND DRIFT. Migration could serve to maintain an equilibrium if mi-
grants came from a mainland into an island, the gene frequencies on the mainland being
(say) Q and 1−Q and never changing. In this case the change in gene frequency is easily
computed:

M(p) = E(Δp) = m Q + (1−m) p − p = m (Q− p). (VII-123)

We also approximate the function V(p) in this case, which will be valid if m is small and
N large:

V(p) � p(1− p)
2Ne

. (VII-124)

While it would be easy to go on to compute the equilibrium distribution from this, a
shortcut is available. Like (VII-114), the formula for M(p) is a simple linear function of
p. In fact, by putting it into the form

M(p) = m Q − [m Q + m (1− Q)] p = −m (1− Q) p + m Q (1− p) (VII-125)

we can see that it is really the same as (VII-114), provided that we substitute mQ for
v and m(1− Q) or u. The V(p) function is also exactly the same as in that case. So
we immediately know that the equilibrium distribution of gene frequencies is exactly
the same as in the case of mutation vs. drift, save only that we make the substitution
of 4NemQ for 4Nev and 4Nem(1− Q) for 4Neu. Thus there is a fairly exact analogy of
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migration with mutation, at least when a single-locus island model is employed. The
result is

φ(p) = K p4NemQ−1 (1− p)4Nem(1−Q)−1, (VII-126)

where K is, as usual, the constant that enables the area under the curve to be 1. Drawing
directly on the results of the previous case, we find the mean and the variance of the
equilibrium gene frequency to be:

E(p) =
4NemQ

4NemQ + 4Nem(1− Q)
= Q (VII-127)

and

Var (p) =
p̄(1− p̄)

1 + 4Nem
(VII-128)

where p̄ = E(p) = Q as before. Note that we have perfect agreement of our results for
the mean and variance of gene frequency in the one-island model: (VII-127) is the same
as (VII-31) and (VII-128) is the same as (VII-40) in section VII.4 above.

In this case we can see the whole equilibrium distribution, not just the mean and
variance. Its general properties are of course the same as in the mutation case: when
4Nem is large, the island gene frequency is near Q, and when when 4Nem is small, the
island gene frequency is near 0 or 1. Figure 7.6 shows equilibrium distributions for a
variety of values of 4Nem when Q = 0.4.

SELECTION VERSUS DRIFT: A GENERAL FORMULA. When we have natural se-
lection acting with two alleles and constant fitnesses, a relatively simple formula for the
equilibrium distribution can be derived. Of course, if only genetic drift and natural se-
lection are acting, there would be no equilibrium distribution, except in the extreme case
where both homozygote genotypes are lethal. Barring that, drift would sooner or later
result in fixation of one or the other allele, and the fixation probability calculations of
the previous section would be more relevant than the equilibrium distribution. But in
reality mutation is never absent, and so it is of interest to add mutation and see what
equilibrium distribution is obtained in the presence of all three forces.

In section II.8 we saw that there was a simple expression for the change of gene
frequencies under selection with two alleles, namely

Δp =
p(1− p)

2w̄
dw̄
dp

. (VII-129)

To compute the expectation of Δp, we must also take into account mutation. Alone, it
would have

Δp = v− (u + v)p. (VII-130)

As we saw in Chapter III, we get a good approximation to the net result of selection and
mutation by simply summing these two formulas. This amounts to ignoring the fact that
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Figure 7.6: Equilibrium gene frequency distributions in a balance between
migration and genetic drift, when there is a one-island model with gene fre-
quency 0.4 on the continent. The values of 4Nem are shown next to the curves.

(if mutation precedes selection) the change due to selection has to be calculated based
on the gene frequencies after mutation. It is a good approximation to ignore this if both
selection coefficients and mutation rates are sufficiently small that we can ignore their
product. So we make use of

M(p) =
p(1− p)

2w̄
dw̄
dp

+ v(1− p)− up. (VII-131)

As in the previous cases we discussed, we also ignore the slight effects of selection and
mutation on E((Δp)2) and use

V(p) =
p(1− p)

2Ne
. (VII-132)

Now we get easily

2
M(x)
V(x)

=
2Ne

w̄
dw̄
dx

+
4Nev

x
− 4Neu

1− x
. (VII-133)
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The derivative (1/w̄) dw̄/dx is the derivative of ln w̄, so that upon integrating

2
∫ p M(x)

V(x)
dx = 2Ne ln w̄ + 4Nev ln p + 4Neu ln(1− p) (VII-134)

and we can plug this into equation (VII-112) and get the equilibrium distribution

φ(p) = K p4Nev−1 (1− p)4Neu−1 w̄2Ne , (VII-135)

(with K as usual the constant that enables the area under the curve to be 1). Keep in
mind that w̄ is itself a function of p. The effect of raising w̄ to the 2N-th power is to
greatly exaggerate its peaks and valleys, the more so the larger is Ne. Thus the effect of a
large population is to greatly increase the height of the equilibrium distribution’s density
function φ(p) in the neighborhood of the highest values of w̄ and greatly decrease it
elsewhere. Of course the mutation terms (the factors of p and (1− p) have much the
same effect, except that they attract the equilibrium distribution to the region of the
mutational equilibrium. Which of these effects is more important will depend on the
relative sizes of mutation rates and selection coefficients.

We saw in the diffusion approach to fixation probabilities that the strength of natural
selection in the face of genetic drift depended essentially on one parameter, 4Nes. For-
mula (VII-135) does not at first sight seem to show this, as the selection coefficients are
part of the formula for w̄, while Ne is in its exponent. However the behavior is nearly
the same if selection is not very strong. Take for example the case of an advantageous
recessive allele.

w̄ = 1 + sp2 (VII-136)

so that
w̄2Ne � (1 + sp2)2Ne (VII-137)

but if s is small
1 + sp2 � esp2

(VII-138)

so that
w̄2Ne � e2Ne sp2

(VII-139)

a formula that depends only on the product of the selection coefficient and the popu-
lation size. Other selection schemes will show similar behavior when selection is not
very strong. This is the case in the derivation of these equilibria, since in effect we take
selection coefficients and mutation rates very small while taking N very large, in such a
way that products like Ns and Nu remain constant.

SOME NUMERICAL EXAMPLES OF SELECTION, MUTATION AND DRIFT. With
this general formula in hand it is easy to generate equilibrium distributions. In fact, it
is fairly easy to intuit the shape of the distributions without any calculation! One of
the reasons of looking at such distributions is to hone one’s intuition, and I hope that
readers will make some attempt to treat the examples in this section in that way.
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Mutation versus selection. The first set of cases we will examine involves
the equilibrium between mutation and selection, where an allele is straightforwardly
deleterious. We have mutation at equal rates between the two alleles (u = v), and the
selection scheme

AA Aa aa
(1 + s)2 1 + s 1

Figure 7.7 shows the equilibrium densities for 16 different combinations of 4Ns and
4Nu. Computations were done with N = 1000. When 4Ns = 0.1, which is the bottom
row of the Figure, we see hardly any effect of selection. The distributions are nearly
symmetrical around p = 0.5. As 4Nu increases the gene frequencies huddle more and
more closely around their mutational equilibrium value. However there are some signs
of asymmetry, particularly in the relative heights of the two tails of the distribution when
4Nu = 0.1. When 4Ns = 1 we start to see more signs of the effectiveness of selection.
When 4Nu is small, the tails of the distribution are definitely asymmetric: the gene
frequency spends more time near zero than near one, and this must be due to natural
selection resisting genetic drift towards fixation but assisting genetic drift toward loss.
As 4Nu increases, this asymmetry is still evident when 4Nu = 1, but disappears as
4Nu becomes large since then mutation is a stronger force than selection, even from a
deterministic point of view, since u  s. When 4Ns is large (the top two rows of the
Figure), selection effects are evident. When 4Nu is small, selection creates a marked
asymmetry in the sizes of the two tails of the distribution, to the point where one tail
becomes so small that it cannot be seen in our Figures. When 4Nu is larger, there are
few populations near fixation or loss. Most tend to cluster around the equilibrium gene
frequency, which in a deterministic analysis of this case is u/s.

The effects of population size can most easily be seen by moving from the lower
left to the upper right along the diagonal of this Figure. These are a series of cases in
which u/s = 0.1, so that all have the same deterministic equilibrium gene frequency.
The distribution goes from a U-shaped one which is nearly symmetric to a peak near
the mutation-selection equilibrium. In the process it goes from one influenced mainly
by the mutation-drift balance to one influenced mainly by the balance between selection
and mutation. It is interesting to note that as N is made small, mutation becomes a more
important force than selection in influencing the relative heights of the two tails of the
distribution. This is paradoxical: if 4Ns is becoming small, so is 4Nu, so that there seems
no reason to expect mutation to become more important than selection. One resolution
of the paradox is to note that while selection is strongest when gene frequencies are
intermediate, mutation is most active when gene frequencies are extreme. Now as N is
made small, genetic drift is becoming the dominant evolutionary force. As it does, gene
frequencies spend more time near 0 or 1 and less at intermediate values, and it is this
which makes mutation a more important determinant of gene frequency than selection.
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Figure 7.7: Equilibrium distribution of gene frequencies in a case of mutation
with one allele deleterious, in a finite population, for different values of 4Nu
and 4Ns. Explanation is in text.

Balancing selection. The second set of examples is shown in Figure 7.8. These
again involve N = 1000, and u = v, but now the selection is symmetric overdominant
selection with fitnesses

AA Aa aa
1− s 1 1− s.

Again 16 combinations of 4Nu and 4Ns are shown. Now the curves are always sym-
metric about 0.5, since this is the equilibrium value for both the selection and mutation
processes. Once again, there is little sign that selection is effective when 4Ns is small.
Now, however, when 4Ns is large it creates a peak near p = 0.5, for the effect of selection
is to pull gene frequencies toward that value. When 4Ns = 10 and 4Nu = 0.1, there
is a peak in the center in addition to the tails near 0 and 1. As 4Ns is increased with
4Nu = 0.1, the peak in the center increases in size and the tails shrink in size (although
they may not be visible in the Figure, there still are tails on the distribution). This results
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Figure 7.8: Equilibrium distributions of gene frequencies at an overdominant
locus in a finite population with mutation present, for different values of 4Nu
and 4Ns. Explanation is in text.

from the relatively small fraction of generations which a population is expected to spend
in the tails. Once or the other allele reaches fixation, then (if 4Nu = 0.1) we expect one
new mutant to occur every twenty generations. These mutants will be at a strong selec-
tive advantage when rare. It will not be long before one of them becomes established
in the the population, and the gene frequency returns to 0.5. But once there, the large
value of 4Ns means that it will stay in that vicinity far longer than it stayed near zero.

For larger values of 4Nu and 4Ns, the two forces, selection and mutation, combine to
create a peak at p = 0.5, and the peak is higher the larger are these two quantities.

HISTORY AND REFERENCES. The diffusion approach to finding equilibrium distri-
butions of gene frequencies has a complex history. As already mentioned, R. A. Fisher
(1922) was the first to attempt it. He made a transformation of scale, y = sin−1√p, and
argued that the distribution of the quantity y would follow a particular differential equa-
tion, a variant of the heat equation of physics. He treated a number of cases in this way,
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coming to this conclusion that selection must nearly always overwhelm the effects of ge-
netic drift, a conclusion valid for the parameter values he assumed. Fisher had, however,
an error in his logic. When Sewall Wright (1929c, 1931) treated the same phenomena
by entirely different methods, it was discovered that there was a discrepancy in these
results, and the error was discovered. Wright’s methods differed from both Fisher’s and
from the ones we have used here. Wright was able to achieve an approximate solution
of an integral equation derived from (VII-103). He gave both formulas and figures for
a large number of cases, and an extensive discussion of their biological significance (ex-
tended and repeated many times elsewhere, e.g. Wright (1932)). While Fisher’s priority
may be argued, Wright’s presentation seems to have had the predominant influence on
subsequent papers, arriving at our formula (VII-135) as well as a multiple-allele gener-
alization of it (1937).

In the meantime a formally different approach was under development by the great
Russian probabilist A. N. Kolmogorov. He had published (1931) the first comprehensive
treatment of diffusion processes, and arrived at the forward and backward equations
cited above. These he applied to population genetics almost immediately (1935, 1938).
It was subsequent to this work that Wright (1945) realized that his equilibrium distribu-
tions could be obtained from Kolmogorov’s Forward Equation.

Later work. There is a large volume of work springing from these pioneering efforts,
far too much to cover in these pages, and too extensive to cite adequately. Much attention
has been focused on the transient behavior of diffusion approximations. The largest
contributor has been Motoo Kimura. He has found the rate of approach to fixation or
loss as well as the distribution of unfixed classes in two-allele cases with multiplicative
selection (1955a), and also given the general time-dependent solution for the distribution
of gene frequencies at two alleles when there is no mutation or selection (1955c). Kimura
has also presented (1956b) an exact solution for a three-allele genetic drift diffusion
process, and large-time asymptotic results for multiple alleles (1955b). Together with
Tomoko Ohta he has also obtained diffusion equations for time to fixation of a new
mutant (1969a, b). Ewens (1963a) and Watterson (1962) had previously presented results
for the mean time to fixation. Nei (1968) has obtained information about the frequency
of lethal chromosomes from a diffusion approach. Recently (Steinrücken, Wang, and
Song, 2013) there has been more progress in obtaining transition probabilities for finite
times for diffusion approximations of multi-allele diploid selection.

Other major work on the time-dependent behavior of diffusion approximations which
are on their way to fixation has included Warren Ewens’s (1963b) derivation of the “so-
journ time” of a population at different gene frequencies, and Alan Robertson’s (1962)
detailed examination of the effect of overdominance in delaying fixation. Surprisingly,
overdominance which has an extreme equilibrium gene frequency in infinite populations
often accelerates rather than retards fixation in finite populations.
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Infinite isoalleles model. Another line of work using diffusion approximations
has involved predicting the numbers and frequencies of alleles present in an infinite
isoalleles model, and the use of data from populations to test the adequacy of such a
model. Ewens (1964) and Kimura and Crow (1964b) treated the distribution of gene
frequencies of neutral isoalleles, and Ewens (1972) was able to construct a statistical test
of the neutrality hypothesis by an ingenious conditioning procedure. In particular, he
showed that the parameter 4Nu is best estimated from the number of alleles present
in a sample drawn from the population, with the relative frequencies of the alleles in
the sample adding nothing to the estimation! Unfortunately we rarely see either a truly
isolated population or an infinite-isoalleles type of mutation in real cases, so the test
has only occasionally been applied. Takeo Maruyama (1973, 1974) has found a different
invariance in a two-allele model with geographic structure: under a neutral model when
the total heterozygosity over all local populations is plotted against the average gene
frequency over all local populations, the result is a rectangular distribution, independent
of the population sizes or migration rates. This intriguing result cannot be extended to
multiple alleles or to the infinite-isoalleles model.

Diffusion equations can also be used to treat random variation of selection coeffi-
cients, although care must be taken. The literature on this subject involves a certain
amount of controversy (Kimura, 1954; Jensen and Pollak, 1969; Ohta, 1972; Gillespie,
1973; Jensen, 1973; Karlin and Levikson, 1974; Karlin and Lieberman, 1974).

Rigorization. In the midst of all of these various lines of work applying diffusion
methods, there have been a series of papers attempting to formalize the logical basis of
the use of the diffusion approximations and obtain estimates of the error involved. Feller
seems to have been drawn into his classical mathematical work on boundary conditions
in diffusion approximations (1952, 1954) by his experience in formalizing the diffusion
approximation. Feller (1951) and Karlin and McGregor (1964a) have taken the approach
of showing that if we take a sequence of Wright-Fisher models (or Moran models) with
increasing values of N but with the same 4Nu and 4Ns, then an appropriately trans-
formed time scale the process of gene frequency change becomes a diffusion process
(in which gene frequency changes infinitely often in infinitely small jumps). Watterson
(1962) has shown by this approach that the presence of diploidy and of two sexes do not
cause serious trouble for our ability to approximate gene frequency change by a one-
variable diffusion process involving only the overall gene frequency. Norman (1975) has
plugged a gap in Watterson’s proof. The limitation of all of these papers has been that
the reliance on taking limits as N → ∞ has introduced uncertainty as to whether the
approximation is good for any particular population size N. Reassurance is available in
a paper by Ethier and Norman (1977), who give bounds on the accuracy of the diffusion
approximation in cases of a balance between mutation and genetic drift.

Many further references on diffusion approximations in population genetics may be
found in Ewens’s (2004) book, in Maruyama’s (1977) monograph, or in W.-H. Li’s (1977a)

349



In diffusion approximations, fixation probabilities starting from a given gene frequency
and equilibrium distributions depend on the mutation rates, migration rates, and se-
lection coefficients only through the products 4Nu, 4Nm, and 4Ns. These distributions
and probabilities are generally extremely accurate. Similar rules apply when there are
multiple loci, and they also apply to rates of recombination, with 4Nr playing the same
role.
Suppose that we want to know the equilibrium distribution for a multi-locus case where
there is no formula available. We could carry out a computer simulation of the case,
but what if we want to investigate a case where N is very large, for example if N = 108?
This is where the diffusion scaling rules help. If we have N = 108, 4Nu = 2.5, and
(say) 4Ns = 10, then u = 6.25× 10−7 and s = 2.5 × 10−8. Both deterministic and
random forces are expected to be very weak, and change to be slow. Simulation would
be difficult. But we know that another case which has 4Nu = 2.5 and 4Ns = 10
should have nearly the same distribution. If we instead simulate a population that has
N = 1000, u = 0.000625, and s = 0.0025, the higher values of u and s mean that the
deterministic forces are stronger, and the smaller value of N means that simulations
will be much faster. This simulation then stands in for a whole series of cases with the
same values of 4Nu and 4Ns, and we only need to simulate one of them.
These different cases will have similar probabilities of fixation and similar equilibrium
distributions. Their time scales of gene frequency change will be different. A popula-
tion of size 1000 will do in 1000 generations what a population of size 1,000,000 does
in 1,000,000 generations, if they have the same values of 4Nu, 4Nm, 4Ns and 4Nr. The
figures below show this. Note the different horizontal time scales.
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Box 3: The diffusion scaling rules
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reprinting of many classic papers on diffusion approximations in population genetics.

Multiple alleles and multiple loci Only modest progress has been made in
extending diffusion methods to loci with more than two alleles, or to multiple loci. For
a particular “parent-independent” model of multiallele mutation, Li (1977b) has shown
that the equilibrium distribution of the multiple alleles is a close analogue of equation
(VII-135) above. Fernhead (2006) has argued that with multiple unlinked loci an anal-
ogous result can be obtained. Taylor (2008) has treated an island model with large
numbers of islands exchanging migrants, and temporally-varying selection on those is-
lands. If the number of islands is made large, this gives an overall gene frequency which
is described by a single-population diffusion equation. Beyond these interesting cases,
there has not yet been progress.

VII.10 The Relative Strength of Evolutionary Forces

The rules presented in this chapter for deciding which evolutionary forces will prevail in
determining means and variances of gene frequencies, fixation probabilities, and equi-
librium distributions, are simple and fairly general. They involve the comparison of the
quantities 4Neu, 4Nem, and 4Nes with each other and with 1. Each of the three evolution-
ary forces (mutation, migration, and selection) will be important in the face of genetic
drift when the corresponding quantity exceeds 1.

The understanding gained from there quantities can be widened if it is realized that
we can express them simply in terms of the relative rates at which the various processes
change gene frequency. Mutation changes gene frequencies by about u per generation.
Migration changes them by about m per generation. Selection changes gene frequencies
by approximately s per generation. Correspondingly, we may think of natural “time
scales” on which these processes affect gene frequencies. A substantial change in gene
frequency will take 1/u generations if accomplished by mutation, 1/m if by migration,
and 1/s if by natural selection. This picture of evolutionary forces is consistent with
what we have covered in preceding chapters. The equilibrium gene frequency main-
tained by mutation in the face of natural selection is about u/s. This may be thought
of as the amount of gene frequency that will accumulate by mutation during the time it
takes for selection to substantially reduce gene frequency. Similarly, our consideration of
patches and clines in Chapter IV persistently invoked the ratio m/s, which has a similar
interpretation.

The rules obtained in this chapter involve a new force, random genetic drift. Its
time scale is less self-evident. Gene frequency changes in any one generation are about√

p(1− p)/(2N) in magnitude. But to some extent they cancel each other, so we cannot
take take

√
1/(8N) as a measure of their size. (The 8 comes from the fact that p(1− p)

is near 1/4 for a wide range of values of p). In fact, the time scale for genetic drift is
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about 4Ne generations. A new mutant takes an average of about that many generations
to complete fixation if it is destined to be fixed, and in 4Ne generations over 85% of a
population’s initial heterozygosity is expected to be lost by genetic drift. Thus, if we ask
how far genetic drift will be able to change gene frequency during a process of (say)
mutation, it will be substantial only if 1/(4Ne) > u, that is to say, if 4Neu < 1. For
migration we must compare 1/(4Ne) to m, getting 4Nem < 1, and for natural selection
we compare 1/(4Ne) to s, getting as our condition 4Nes < 1, Thus the rules involving
genetic drift are consistent with those involving only the deterministic forces, provided
that we take the time scale of genetic drift to be about 4Ne generations.

We have encountered only a few exceptions to this picture. When an allele is rare
and completely recessive, the effective amount of selection acting on it is very small,
as homozygotes are rarely formed. So the amount of selection is far less than simple
consideration of the selection coefficient s would suggest. This considerably alters the
simple picture of evolutionary forces which we have been presenting. It is difficult to
find a simple rationalization for equation (VII-102) in terms of these time scales, for
example.

Another exception was seen when we discussed Figure 7.8, involving three forces,
mutation, selection, and genetic drift. The increase of gene frequency by mutation is
nearly u when the gene is rare, but the decrease of the gene frequency by selection is
about sp in that case. In those cases where 4Neu < 1 so that the population would
usually have p at or near 0 or 1, we saw a relative weakening of the effect of selection
relative to mutation, since, unlike mutation, selection is most effective at intermediate
gene frequencies. Thus when N is small, mutation can be more important than selection
even though s  u. An interesting perspective on this behavior is given by Rouzine et
al. (2001), who prefer to think of there being three regions of different behavior rather
than the two I have discussed.

Aside from these caveats, we will not go far wrong by concluding that even though
the mathematics of the processes are complicated, these different forces of evolution do
not show subtle or complex interactions. They can be teased apart by a little work and a
modicum of intuition.

Exercises

1. Suppose that in a population one allele has frequency 1/2 and n others have fre-
quency 1/(2n). What is the effective number of alleles present, expressed in terms
of n?

2. Whooping cranes (Grus americana) have a population size of about 350 at present.
If they maintain an effective population size this large for a great length of time,
how many new mutants will occur per generation if u = 10−7? What will be the
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long-term effective number of alleles if these are all neutral isoalleles? How many
generations will they take to approach this equilibrium level of variability?

3. Under an infinite isoalleles model, by how many allele substitutions will a given
protein differ between two species if they have been separate populations for 100
million years, if a generation one year, mutation rate is 10−7 per year and all muta-
tions can be detected? By how much will this quantity vary? Why? (Assume that
we have sampled one sequence from each of the two species).

4. Suppose that an island on which reproduction follows a Wright-Fisher model re-
ceives immigrant gametes from two neighboring islands. The first of these pro-
vides 0.01 of the gametes and remains fixed for A. The second provides 0.02 of
the gametes and remains fixed for a. The island we are concerned with main-
tains a population size of N = 1000 organisms. Compute the mean and standard
deviation of the gene frequency when an equilibrium state has been reached.

5. Suppose two populations start each with two alleles, and they both happen to drift
to fixation for the same allele. What will be Cavalli-Sforza & Edwards’ genetic dis-
tance between the two resulting populations? What will be Nei’s genetic distance?
What if they had happened to drift to fixation for different alleles?

6. Suppose that two islands, each of size N, exchange migrants, the migration rate
being m. If there is infinite isoallele mutation going on, we should be able to
use (VII-45). What value of m corresponds to complete random union of gametes
across the pair of islands? Using this value, do we find an expression for FW that
is the same as in a one-population infinite isoalleles model with 2N individuals?
What about the comparison with one-population models when m = 0?

7. If we take m = 1 in a one-dimensional stepping stone model, does this correspond
to complete random mating along the whole chain of populations (i.e., to the ab-
sence of geographical structure)?

8. Kimura and Maruyama (1971) pointed out that an infinite isoalleles model of
neutral mutation can give a pattern of gene frequency looking very much like a
migration-selection smooth cline of gene frequency. For what values of u, m, and
N would a smooth cline of gene frequency across the whole species range be a
likely observation in a one-dimensional habitat? In a two-dimensional habitat?

9. Use Kimura’s formula for the fixation probability of an allele that is deleterious
and has multiplicative fitnesses, so that the fitnesses for AA, Aa, and aa are (1− s)2

: 1− s : 1. If the deleterious allele has initial frequency 0.9 and if s = 0.1, in a
population of size 10,000 what is the probability that the deleterious allele fixes in
the population (reaches frequency 1)?
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How small does the deleterious effect have to be to allow the deleterious allele A
to have a probability 0.5 of being fixed? Does this result surprise you – is natural
selection being more or less effective than you expected?

10. Suppose that we have an overdominant locus with the following fitnesses:

Based on the branching process approximation, what is the probability of fixation
of a single A mutant? Based on the Wright-Fisher model, what is it (think of gene
and genotype frequencies at various points in the life cycle)? Why the discrep-
ancy? What is the branching process result actually computing if not the fixation
probability?

11. Suppose that a locus has relative fitnesses:
AA Aa aa
4 2 1

Compute the fixation probability from the diffusion equation formula (VII-91) of
A when it has initial gene frequency 0.1 in a population of 10 individuals. Then
consider the fitnesses

AA Aa aa
1/4 1/2 1

and compute the fixation probability of allele A when it has initial gene frequency
0.9 in a population of size 10. What would be the relationship between these two
fixation probabilities? Is it satisfied? Why or why not?

12. For the underdominant locus
BB Bb bb
1 1− s 1

sketch what you feel the equilibrium distribution of gene frequencies will look like
for each of the following parameter combinations when u = v:

(i) N = 1000, s = 0.01, u = 0.0001

(ii) N = 1000, s = 0.001, u = 0.01

(iii) N = 1000, s = 0.001, u = 0.0001

Complements/Problems

1. In the infinite isoalleles model with a single diploid population of size N, we note
that the number of new mutants occurring per generation is not the constant num-
ber 2Nu but a random variable with this number as its mean. Is this an extra source
of random variation, or is it already accounted for in the computations?
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2. In the one-island model of the equilibrium between drift and migration, have we
already taken into account the random variability in the number of immigrants per
generation?

3. Derive a good approximation for the average total number of mutational events
which have occurred in the lines leading from a gene in one individual in a popu-
lation, and from another randomly chosen individual back to their common ances-
tor. (In other words, if each mutant occurs at a different nucleotide position in the
DNA so that we can see a record of all mutants, by how many nucleotides will two
randomly chosen gene copies from the same population differ?) Use the infinite
isoalleles model for a single population.

4. Reconcile equations (VII-8) and (VII-122) with each other when u = v in a two-
allele case. Do this by using (VII-8) to compute the probability that a randomly
chosen individual is homozygous, and noting that this can also be written E[p2 +
(1− p)2] and expressed in terms of p̄ and Vp. Are the two predictions the same?

5. How is Nei’s genetic distance measure expected to behave if the two subpopula-
tions diverge by genetic drift with no mutation or migration? Is it expected to be
dependent on the initial gene frequencies? Assume that the population has been
at equilibrium for given values of Ne and u and that upon the two populations
separating, the effective population size changes to a new, smaller, value N∗ and
mutation is absent from that point on.

6. How is Nei’s genetic distance measure expected to behave if there are two classes
of loci with different mutation rates, with half of all loci in one class and half in the
other? Will it rise linearly with time?

7. How will the genetic distance measures that measure 1− hw/hb be affected if there
is mutation according to an infinite isoallele model? Develop equations for the
change of hw and hb and use these.

8. There is a very complete analogy between the island model with n = ∞ and the
one-island model with immigration from a continent. Why? How complete is the
analogy? Where does it break down?

9. Compute the temporal correlation between the gene frequency of allele A in a
one-island model. Use (VII-31), (VII-33), and (VII-40) to compute E[pt+1pt] and to
obtain the covariance of gene frequency in successive generations. How great an
interval must there be between the two samples from a single population, in order
that their gene frequencies effectively be independent of one another? Could the
temporal correlation of variability be used to estimate m, or is it too dependent
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on m only through the quantity Nm, so that we could not know m unless we also
knew N?

10. How do we have to alter the formulas for FB and FW in the n-island model if the
immigrants are drawn at random from all n populations instead of only from the
other n− 1 populations?

11. Using the approximate solutions to the n-island model, obtain an expression for
(FW − FB)/(1− FW), which is a measure of the genetic distance related to HB/HW ,
the relative heterozygosity between and within populations. Compare it to Nei’s
distance measure − ln(FB/FW). Which one is more sensitive to the population size?
Find cases where the two give discordant answers as to how much genetic distance
there is between islands.

12. Consider a locus undergoing infinite-isoallele neutral mutation in a population, but
which is near a strongly-selected overdominant locus. The overdominant locus has
two alleles at equal frequencies, and these frequencies do not change. The recom-
bination fraction between the loci is r. Suppose that we consider the two groups
of chromosomes which are defined by the two alleles at the selective locus. These
can be treated as if they are separate populations. They are each of constant size,
and they exchange genes at the unselected locus by the process of recombination.
Compute the effective number of alleles maintained in this pair of populations, as
a function of N, u, and r. By making the proper comparison, discover whether
having an overdominant locus nearby affects the amount of variation maintained
at a locus.

13. In a two-allele model with geographic structure (say an island model), consider a
random variable which has the value 1 if a randomly chosen gene is A, 0 if it is a.
If we pick a gene at random from another population in the same generation, what
will be the correlation between the values? Express it in terms of FW and FB. (You
need not find the values of FW and FB to do this, just give an expression in terms
of them). Does this result look familiar?

14. Suppose that in a diploid population on an island, multiplicative selection favors
allele a, with the selection coefficient “in favor of” allele A being s < 0. Migrants
from a continent continually bring in A genes, for on the continent all individuals
are AA. Suppose gametes immigrate and 2Nm � 1, so that the fate of each immi-
grant gene is decided long before another arrives. What does the branching process
approximation tell us about the ultimate fate of the island’s genetic composition?
Is this consistent with intuition? Why not?

15. In the case described in the preceding problem, use equation (VII-91) to find the
probability that a given immigrant A gene succeeds in driving out the locally fa-
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vored a allele. Obtain from this and from 2Nm the time until the successful allele
finally arrives, given initially no A alleles on the island. What does this say bio-
logically about the time that a patch of local adaptation can persist in the face of
immigration?

16. We are often interested in cases where population sizes are rather large, so that
a gene frequency will not move far from its equilibrium. Near the equilibrium
many evolutionary forces can be well approximated by saying that in deterministic
situations they are expected to multiply the deviation of gene frequency from its
equilibrium by a factor c:

p′ − pe � c (p− pe).

The effect of genetic drift can be approximated by saying that it causes a variance
of gene frequency equal to

Var (Δp) =
pe(1− pe)

2N
.

Use these to obtain approximations for M(p) and V(p), and solve for the equilib-
rium distribution of gene frequency. How does it compare to a Normal (Gaussian)
distribution with mean μ and standard deviation σ?

Calculate c and pe for the case of an overdominant locus. What mean and variance
of gene frequencies does this predict? For what parameter values does this approx-
imation break down? How can we compare it to a true equilibrium distribution
since we haven’t assumed any mutation?

17. In the case of geometric fitnesses, set up the matrices for the exact equations (VII-
73) for the fixation probability for the case of N = 1. Solve them. How does the
solution compare numerically in this case of an outrageously small population to
the diffusion approximation (VII-91) evaluated when p0 = 1

2?

18. A more precise approximation than equation (VII-89) is

M(p) =
sp(1− p)

1 + sp

and

V(p) = M(p)2 +
(p + M(p))(1− p−M(p))

2N
.

Do what you can to evaluate this integral exactly (by partial fractions?). Does it
lead to a better approximation?

19. If we compare large populations with small populations, which will do a better
job of eliminating deleterious mutations? (Compare the mean of the frequency of
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a deleterious mutation when holding u and s constant, but changing N. You may
have to use numerical integration).

20. Suppose that the fitnesses at a locus for AA, Aa, and aa are respectively 1− 2s :
1− s : 1. If s = 0.1 and there is mutation from a to A at rate 10−3, and back
mutation from A to a at rate 10−4, about what would be expect the equilibrium
gene frequency to be for the deleterious allele A in an infinite population? You
don’t need to get the full solution, just a good approximation.

In a finite population, how much will the frequency of the deleterious allele vary
around this? You should use PopG and run 100 or 200 lines, each with this pattern
of mutation and selection. Start with different initial gene frequencies and run
until you get similar results. As the program does not show you the average gene
frequencies of the lines, you can roughly tell how variable the outcome is by the
fraction of lines that have lost A.

Try different population sizes. How large a population size is necessary to have the
gene frequencies stay close to the equilibrium gene frequency, as judged by their
not having lost A? What are the values of 4Nu and 4Ns needed to have the gene
frequency be close to the equilibrium value?

How do these results compare to the results of using diffusion equations to com-
pute the equilibrium distribution of gene frequencies? Does the rate of back muta-
tion make much difference? Why or why not?

21. When advantageous mutations (of selective advantage s in heterozygotes) occur at
rate u per locus a population of size N, will there be more advantageous mutations
fixed per generation if N is larger? Is all of this effect due to there being more
advantageous mutations occurring in a larger population?
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Chapter VIII

MULTIPLE LINKED LOCI

VIII.1 Introduction

Until about 1960 most evolutionary genetic theory was single-locus. There had been
study of the decay of linkage disequilibrium by Jennings (1917), Robbins (1918) and
Geiringer (1944, 1945) in the absence of any selection or genetic drift, and Wright’s
1935b examination of intermediate optima was a multiple-locus selection model, but no
one before the 1950s made a serious attempt to work out the theory of multiple linked
loci under natural selection; Wright’s adaptive surface results implicitly assumed that all
loci were continually in linkage equilibrium.

This changed with the papers by Kimura (1956b) and Lewontin and Kojima (1960).
Kimura’s treatment of a two-locus system under selection assumed overlapping gener-
ations, with the approximation that Hardy-Weinberg proportions were always main-
tained. Lewontin and Kojima’s paper was a more exact treatment of the discrete-
generations case, and as such has been the basis for the literature that followed. The
fact that the subject was taken up after a delay of almost 40 years after Robbins’s paper
is probably due to computers becoming available at that time.

Most of the burst of work in the following 15 years was inspired by the hope of find-
ing some simple reparameterization that would greatly facilitate generalizations about
the outcome of selection on linked loci. One of the goals was to find out what function of
fitnesses and recombination rates was being maximized by natural selection. If natural
selection was not maximizing mean fitness, we might at least find out from that function
how the details of the genetic system altered the outcome. As we shall see these hopes
have not been realized. Nevertheless evolutionary genetic theory has gained consider-
able insight into the interaction of selection and linkage, and into the effects of genetic
drift in systems of multiple linked loci.

We will start the story with the simplest case, that of two loci each with two alleles
in a haploid, and consider different measures of linkage disequilibrium.
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VIII.2 A Haploid 2-locus Model

If we have two alleles at each of two loci in a haploid organism, there are of course 4
possible haplotypes: AB, Ab, aB, and ab. For simplicity let is designate their haplotype
frequencies x1, x2, x3, and x4 respectively. The gene frequencies of A and B are each the
sums of two haplotype frequencies:

pA = x1 + x2

pB = x1 + x3

(VIII-1)

and the usual measure of linkage disequilibrium is

D = x1 − pA pB (VIII-2)

which we have seen in Chapter I (equation I-50) can also be written as

D = x1x4 − x2x3 (VIII-3)

In the absence of selection, mutation, migration, or genetic drift, and the presence of ran-
dom mating, the linkage disequilibrium measure D is expected to decline by a fraction
r each generation.

SELECTION WITH NO RECOMBINATION. If we have no recombination, there is a
different measure of disequilibrium that behaves nicely in the presence of simple types
of selection. This is the crossproduct ratio, which we will call R,

R =
x1x4

x2x3
(VIII-4)

If there is linkage equilibrium (D = 0) then x1x4 equals x2x3, so that the crossproduct
ratio R = 1. If there is positive linkage disequilibrium R > 1, and if there is negative
linkage disequilibrium R < 1. However, beyond that, there is no straightforward rela-
tionship between these two measures. They are sensitive to different aspects of departure
from linkage equilibrium.

To see why R is useful, note that in the absence of recombination each haplotype is in
effect a separate clone, whose proportion in the population is affected by its own fitness
as compared to the mean population fitness:

x′i = xiwi/w̄ (VIII-5)

where of course
w̄ = x1w1 + x2w2 + x3w3 + x4w4. (VIII-6)
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Taking the crossproduct ratio for the x′i , the mean fitnesses cancel and we get a startlingly
simple result:

x′1x′4
x′2x′3

=

(
w1w4

w2w3

)
x1x4

x2x3
(VIII-7)

R is multiplied every generation by the crossproduct ratio of the fitnesses w1w4/(w2w3).
Its value in any future generation can be predicted with ease. Obviously this crossprod-
uct ratio of fitnesses depends only on the relative fitnesses of haplotypes, not their ab-
solute fitnesses, as the ratio causes any multiplier that affects all the four haplotype
fitnesses to cancel.

What this means for the effects of different patterns of gene interaction is most easily
seen by expressing the wi differently. Suppose that we take w4 to be 1, and express the
fitnesses as:

AB (1 + s)(1 + t)(1 + E)

Ab 1 + s

aB 1 + t

ab 1

(VIII-8)

You will find readily that with these fitnesses

w1w4

w2w3
= 1 + E (VIII-9)

So if E is zero, there will be no change in the crossproduct ratio R from selection. This
means that if R = 1, so that D = 0, there will be no linkage disequilibrium created by
natural selection. If we start in linkage equilibrium we will stay there forever.

Note that if only one of the loci is under selection (say A) we must have t = 0 and
E = 0, since the presence of a B on the AB chromosome cannot cause its fitness to be
different. So whenever only one locus is under selection, R will not change as a result
of that selection. It is only when the fitnesses interact that selection creates or intensifies
linkage disequilibrium.

Additive fitness. These equations point strongly toward a definition of interaction
that measures it as departure from multiplication of fitnesses. Many people prefer to
think of interaction as departure from additivity. If the fitnesses were perfectly additive,
so that the fitness of AB in (VIII-8) were 1 + s + t, then E = −st, so that R will decrease
under selection and negative linkage disequilibrium would be generated. If we put the
fitnesses on a log scale, it is on that scale that their additivity will correspond to having
E = 0. Figure 8.1 shows numerical results for R and D for the case where we start with
the initial frequencies of A and B both being 0.1, no initial linkage disequilibrium, the
values of s and t being respectively 0.2 and 0.3, and either E = 0.1 or E = −0.06. Note
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Figure 8.1: Results of iterating equations VIII-5 and observing the values of R
and D. In all cases the initial frequencies of A and B were 0.1 without linkage
disequilibrium between them. s was 0.2 and t was 0.3. The curves with circles
are R and 100× D for the case where E = 0.04. The curves with squares are
for E = −0.04, which is additive fitnesses. The solid lines are for E = 0. The
black symbols are for R, and the open symbols are for D.

that R changes continually in the predicted direction, but that D moves away from zero
and then back towards it as the alleles A and B move toward fixation.

This illustrates the different properties of the two measures of linkage disequilibrium.
To see why they will be expected to differ, consider the case where A and B both have
very low frequencies. If all the A’s and all the B’s are in AB haplotypes, then the value
of D cannot exceed the frequency of that haplotype, which will be small. But the value
of the crossproduct ratio R will be infinite.

We ought to add that in the case of no recombination the four haplotypes are in
effect acting like four haploid alleles. We can work out their “allele” frequencies in all
future generations. The ratio of any two of them (say x1/x2) gets multiplied by w1/w2
each generation (as in equation (II-108)). So after t generations the ratio will have been
multiplied by (w1/w2)

t. It follows easily from this that the frequency of xi in generation
t, xi(t), is:

xi(t) = xi(0) wt
i
/(

x1(0)wt
1 + x2(0)wt

2 + x3(0)wt
3 + x4(0)wt

4
)

. (VIII-10)

The exact analogy to multiple alleles allows us to use equation (II-113) to show that mean
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Figure 8.2: Three cases in which the logarithm of fitness is a function of an
underlying phenotype, itself having additive effects of the alleles at the two
loci. The top curve will have E > 0, the bottom E < 0, and the line in between
will have E = 0.

fitness can never decrease during these changes.

EPISTASIS. The quantity E measures the strength of gene interaction, which is often
called epistasis. Originally the term meant a particular type of interaction, in which one
locus is said to be epistatic to another if it has a genotype that masks the effect of the
other locus (as would be the case here if E = −t/(1 + t) or E = −s/(1 + s)). But within
evolutionary genetics, the term has since been used more broadly.

The meaning of the quantity E will be seen more clearly in a particular case. Suppose
that there is a quantitative character controlled by the two loci A and B with no epistasis.
Call the value of this character X. Now suppose that the logarithm of fitness (ln W) is
a nonlinear transformation of this character, as shown in Figure 8.2. There you will see
three cases. In the top curve, which is curving upwards, E > 0. In the bottom one,
which is curving downwards, E < 0. When the logs of the fitnesses are additive, the
fitnesses themselves are multiplicative. This is the case with the straight line, which is
when E = 0.

By an elementary application of the Mean Value Theorem from calculus, it can shown
(Felsenstein, 1965) that in this case the sign of E will always be the same as the sign of
the curvature of the curve relating ln W to X, so that E is positive when the curve is
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curving upwards, negative when it curves downwards, and zero when it is a straight
line. Thus in cases where epistasis results from such a transformation, we can often
easily see whether selection will result in positive or negative disequilibrium.

SELECTION AND RECOMBINATION. If we now add recombination to the model,
we must specify at what stage of the life cycle we observe the haplotype frequencies. If
we have the life cycle:

Newborns selection−−−−−→ Survivors
random mating−−−−−−−−−−→ Diploids meiosis−−−−→ Newborns

then we can rather easily work out the equations for the xi in successive generations
using successively equations (VIII-5) (for the selection phase) and (I-47) for the decay of
linkage disequilibrium following random mating. If we define

D∗ =
(x1w1

w̄

) (x4w4

w̄

)
−
(x2w2

w̄

) (x3w3

w̄

)
(VIII-11)

the linkage disequilibrium after selection has acted, we get

x′i =
xiwi

w̄
− kirD∗, i = 1, 2, 3, 4 (VIII-12)

where ki is a bookkeeping device to simplify the expressions:

k1 = k4 = 1

k2 = k3 = −1.
(VIII-13)

As an exercise, you should try to work out what these equations will be if we observe
the population immediately after selection instead of immediately after meiosis.

It would be nice to go one from this point, as one can in the case of no recombination,
and work out the future frequencies of all four haplotypes. In fact, we cannot. Certain
special cases can be studied (such as E = 0 when there is initial linkage disequilibrium),
but in general there are no analytical solutions for haplotype frequency dynamics. Fig-
ure 8.3 shows the changes in R in the case of Figure 8.2 in which E = 0.06, for three
different levels of recombination. It is evident that the less recombination, the more link-
age disequilibrium. It is clear from the figure that disequilibrium is greater when there
is tight linkage, and less when there is loose linkage.

My paper (Felsenstein, 1965) and the papers of Maynard Smith (1968) and Eshel and
Feldman (1970) should be consulted for further discussion of the effects of linkage on
the rate of change of gene frequencies under directional selection.

INTERACTION AND LINKAGE – AN EXAMPLE. A particularly interesting case
arises when there are negative values of s and t, but a strongly positive value of E. For
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Figure 8.3: Course of change of the crossproduct ratio measure of linkage
disequilibrium R for the case where initially there is linkage equilibrium,
where initially pA and pB = 0.01, and where s = 0.2, t = 0.3, and E = 0.06.
The three curves are for r = 0 (top), r = 0.01 (middle), and r = 0.1 (bottom).

simplicity suppose that s = t < 0 but E is positive enough that (1+ s)2(1+ E) > 1. Then
A and B are individually deleterious (compared to ab) but when they are combined, they
are advantageous. This is a simplest genetic case expressing the dilemma of adapta-
tions that must occur together to be advantageous. The question is, whether the genetic
system will have the sense to evolve them.

If we start with a population of ab haplotypes, and introduce the two mutants in
initial linkage equilibrium as rare alleles, then even though we cannot solve equations
for the haplotype frequencies in an arbitrary generation, we can do so as long as they are
rare. If we let x4 = 1− x1 − x2 − x3 and write the equations (VIII-12) in terms of x1, x2
and x3, after some algebra we find that if the fitness of AB is called 1 + u, the equations
can be written as:

x′1 = x1(1 + u)(1− r) + O(x2)

x′2 = x2(1 + s) + x1r(1 + u) + O(x2)
(VIII-14)

where the term O(x2) stands for terms which are a square of one of the xi or a product
of two of them. These terms we will ignore when x1, x2, and x3 are all small. We omit
the equation for x3 as it is the same as for x2 in this case. Without the x2 terms these
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equations can be written as linear equations in matrix form:⎡⎣ x′1
x′2

⎤⎦ =

⎡⎣ (1 + u)(1− r) 0

r(1 + u) 1 + s

⎤⎦⎡⎣ x1

x2

⎤⎦ (VIII-15)

x1 and x2 will increase when rare if and only if the leading eigenvalue of the matrix on
the right-hand side of (VIII-15) is greater than 1. The matrix is triangular, which means
its characteristic equation is easily found to be the product of the diagonal elements,
after λ has been selected from each of them:

((1 + u)(1− r)− λ) (1 + s− λ) = 0. (VIII-16)

This has two roots, which are instantly recognizable as (1 + u)(1− r) and 1 + s, the
diagonal elements of the matrix. Since s is negative, the latter one is always less than 1.
The former is greater than 1 only when r < u/(1 + u). So, for example, when u = 0.1,
the haplotypes AB and Ab (and therefore also aB will increase when rare if r < 1/11.
The reader may wonder why Ab and aB are increasing, if selection is acting to decrease
them. This increase happens because AB is increasing in frequency, and each generation
generates some Ab and aB haplotypes by recombination with the ab haplotypes that
make up most of the population.

The condition for the increase of AB is easily interpretable: AB haplotypes have their
frequency multiplied by 1 + u by selection and then a fraction r of their offspring turn
out, due to recombination, not to be AB. So the condition (1 + u)(1− r) > 1 simply is
the condition for more than one AB offspring to result per AB parent. The analysis here
assumes that we can ignore the product of the frequencies of Ab and aB compared to the
frequency of AB. If the condition for the increase of AB is on the borderline (that is, if
(1 + u)(1− r) = 1 then these neglected second-order terms will become important and
the analysis must be redone.

We can see that if Ab and aB are of low fitness and AB of high fitness, this double
adaptation is able to increase when rare if the linkage between the genes involved is
sufficiently tight. Once it reaches a substantial frequency, the loss of AB offspring due
to recombination becomes less serious, as there are fewer ab haplotypes around to mate
with, and the AB haplotype continues to increase toward fixation.

In a sense this provides us with a clearer picture of where the boundary is between
having two separate adaptations (A and B) and having one dual adaptation (the haplo-
type AB). The condition of r acts like a filter, allowing establishment of only those inter-
acting adaptations whose loci are closely enough linked. This will act as a mechanism
for organizing the genome to place loci that interact closer to each other – simply because
pairs of adaptations that interact but are not closely linked do not get established. The
existence of evolutionary-genetic arguments like this one has long led geneticists to sus-
pect that there must be some recognizable clustering of loci in genetic maps according
to function. The empirical evidence for such a clustering is maddeningly poor, however.

366



That linkage is accomplishing something that will not happen otherwise is made
clearer by considering what happens if there is no linkage disequilibrium. In that case
each locus will show a gene frequency change whose direction can be predicted by
considering the slope of mean fitness in the direction of increase in that gene frequency
(for diploids we would consider equation II-116). The mean fitness of the population
will be

w̄ = pA pB(1 + u) + pA(1− pB)(1 + s) + (1− pA)pB(1 + s) + (1− pA)(1− pB).
(VIII-17)

Figure 8.4 shows a contour map of the fitnesses in the case where u = 0.1 and s =
-0.1, plotted against the gene frequencies. The population is starting near the lower-left
corner, with low initial frequencies of A and B. If it climbs the adaptive surface, it will
not be able to increase the frequency of either the A or the B allele. Only if the allele
frequencies start at high enough frequencies to be on the peak in the upper-right corner
will they increase. If recombination is frequent, the population will be near (but not
exactly at) linkage equilibrium and the picture in the Figure will predict the outcome
with fair accuracy. But when linkage is tight the fitness of A and of B alleles is no longer
well-predicted by the assumption that they are randomly associated into haplotypes.
The presence of a A will then become associated with the presence of B. The fitness of A
will be increased by the coupling linkage disequilibrium which makes A and B appear
largely in AB; they are thus of higher fitness than a and b. This departure from the
adaptive-surface picture will, as we will see, turn out to be a general phenomenon for
closely-linked loci.

The conditions in the present case were worked out by Crow and Kimura (1965) in a
paper on the evolution of recombination.

VIII.3 Linkage and Selection in Diploids

The original papers on linkage and selection by Kimura (1956) and Lewontin and Ko-
jima (1960) used diploid models. We will develop here equations that are equivalent to
Lewontin and Kojima’s (1960) discrete-generations model. The result will be similar to
equation (VIII-12) but a bit more complicated. One source of the complication is that the
natural selection occurs at the same life stage where the recombination also occurs. This
makes the form of the equations slightly different.

One again we have four gametes, AB, Ab, aB and ab, and number these 1, 2, 3, and
4. xi is the frequency of gamete i in the pool of gametes that will, by random mating,
be assembled into the diploids of the current generation. The frequency of a diploid
composed of gametes i and j will be xixj among newborns. If natural selection occurs
thereafter with fitness wij, the frequency of genotype ij after selection will be xixjwij/w̄,
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Figure 8.4: Contours of mean population fitness as a function of gene fre-
quency in the absence of linkage disequilibrium, for the case in which the
fitnesses of AB, Ab. aB and ab are 1 + u : 1− s : 1− s : 1. If linkage equi-
librium is maintained, which will nearly be true if the loci are unlinked, the
population will always move uphill and thus will climb the peak on which it
is located. There are two peaks, one at the lower-left and one at the upper-
right. The case shown is for u = 0.1 and s = 0.1.

where as usual w̄ is the average of the wij, weighted by the genotype frequencies:

w̄ = ∑
i

∑
j

xixjwij. (VIII-18)

Recombination occurs among these survivors. It has no effect except on four of the
16 diploid genotypes: AB/ab, Ab/aB, aB/Ab, and ab/AB. These are genotypes 14, 23, 32,
and 41 respectively. Table 8.1 shows boxes for all of the 16 pairs of haplotypes, and in
each shows what fraction of AB gametes that genotype will produce, when there is a
recombination fraction of r. We can get the frequency of x1 in the next generation by
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Table 8.1: All 16 possible diploid genotypes, each showing the fraction of
gametes of haplotype AB that it will produce. Blank cells produce none.

AB Ab aB ab

AB 1 1
2

1
2

1
2(1− r)

Ab 1
2

1
2r

aB 1
2

1
2r

ab 1
2(1− r)

summing these gamete contributions, each multiplied by the frequency of that genotype:

x′1 = x1x1w11/w̄ + 1
2 x1x2w12/w̄ + 1

2 x1x3w13/w̄ + 1
2(1− r) x1x4w14/w̄

+ 1
2 x2x1w21/w̄ + 1

2r x2x3w23/w̄

+ 1
2 x3x1w31/w̄ + 1

2r x3x2w32/w̄

+ 1
2(1− r) x4x1w41/w̄

(VIII-19)
This expression can be simplified by noting that there is a 1/w̄ in every term on the

right-hand side. We can also make a simple assumption that will allow collapsing more
terms. This is that wij = wji for all pairs of values i and j. This amounts to assuming that
the fitness of a genotype cannot depend on whether haplotype i came from the mother
or the father. This is reasonable in most cases but rules out certain types of maternal
effects.

If we assume that, and collect terms, we get

x′1 = (x1x1w11 + x1x2w12 + x1x3w13 + (1− r) x1x4w14 + r x2x3w23)
/

w̄. (VIII-20)

Collecting terms in r, factoring x1 out of the terms that do not contain r, we can simplify
this, especially if we assume further that w14 = w23. This latter assumption amounts to
specifying that the fitness of a double heterozygote does not depend on its phase, so that
the fitness of AB/ab equals that of Ab/aB. This is again reasonable in most cases but rules
out cis-trans effects. The resulting expression is:

x′1 = (x1 (x1w11 + x2w12 + x3w13 + x4w14)− r (x1x4 − x2x3) w14) /w̄. (VIII-21)

In this equation, two terms are notable. We have already seen in equation (VIII-3) that
(x1x4 − x2x3) is the linkage disequilibrium measure D. The expression x1w11 + x2w12 +
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x3w13 + x4w14 is also worth note. It is the average fitness of all genotypes that receive an
AB gamete from one parent, averaged over all the gametes they might receive from the
other parent. Thus we can define an average fitness of a haplotype (just as in Chapter II
we defined the average fitness of an allele in (II-124). In general, we can similarly define
the mean fitnesses of all four haplotypes:

w̄i =
4

∑
j=1

xjwij. (VIII-22)

We can follow the same argument that lead to (VIII-20) for the other three haplotypes,
and if we do we will find, using (VIII-3) and (VIII-22), that the full set of equations is

x′1 = (x1 w̄1 − r D w14)
/

w̄

x′2 = (x2 w̄2 + r D w14)
/

w̄

x′3 = (x3 w̄3 + r D w14)
/

w̄

x′4 = (x4 w̄4 − r D w14)
/

w̄.

(VIII-23)

We can use the bookkeeping device ki in (VIII-13) to simplify this to

x′i = (xi w̄i − ki r Dw14)
/

w̄, i = 1, 2, 3, 4. (VIII-24)

Equations (VIII-23) were derived by Lewontin and Kojima (1960). The natural next
step would be to derive formulas for the future frequencies of all four gamete types in
terms of the current frequencies xi the fitnesses wij, and the recombination fraction r.
Alas, no one has been able to construct general expressions for this (and this should not
be surprising since they cannot in many much simpler single-locus cases that are sub-
cases of this). The formulas are easily iterated numerically, and over the years substantial
insight has been gained empirically by considering numerical examples. The other way
that insight has been gained is by the exact solution of particular cases, to which we now
turn.

Table 8.2 will help to show how the wij’s relate to the genotypes, keeping in mind
that wij = wji:

VIII.4 Linked polymorphisms

Much effort has gone into examining linked overdominant loci. In particular, a number
of simple fitness schemes have been investigated that can be at least partly analyzed
analytically.
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Table 8.2: The relationship between genotypes and fitnesses of haplotype pairs

BB Bb bb

AA w11 w12 w22

Aa w13 w14 = w23 w24

aa w33 w34 w44

LEWONTIN AND KOJIMA’S SYMMETRIC MODEL. Lewontin and Kojima (1960)
examined the behavior of the symmetrical overdominant fitness model. The symmetries
ensured that the fitness table would remain the same when we exchange either A ↔ a
or B↔ b or both. The fitness table is given in Table 8.3:

Table 8.3: Lewontin and Kojima’s symmetric fitness model

BB Bb bb

AA a b a

Aa c d c

aa a b a

It seems evident that if there are any nontrivial equilibria in the system, they will
involve equal gene frequencies of alleles A and a, and equal frequencies of B and b too.
In that case, it will be true that

x1 + x2 = x3 + x4 = x1 + x3 = x2 + x4 =
1
2

, (VIII-25)

so that we can write x2, x3, and x4 all as functions of x1. In fact, the linkage disequilib-
rium D is also a function of x1, being

D = x1 − 1
4

. (VIII-26)

so that we can also write:
x1 = x4 =

1
4
+ D (VIII-27)

and
x2 = x3 =

1
4
− D (VIII-28)
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The changes of the xi are now all replaced by changes of D, provided that we have
started at, and thus remain at, gene frequencies of 1

2 at both loci. We can rewrite w̄ using
Table 8.3, (VIII-18), (VIII-27) and (VIII-28) as

w̄ = a
(

2
(

1
4 + D

)2
+ 2

(
1
4 − D

)2
)
+ b

(
4
(

1
4 + D

) (
1
4 − D

))

+c
(

4
(

1
4 + D

) (
1
4 − D

))
+ d

(
2
(

1
4 + D

)2
+ 2

(
1
4 − D

)2
) (VIII-29)

and this can be simplified readily to

w̄ =
1
4
(a + b + c + d) + 4D2 (a− b− c + d) . (VIII-30)

The haplotype mean fitnesses w̄i given in (VIII-22) can also be simplified to

w̄1 = w̄4 =
(

1
4 + D

)
a +

(
1
4 − D

)
b +

(
1
4 − D

)
c +

(
1
4 + D

)
d

w̄2 = w̄3 =
(

1
4 + D

)
b +

(
1
4 − D

)
a +

(
1
4 − D

)
d +

(
1
4 + D

)
c

(VIII-31)

which simplifies to

w̄1 = w̄4 = (a + b + c + d) 1
4 + (a + d− b− c) D

w̄2 = w̄3 = (a + b + c + d) 1
4 − (a + d− b− c) D.

(VIII-32)

Substituting (VIII-32) and (VIII-30) into the first equation of (VIII-23) we get

1
4
+ D′ =

(
1
4 + D

) (
(a + b + c + d)1

4 + (a− b− c + d)D
)
− rdD

1
4(a + b + c + d) + 4D2(a− b− c + d)

(VIII-33)

which simplifies to

D′ = D
1
2(a + d)− rd

1
4(a + b + c + d) + 4D2(a− b− c + d)

. (VIII-34)

We are looking for equilibria of the system, which will be roots of the equation
obtained by setting D′ = D. One such root is clearly D = 0. The other is the value of D
that makes the fraction on the right-hand side of (VIII-34) be 1. This yields the equation

4D2(a− b− c + d) =
1
4
(a− b− c + d)− rd (VIII-35)

372



which has two roots,

D = ±1
4

√
1− rd

4(a− b− c + d)
. (VIII-36)

We now have up to three equilibrium values of D. It will be helpful to plot an
example. Suppose that a, b, and c are all 0.9, and d = 1.0. That is a case in which making
one locus homozygous reduces fitness by 0.1, but making two homozygous is not as bad
as expected: it does not reduce fitness any further. Figure 8.5 shows the equilibrium
values of D plotted against the possible values of r.

0.25

−0.25

0

0 0.1 0.5

D

recombination
fraction

Figure 8.5: Equilibrium values of D for the Lewontin-Kojima model when
all genotypes other than the double heterozygote AaBb have a fitness of 0.9
relative to that genotype. The solid curves show the stable equilibria, plotted
as functions of the recombination fraction r. The dashed line is the unstable
equilibrium.

There is always an equilibrium with D = 0. Below r = (a − b − c + d)/d there
is a change, with three equilibria, D = 0 and the two values from (VIII-36). Above
r = (a− b− c + d)/d those two equilibria do not exist, as the quantity inside the square
root is negative, so that the solutions would be imaginary.

Are all of these solutions relevant? Not all need be stable equilibria. We can inves-
tigate the stability of the equilibrium at D = 0 simply using equation (VIII-34). When
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D � 0 we can drop the term in D2 and approximate,

D′ � D
1
2(a + d)− rd

1
4(a + b + c + d)

. (VIII-37)

A necessary condition for the stability of the equilibrium at D = 0 is that if D is
perturbed to a small nonzero value, it return to 0. This requires that the multiplier of D
on the right-hand side of (VIII-37) be less than 1. Then we require

1
2(a + d)− rd

1
4(a + b + c + d)

< 1. (VIII-38)

Since a + b + c + d > 0, we can multiply through by it and solve for r, getting

rd >
1
4
(a− b− c + d) (VIII-39)

or if d > 0,

r >
1
4

a− b− c + d
d

. (VIII-40)

Thus the condition for the existence of the paired equilibria (VIII-36) are the same as
the condition for instability of D = 0. When the paired equilibria exist above and below
it, D = 0 is not stable. Above the critical value of r, they disappear (having collided with
each other and with D = 0 at the critical recombination value and disappeared into the
complex plane), and there only D = 0 exists, and it is a stable equilibrium. We have not
made a full analysis of the stability of D = 0, since have not allowed for deviations of the
gene frequencies from 1

2, but when we do we find that they do not affect the conditions
for stability of D.

The paired equilibria in (VIII-36) are stable when they exist. This can be verified by
using (VIII-34) to ask whether small departures from the equilibria will grow. We will
not do this here, but simply note that the equilibria are stable.

A useful reparameterization of the fitness scheme in Table 8.3 is given in Table 8.4.
On substituting in (VIII-36) 1 for d, 1− s for b, 1− t for c, and 1− s− t + e for a, we get

D = ±1
4

√
1− 4r

e
. (VIII-41)

the other equilibrium being of course D = 0. The condition for stability of the equilib-
rium D = 0 in (VIII-41) also simplifies, becoming by substitution into (VIII-40)

r >
1
4

e. (VIII-42)

The fitness scheme in Table 8.4 clarifies which fitness effects are affecting D. The
parameter e measures the gene interactions by measuring the departure of the effect of
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Table 8.4: A reparameterization of Lewontin and Kojima’s symmetric fitness model

BB Bb bb

AA 1− s− t + e 1− s 1− s− t + e

Aa 1− t 1 1− t

aa 1− s− t + e 1− s 1− s− t + e

homozygosing the two loci from what would be expected from making only one of them
homozygous. Note that the departure is a departure from an additive prediction, not a
multiplicative prediction. In this, e is a different measure from E, the epistasis measure
in (VIII-8), which measured departure from multiplicative interaction. The fact that one
measure appears naturally in that context and the other here has been the cause of much
disagreement over how to best measure epistasis.

In the present case, the paired equilibria (VIII-41) appear whenever e > 0 and r is
sufficiently small. One particularly common pattern when the two loci do not have
any particular biochemical or developmental interaction will be for the fitnesses to be
multiplicative. That case we expect the fitness of the double homozygotes to be (1−
s)(1 − t) = 1− s − t + st, so that e = st. In that case, whenever r < st/4 there will
be a pair of stable equilibria, one with coupling and one with repulsion disequilibrium.
Thus there is every reason to expect such disequilibrium to occur between many pairs of
closely linked loci, because it can occur even when the loci that are closely linked affect
totally unrelated aspects of fitness.

The pattern of having a coupling-repulsion pair of stable equilibria when r is small,
and otherwise linkage equilibrium, is special to this particular model. But a similar
pattern, that of having a not-quite-symmetrical pair of equilibria when r is small, and
otherwise an equilibrium with almost no linkage disequilibrium, will occur quite fre-
quently in a variety of models.

Note that I have not explained all of the behaviors of the Lewontin-Kojima model. It
is also possible for there to be boundary equilibria in which both loci become fixed, and
in those cases the paired equilibria that are found when r is small are actually unstable,
if we allow the gene frequencies to depart from 1/2.

FITNESS AND DISEQUILIBRIUM: MORAN’S COUNTEREXAMPLE. If we take
equation (VIII-30) and the reparameterized fitnesses in Table 8.4, we can express the
mean fitness of the population as

w̄ =

(
1− s

2
− t

2
+

e
4

)
+ 4D2e. (VIII-43)
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Table 8.5: An example showing Moran’s phenomenon

BB Bb bb

AA 1 0.5 1

Aa 0.5 1.1 0.5

aa 1 0.5 1

This implies that if e is positive, which is the case that can lead to paired equilibria,
any increase in the absolute value of D away from 0 will increase the mean fitness of
the population. However, in any given case, r might not be small enough to allow
disequilibrium to persist.

P. A. P. Moran (1964) used cases like this to make a dramatic point about the ability
of multi-locus selection to optimize mean fitness. He actually used a somewhat different
parameterization of fitnesses, but the point can be made using Lewontin and Kojima’s
model. If, for example, we take s = t = 0.5, and e = 0.5, so that the fitness table is given
in Table 8.5: Then if r > 0.25 the equilibrium D = 0 is stable. With tighter linkage the
two paired equilibria in equations (VIII-44) exist. Notice what happens if r > 0.25 and
we start with any nonzero value of D beyond the equilibrium: D will decrease continu-
ously towards the equilibrium, and as it does the mean fitness of the population continuously
decreases, as shown in Table 8.6. This depressing behavior will occur at all values of r
beyond 0.25. If we start with either positive or negative D, its value will continually
subside toward 0, and from (VIII-30) we can immediately see that this will result in a
continual decline in mean fitness. The phenomenon will occur in the Lewontin-Kojima
model for all positive s and t and for all positive values of e. However for some of them
the equilibrium gene frequencies of 1/2 will be unstable and ultimately one allele will
be lost at each locus, and the population mean fitness can increase as that happens. In
the cases where the gene frequencies approach 1/2 at both loci, as they change towards
them, in the process mean fitness will tend to increase. This can counterbalance the
decrease of mean fitness by reduction of D.

COADAPTED GENE COMPLEXES AND RECOMBINATION. Moran’s phenomenon
shows that two-locus systems do not automatically maximize mean fitness. The reason
seems basically to be the breakdown of linkage disequilibria by recombination. If there
is no recombination (r = 0) then the mean fitness will be maximized. This can be seen
because then the four haplotypes are inherited as if they were four alleles at a single
locus. If we set r = 0 in the equations of change (VIII-23) they become exactly the same
as the multiple-allele equations (II-122), for the corresponding assignment of fitnesses
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Table 8.6: Change of D and w̄ in the numerical example

Generation D w̄
0 0.2000000 0.9510
1 0.1577287 0.8845
2 0.1337493 0.8537
3 0.1175011 0.8357
4 0.1054454 0.8239
5 0.0959848 0.8155
6 0.0882713 0.8093
7 0.0818050 0.8044
8 0.0762684 0.8006
9 0.0714486 0.7975

10 0.0671963 0.7949
11 0.0634033 0.7927
12 0.0599889 0.7908
13 0.0568914 0.7892
14 0.0540627 0.7876
15 0.0514648 0.7867
20 0.0410332 0.7824
25 0.0334432 0.7799
30 0.0276221 0.7784
35 0.0230095 0.7773
40 0.0192763 0.7766
45 0.0162114 0.7762
50 0.0136704 0.7758
∞ 0 0.775

to genotypes. It follows from this that the mean fitness can never decrease from one
generation to the next.

Recombination reduces the mean fitness by breaking up “coadapted gene complexes”
by breaking down linkage disequilibrium. Consider the fitnesses shown above in Table
8.5. If we have no linkage disequilibrium, and are at equilibrium gene frequencies of
1
2 , the average fitness of Aa heterozygotes will be 0.8, and the average fitness of aa and
AA homozygotes will be 0.75, yielding a mean fitness which is 0.775. But if there is
complete linkage, we can have a linkage disequilibrium which, for example, associates
b completely with A, so that there are only two haplotypes in the population, AB and
ab. These will when homozygous have fitness 1, and when heterozygous fitness 1.1. It is
clear that this state of affairs has higher mean fitness. The breakdown of the association
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between A and b (which is often called “coadaptation”), results in lowered mean fitness.
Selection “wants” to eliminate the repulsion haplotypes Ab and aB, but recombination
between the desirable haplotypes AB and ab keeps reintroducing them. (It is worth
noting that this is one of two equilibria. There is a symmetrical equilibrium in which A
is associated with b and a with b and it is the two coupling haplotypes AB and ab that
selection tries to eliminate.)

By examining (VIII-43) and (VIII-41) it is easy to show that not only can recombina-
tion lead to a continual decrease of mean fitness during the course of evolution, but it
leads to an equilibrium state which has lowered mean fitness. This is quite frequently
found in multiple-locus models. If all alleles at all loci are present at a stable equi-
librium, so that all haplotypes are present (as will be the case when there is also not
complete linkage between any pair of loci) we can use the single-locus multiple-alleles
result make a simple argument to this effect. If all haplotypes are present at equilibrium
with or without recombination present, unless the equilibrium haplotype frequencies
with recombination are the same as with no recombination, they must have lower mean
fitness, since the equilibrium haplotype frequencies without recombination are at a local
maximum of the mean fitness, and as mean fitness is a quadratic function of the haplo-
type frequencies it cannot have any other local maximum with all haplotype frequencies
present.

This seemingly dysfunctional property of recombination raises the question of why
recombination is present at all. It may be a byproduct of other cellular phenomena,
such as DNA repair, but we will see, later in this Chapter, that there are cases in which
recombination is advantageous, and they must also be taken into account in making an
evolutionary explanation of the presence of recombination.

The notion of an adaptive topography is thus compromised by recombination. There
is no rule that mean fitness always increases, or even sometimes increases, nor is there
any rule that the final mean fitness is above the initial mean fitness. Nevertheless in
“real” cases it is often found that the net effect of selection in the presence of recombi-
nation is to increase the mean fitness of the population, comparing final to initial values.
It is just that it does not do so in all cases. The genetic system is not perfectly designed
to increase mean fitness (probably because evolution has had only a limited opportunity
to try alternative genetic systems). But if one cannot be Panglossian and believe that
mean fitness changes are always for the best, your very presence reading these pages is
indirect evidence that there have, on the whole, been more increases than decreases of
mean fitness in the course of evolution.

THE GENERAL SYMMETRIC MODEL. Another, less limited model that can be exactly
analyzed is the General Symmetric model, which was first introduced by Bodmer (Bod-
mer and Parsons, 1964; Bodmer and Felsenstein, 1967) and was first rigorously analyzed
by Karlin and Feldman (1969, 1970). It is shown in Table 8.7.
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Table 8.7: The General Symmetric Model

BB Bb bb

AA 1− δ 1− β 1− α

Aa 1− γ 1 1− γ

aa 1− α 1− β 1− δ

Notice the sense in which this fitness scheme is symmetric. In the Lewontin-Kojima
symmetric model, if we relabeled the fitness table by exchanging the A and a allele
symbols, the table would be unchanged, and this would also be true if we exchanged
the B and b allele symbols. In the General Symmetric model neither of these symmetries
exists, because of the difference between α and δ. But in the General Symmetric model if
we simultaneously exchange A↔ a and B↔ b the fitness table is unchanged. Lewontin
and Kojima’s model is a subcase of this one, the case in which α = δ.

We will change some of the parameters to make the expressions more meaningful in
our presentation of this model. Suppose that we let

β = s
γ = t
α = s + t + e2
δ = s + t− e1

(VIII-44)

The table of fitnesses then becomes the one shown in Table 8.8. Nevertheless there are
symmetric equilibria as well. These are fairly readily derived. If we assume that the
gene frequencies at both loci and 0.50:0.50, then we can write the gamete frequencies of
the four haplotypes as a result of (VIII-1) and (VIII-2) as

x1 = 1
4 + D

x2 = 1
4 − D

x3 = 1
4 − D

x4 = 1
4 + D.

(VIII-45)

Using these in place of the xi we can write the basic diploid two-locus equations (VIII-23)
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Table 8.8: The General Symmetric Model, reparameterized

BB Bb bb

AA 1− s− t + e1 1− s 1− s− t− e2

Aa 1− t 1 1− t

aa 1− s− t− e2 1− s 1− s− t + e1

in terms of D. We have using (VIII-22)

w̄1 =
(

1
4 + D

)
(1− s− t + e1) +

(
1
4 − D

)
(1− s) +

(
1
4 − D

)
(1− t) +

(
1
4 + D

)
w̄2 =

(
1
4 + D

)
(1− s) +

(
1
4 − D

)
(1− s− t− e2) +

(
1
4 − D

)
+
(

1
4 + D

)
(1− t)

w̄3 =
(

1
4 + D

)
(1− t) +

(
1
4 − D

)
+
(

1
4 − D

)
(1− s− t− e2) +

(
1
4 + D

)
(1− t)

w̄4 =
(

1
4 + D

)
+
(

1
4 − D

)
(1− t) +

(
1
4 − D

)
(1− s) +

(
1
4 + D

)
(1− s− t + e1)

(VIII-46)
which simplifies to

w̄1 = w̄4 = 1− 1
2 s− 1

2 t +
(

1
4 + D

)
e1

w̄2 = w̄3 = 1− 1
2 s− 1

2 t−
(

1
4 − D

)
e2

(VIII-47)

The mean fitness is (as is the case with multiple alleles) the weighted mean of these
haplotype mean fitnesses:

w̄ = 1− 1
2

s− 1
2

t + 2
(

1
4
+ D

)2

e1− 2
(

1
4
− D

)2

e2. (VIII-48)

We can then write the first equation of (VIII-23), assuming x′i = xi, as

0 =

(
1
4
+ D

)2 (
1− 2

(
1
4
+ D

))
e1 + 2

(
1
4
+ D

)(
1
4
− D

)2

e2 − rD. (VIII-49)

This is a cubic equation in D, which will in general have three roots, though not always
ones that are feasible. The fact that s and t have cancelled out of the equation suggests

380



that the parameterization in Table 8.1 is a natural one. Although the solutions of this
cubic can be written down explicitly, the result is not particularly illuminating.

When r = 0 the equation has a particularly simple form (it can also be derived by
simply requiring that w̄1 = w̄2). It factors into(

1
4
+ D

)(
1
4
− D

)((
1
4
+ D

)
e1 +

(
1
4
− D

)
e2

)
= 0, (VIII-50)

which yields the solutions D = 1
4 , D = − 1

4 , and

D =
e1 + e2

4(e2 − e1)
. (VIII-51)

This is generically similar to the results with Lewontin and Kojima’s model. There
are paired equilibria at complete linkage equilibrium when r = 0, as well as another
equilibrium with a modest amount of linkage disequilibrium. When e1 = −e2, the results
reduce to those of Lewontin and Kojima, as they must. The pattern as r is changed is
also similar to Lewontin and Kojima’s model. The paired equilibria approach each other
and collide, and at that point the “central” equilibrium becomes stable, with the amount
of linkage disequilibrium it contributes declining rapidly with increasing r.

For example, when e1 = 0.1 and e2 = −0.15, the central equilibrium when r = 0 has
D = 0.05. Table 8.9 shows the three equilibria in this case as they change with different
values of r. For small values of r, there are paired strong disequilbria, which in fact are
stable equilibria, plus an unstable equilibrium with a positive value of D. As r increases
the unstable equilibrium value of D rises, and the positive stable value falls, and they
collide at just above r = 0.014062. These two equilibria annihilate each other by having
complex values of D which are impossible in the real world. That leaves the negative
value of D as the only stable one, and it gradually approaches zero, roughly inversely
with r. Even with free recombination (r = 0.5) the equilibrium value of D is not quite
zero.

Other patterns of symmetric equilibria are also possible in the General Symmetric
model. For example, when e1 = −0.1 and e2 = −0.15, there is only one stable equilib-
rium, which has a small positive value of D, and that drops gradually toward zero as
r increases. Lewontin and Feldman (1988) have shown that the presence of an equilib-
rium with large amounts of recombination with D near zero will characterize two-locus,
two-allele models more generally, given that they have any equilibrium.

It was long assumed that all the two-locus equilibria of the General Symmetric model
must have gene frequencies 0.50 : 0.50 at all loci. Karlin and Feldman (1970) made the
startling discovery that there are “unsymmetric” equilibria, which have unequal gene
frequencies of A and a (though they have the same pair of gene frequencies for alleles B
and b).
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Table 8.9: Three equilibria of the linkage disequilibrium value D for a general
symmetric model in which e1 = 0.1 and e2 = −0.15. The three equilibrium
values of D are shown, except when they are not achievable values, in this
case, when they are complex numbers.

r
0 -0.25 0.05 0.25
0.01 -0.215109 0.0773891 0.18772
0.011 -0.211441 0.082675 0.178766
0.012 -0.20774 0.089315 0.168425
0.013 -0.204005 0.0985179 0.155487
0.014 -0.200237 0.118186 0.132051
0.01406 -0.200009 0.123618 0.126391
0.015 -0.196435 – –
0.02 -0.176953 – –
0.03 -0.13637 – –
0.04 -0.0977967 – –
0.05 -0.0685037 – –
0.10 -0.0224614 – –
0.20 -0.0092443 – –
0.30 -0.0058105 – –
0.40 -0.0042360 – –
0.50 -0.0033327 – –

In addition to the General Symmetric Model, Puniyani and Feldman (2006) have
discovered an interesting semi-symmetric model, symmetric and one locus but not the
other, which lends itself to investigation of the number of equilibria and the levels of
recombination needed for them to be stable or unstable.

MULTIPLICATIVE OVERDOMINANT LOCI. Most schemes of interaction among loci
are arbitrary. One is not – multiplicative fitnesses. We have noted earlier in this chapter
that fitnesses tend to be multiplicative across loci when the loci do not interact. There has
been some work on linked overdominant loci whose fitnesses are multiplicative. Bodmer
and Felsenstein (1967) showed that there is an equilibrium in such case where the loci
are each at their equilibrium gene frequencies, and they are at linkage equilibrium with
each other. However, they also showed that if the fitnesses were 1− s1 : 1 : 1− t1 and
1− s2 : 1 : 1− t2, then if the recombination fraction

r <

(
s1t1

s1 + t1

)(
s2t2

s2 + t2

)
(VIII-52)
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the two loci go into linkage equilibrium with each other and there are two paired equi-
libria. When r = 0 the disequilibrium is complete. The haplotype frequencies are easy
to compute in that case: the fitnesses of the three possible genotypes are then either
(1− s1)(1− s2) : 1 : (1− t1)(1− t2) or (1− s1)(1− t2) : 1 : (1− t1)(1− s2).

If such disequilibria form, the haplotypes will be more strongly overdominant than
were the indvidual loci. Franklin and Lewontin (1970) showed by exact iteration of hap-
lotype frequencies that if there are many overdominant loci sufficiently near each other,
the genome could “congeal” into a small number of haplotypes, each strongly overdom-
inant and at intermediate haplotype frequencies. Interest in such a phenomenon has
waned, since it does not seem to be commonly found in nature.

SOME PERSPECTIVE ON INTERACTING POLYMORPHISMS. The behaviors in
interacting two-locus polymorphisms are complicated and interesting. It is hard to make
many generalizations. Much work was done on them in the late 1960s and early 1970s.
The unstated hope of that work was that some general rules could be found – perhaps
even a function that was maximized by evolution. We knew from Moran’s result that it
would not be mean fitness, but whatever it was, it would give us insight into how the
details of the genetic systems compromised optimization of fitness.

Alas, we were to be disappointed – the maximand was never found. The advances
that were made tended to be disproofs of generalities rather than proofs of them.

Some interesting cases that were discovered were ones that showed, not an equilib-
rium, but a limit cycle. This was suggested by Akin (1979) using approximate methods.
Hastings (1981) found sets of fitnesses that showed sets of fitnesses that showed these
stable limit cycles in exact numerical iterations.

VIII.5 Intermediate optimum models

A common pattern of natural selection in nature must be for a higher fitness to be as-
sociated with an intermediate value of a character, close to an optimum. Sewall Wright
(1935b) investigated such cases, in the era before the exact effects of linkage disequilib-
rium could be known. Lewontin (1964b) and Singh and Lewontin (1966) have used exact
computer iteration of haplotype frequencies to discover what equilibrium states result
from this optimum selection. The models assume that the loci interact additively to de-
termine a phenotype, with fitness a function of the departure of the phenotype from an
intermediate optimum value. It might seem obvious in such a case that with, say, 10 loci,
that optimum selection toward an intermediate phenotype will be a force to maintain
variability at the individual loci, keeping them segregating in the population. However,
this is not the case. Lewontin and Singh and Lewontin found that the population moved
rapidly into a state where all loci had intermediate gene frequencies, and the mean phe-
notype was almost precisely at the optimum value. But this state then slowly changed.
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Individual loci gradually fixed.
If we think of the alleles at each loci as + or − alleles, based on the direction of their

effect on the phenotype, Lewontin and Singh found that some alleles fixed for the +
allele, and some for the − allele. Ultimately all loci would be fixed, or all but one would
be fixed. The state of the population would be a mixed fixation that brought the pheno-
type close to the optimum value, with at most one locus still segregating. For example,
if we have 10 loci, (A through J), each with two alleles, and if the phenotype is simply
the number of capital letters in the genotype, then the phenotypes can range from 0 to
20. If the optimum phenotype is 10, the population might end up fixed for the geno-
type AABBccDDeeffGGHHiijj. All individuals would then have the optimum phenotype
(we have neglected to allow for environmental variance of the phenotype). By contrast,
if each locus segregated for both alleles in equal frequencies, the average phenotype
would be 10, but only a small fraction of individuals would have this phenotypic value.
If the optimum was instead 11, no mixed fixation could achieve this, but if five loci were
fixed for the + allele and four for the − allele, the remaining one locus would show
overdominance. Thus by achieving a mixed fixation, the population has moved toward
the highest possible mean fitness. Wright had already (1935, 1952) argued that the popu-
lation would proceed toward these mixed fixations. There are numbers of them that will
be nearly or precisely tied in mean fitness. He suggested that movement among these
equilibria would play a major role in his Shifting Balance Theory of evolution. Closely
related is the model by Lande (1976b) in which there is a line of genetic equilibria along
which genetic drift can move the population, while still keeping the population near the
optimum phenotype.

VIII.6 Selection on modifiers

It has long been known that aspects of the genetic system can be modified by genetic
variants. This includes sizes of genetic effects, dominance, degree of linkage, and rates
of mutation. To make a simple population-genetic model we need to consider a new
allele at a modifier locus which has no direct effect on fitness, but acts by modifying
something else such as the fitnesses at another locus, or the rate of recombination or
the rate of mutation. A simple deterministic haploid model will point out some of the
properties of such a case. Imagine a locus with two alleles, A and a, where allele a is
deleterious and maintained by mutation, with the rate of mutation to a being u. As we
saw in Chapter III , the deleterious allele will be maintained at an equilibrium frequency
of u/s. Now suppose that at another locus, allele B arises which has no effect except that
it makes the effect of allele a on fitness smaller. The fitness table might be similar to the
fitness scheme VIII-8:
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AB 1
Ab 1
aB 1− s + E
ab 1− s

Given the recombination fraction between the loci, r, we can ask whether allele B
will increase when rare. Its only effect is to increase the fitness of one genotype, so
the answer is yes, it will increase. It is never selected against. But it will increase very
slowly. If the two loci are unlinked, they will be near linkage equilibrium. If both
alleles are rare, allele B will be favored by an amount E, but only u/s of the time. So it
will increase at a rate that corresponds to a selection coefficient of only (u/s)E. If the
increase of fitness E is a fraction f of the original selection coefficient s, this will be only
(u/s) f s which is u f . Thus the selection coefficient favoring B is tiny. This leads us to
wonder whether selection will have much effect in modifying the fitness of allele a. With
tighter recombination, we can analyze this case, though it does not yield to linearizing
the equations of the frequencies of haplotypes, as we did with equation (VIII-15) the
terms that result in increase of the frequency of haplotype aB are quadratic. They are
also very small, for reasonable values of s and u. Tight linkage does not greatly speed
up the increase of allele B. It is hard to avoid the conclusion that modifiers have little
influence on the effects of rare deleterious alleles.

But only as long as they are rare. There is a difficulty with this model. The direct
effect of the modifier B is small, but only if allele a is rare. If a is at some intermediate
gene frequency, then it is even hard to know which locus is the modifier. The fitness
effect E causes fitness differences between the alleles of locus A and also between the
alleles of locus B. There seems to be no model that has one locus act only to modify the
fitness effects of the other, and not have any direct effect on the fitnesses at its own locus.

MODIFICATION OF DOMINANCE. There has been a considerable amount of work
on modifiers. R. A. Fisher (1928) proposed that deleterious mutants were often reces-
sive because modifiers had been selected to increase the fitness of the heterozygotes
in which the mutant alleles were usually found. Sewall Wright (1929a, b) and J. B. S.
Haldane (1930a) were skeptical of Fishers argument, as they were more familiar with
the biochemistry of gene action, and could see reasons for dominance that would be
much stronger than the weak effects of selection for modifiers of the fitness of the rare
heterozygote. The controversy between Fisher and Wright became heated and was the
occasion for the final breakdown of communications between them. Brian Charlesworth
(1979) has reviewed the evidence, coming down on Wright and Haldane’s side of the
argument. His paper should be consulted for further references.

MODIFICATION OF RECOMBINATION. Natural selection can also modify recombi-
nation rates. A simple model of this would have two loci whose fitnesses interact, and
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a third locus nearby whose only effect was to change the rate of recombination between
those two loci. In a deterministic model with constant fitnesses, the same result is always
found: if there is epistasis between the original two loci, the modifier typically changes
so as to reduce the recombination between them (Nei, 1967; Feldman, 1972; for more
recent work see the review by Feldman, Otto, and Christiansen, 1996). The effect of
this reduction is to make it less likely that recombination will break up favorable gene
combinations. As we will see below when we discuss linkage disequilibrium created by
genetic drift, this can create opportunities for selection of modifiers that increase levels
of recombination. Feldman, Otto, and Christiansen, as well as Otto and Feldman (1997),
note some other deterministic scenarios that can also select modifiers that increase re-
combination.

MODIFICATION OF MUTATION RATE. A more puzzling problem is selection on
modifiers of mutation rates. One would like to think that present-day mutation rates are
“tuned” by selection of modifiers to achieve the best compromise between having too
many deleterious mutations and too few advantageous mutations. And this is exactly
what is found (Holsinger and Feldman, 1983). But their model is for a completely self-
fertilizing species. A similar result was obtained by Leigh (1970) for asexual organisms.
But as Leigh found for outcrossing sexual organisms, there is no selection for an opti-
mum mutation rate. Selection should act only to decrease the mutation rate. Liberman
and Feldman (1986) have a detailed analysis of a two-locus system in which one locus
modifies the mutation rate of the other, and found the same outcome.

In asexuals or completely selfing species, the mutator allele bears the full responsibil-
ity for all mutations it causes, because they continue to reside in the same descendants
where it resides. In an outcrossing sexual species, the mutator can be irresponsible. It
is expected to stay with the mutations that it causes for only a few generations, seg-
regating away from them quickly. Thus most deleterious effects they have, and most
advantageous effects they have, do not decrease or increase the frequency of the mutator
allele. Thus it is hard to see how a mutation rate optimal for the species would result.

The exception will be when the modifier of mutation acts locally. If mutations reside
nearby, they will hang around longer and the modifier might have its gene frequencies
more nearly reflect the net effect of the mutation rate that it causes. From this one might
predict some conflict between local mutation rate modifiers and general mutation rate
modifiers. The matter has not been examined either theoretically or empirically.

GENERAL REDUCTION PRINCIPLE. Marc Feldman and his coworkers have gener-
alized the theory of modifier genes, demonstrating that a large class of modifiers has
the property that their effect is “viability analogous”. In deterministic models, the quan-
tity that the modifier controls can be treated as if it were the inverse of a viability, and
natural selection on the modifier then acts to decrease the quantity. Feldman and Liber-
man (1986) showed this for rates of mutation, recombination, and migration. Altenberg
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and Feldman (1987) gave a more general proof for many kinds of modifiable evolution-
ary parameters. Altenberg (2011, 2012) has since given even more general proofs for
modification of mutation and migration rates. Zhivotovsky, Feldman, and Christiansen
(1996) gave a multiple-locus proof for invasion of new alleles modifying recombination.
Altenberg, Liberman, and Feldman (2017) have generalized the reduction further. Of
course, the resulting “reduction principle” cannot be the whole story, otherwise there
would be almost no mutation, no recombination, and no migration.

VIII.7 Genetic drift and linkage

Genetic drift also produces linkage disequilibrium. When there are multiple haplotypes,
genetic drift will change the frequencies of all of them, and this is very unlikely to
leave the population precisely in a state of linkage equilibrium. Of course, it has no
tendency to preferentially associate particular alleles. For any pair of alleles, one at each
of two loci, it can lead to either positive or negative association. Analytical results for
the extent of disequilibrium produced by genetic drift are difficult, and we do not have
the extensive space here that they require.

However, we can at least get some rough idea of the amount of linkage disequilibrium
produced by genetic drift by considering a simple case with two alleles at each of two
loci, and a population that starts in linkage equilibrium and undergoes one generation
of change. If recombination precedes genetic drift in the life cycle, there is no change of
haplotype frequencies by recombination in this generation. Genetic drift then changes
the haplotype frequency x1 of AB, as well as the gene frequencies of alleles A and B
(which we will call p and q). If the changes of the four haplotype frequencies are,
respectively, e1, e2, e3, and e4 then the linkage disequilibrium after the bout of genetic
drift will be

D′ = x1 + e1 − (p + e1 + e2)(q + e1 + e3)

= D + e1(1− p− q) − e2 q − e3 p + (e1 + e2)(e1 + e3)
(VIII-53)

The ei are the changes that result from (in the diploid case) multinomial sampling of
2N of the haplotypes to be the genotypes of the adults. Each of the ei has expectation
zero. The variance of ei is the same as the variance of its xi, the usual multinomial
variance xi(1− xi)/(2N). They also covary: the covariance of ei and ej is −xi xj/(2N).
Putting these together, it can be shown that E[D′] = 0. To compute the E[(D′)2], and
thus consider the expectations of all the products of terms in equation (VIII-53). Some
of these have three of the ei, terms such as E[e2

1e2]. All of those have expectations with
coefficients involving 1/N2 or even higher powers. We will ignore those. After much
tedious algebra (and remember, this is the easiest case) we get the variance we need to
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compute:

Var [D′] ≈ p(1− p)q(1− q)
2N

(VIII-54)

That holds at (or near) D = 0, and, as we have omitted terms in higher powers of
1/N, for large N. What does it mean about the standing variability in D? Naively,
we can model D as being multiplied each generation by (1 − r), and then having a
random amount ε added whose variance is approximately p(1− p)q(1− q)/(2N). So if
we imagine this process continuing until an equilibrium variance of D is reached,

Var [D] = Var [(1− r)D + ε] = (1− r)2Var [D] + p(1− p)q(1− q)/(2N), (VIII-55)

since ε does not covery with D. Solving this for Var [D] we get

Var [D] =
p(1− p)q(1− q)
2N(1− (1− r)2)

(VIII-56)

or, to good approximation when r is small,

Var [D] =
p(1− p)q(1− q)

4Nr
(VIII-57)

These are approximations: for small 4Nr they give a variance higher than can actually be
achieved, since D cannot exceed ± 1

4 . But they give us an idea when to expect substantial
disequilibrium to be maintained by genetic drift, namely, when 4Nr is not large. An
approximation similar to this was introduced by Sved (1971).

A NUMERICAL EXAMPLE. As an example, suppose that humans have an histori-
cal effective population size of Ne ≈ 10, 000, and note that there is approximately one
recombination per 108 nucleotides in the human genome. We can take the scale over
which we expect noticeable linkage disequilibrium to be the distance along the genome
at which 4Nr = 1. If we take the recombination fraction between points B bases part as
r = B× 10−8 then 4Nr = 1 when 40, 000× B× 10−8 = 1 which is B = 2, 500. This cal-
culation was first made by Hill and Robertson (1983). They assumed Ne = 1, 000 which
gives a shorter distance, B = 250.

This is a small expected length of tracts of linkage disequilibrium. Disequilibrium in
the human genome extends much further, often tens of kilobases. One likely explanation
for this is that our assumption of a uniform rate of recombination is oversimplified. If
recombination actually has “hotspots”, with low-recombination regions in between, then
we expect longer stretches of disequilibrium when we are in between hotspots, and we
expect disequilibrium to have difficulty extending across a hotspot.

In chapter X, when we discuss coalescent genealogical trees of genes with recombi-
nation, we will return to this calculation and see that it is directly relevant there. As
we will see there, treelike genealogies of haplotypes and regions with strong linkage
disequilibrium are really the same thing.
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WHY THIS IS NOT QUITE RIGHT. The argument leading to equation (VIII-57) sounds
reasonable, but when examined more carefully, it falls apart. We have casually assumed
that the gene frequencies remain at p and q, when there is no force holding them there.
As the gene frequencies drift and the haplotype frequencies drift, there will be a distribu-
tion of D around zero. In the long run the individual loci start to reach fixation. As soon
as one locus loses its variation, the value of D is necessarily zero. If we consider the r2

measure of relative linkage disequilibrium, which is standardized by
√

p(1− p)q(1− q)
(Hill and Robertson, 1968) or the D′ measure, which is standardized by the maximum
value that it could have given its sign and the gene frequencies (Lewontin, 1964a), these
become 0/0 as soon as one locus becomes fixed for one allele.

Exact equations can be derived for the expectations of D2 in a population undergo-
ing pure genetic drift without mutation (Hill and Robertson, 1968). These involve the
expectations of three quantities, D2, D(1− 2p)(1 − 2q), and p(1 − p)q(1 − q). Matrix
equations can be set up iterating the expectations from generation to generation, but
there is no analytical expression giving their expectations t generations in the future.
The expectation of D2 rises and then falls away to zero. Computer simulations show
that r2 = D2/p(1 − p)q(1 − q) gradually approaches a stationary distribution as drift
continues. Progress has only recently begun to be made on computing the expectation
of r2 in a future generation (Song and Song, 2007), but Hill and Robertson’s iteration
equations can be used to approximate it from the ratio of expectations of numerator and
denominator.

Ewens (2004, section 6.6) discusses work by Ohta and Kimura (1979a, 1979b) which
uses diffusion equation methods to obtain analytical expressions for the expectations of
the three quantities, although it requires solving a cubic equation. Hill and Weir (1988)
give a fairly general treatment of four loci, obtaining equations for the expectations of
variances and covariances among pairwise D. They allow for mutation, genetic drift,
and recombination. As in the two-locus case, explicit formulas for these quantities t
generations from now are not available.

An alternative approach to analytical treatment of the expected degree of disequi-
librium involves computing the joint probabilities of identity by descent at two linked
loci. This too involves iterating three probabilities of dual identity, ones in which the two
loci are spread over 2, 3, or 4 haplotypes, and here too analytical formulae are hard to
come by (Weir and Cockerham, 1969). These different approaches are all, in some sense,
equivalent.

VIII.8 Drift, linkage disequilibrium, and selection

Once linkage, genetic drift, and selection all interact, it should not surprise anyone that
the outcome is hard to model and hard to discuss. There are, however, some important
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The patterns of linkage disequilibrium produced by genetic drift are often summarized
as the creation of “haplotype blocks” in which groups of adjacent sites are in strong
linkage disequilibrium, while between these groups linkage disequilibrium is said to be
near 0. The International HapMap Consortium (2005) project has worked to identify “tag
SNPs” that would be highly correlated with the common haplotypes in these blocks.

It is not entirely clear that we should expect a block structure of haplotypes when link-
age disequilibrium is produced by genetic drift and eroded by recombination. Below you
will see haplotypes that resulted from genetic drift on a simulated 10,000-site genome
in which we have sampled 20 genomes, in which 31 SNPs were seen. (I used Richard
Hudson’s seminal ms program with 4Nu = 0.001 and per-site recombination rate of
4Nr = 0.01). The left diagram shows the haplotype patterns, the right shows the extent
of disequilibrium between all pairs of the 19 informative sites, as indicated by the abso-
lute values of D′. Sites that have only one copy of the rarer SNP allele have been omitted
from the second figure, as they necessarily show D′ = ±1 with all SNPs.
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Simulated haplotypes in a recombining region of chromosome with the pa-
rameter values described in the text, and the resulting patterns of disequilib-
rium.

A pure block structure would show strong triangles along the diagonal, with little dis-
equilibrium elsewhere. This is not quite what is seen in the simulation. However
this test is a bit unfair: the recombination rate chosen is higher than in most places
in the human genome. Furthermore the presence of recombination “hot spots” with
low-recombination regions in between will favor the occurrence of haplotype blocks for
which tag SNPs should be useful.

Box 4: Haplotype blocks?
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cases that can be discussed straightforwardly.

HITCHHIKING, SELECTIVE SWEEPS, AND PERIODIC SELECTION.
If genetic drift produces random linkage disequilibria, sometimes of one sign, some-

times another, does this affect the course of natural selection at a typical locus? The
answer is yes (as you should have suspected from the very fact that I raised it here). The
easiest place to see this is in the phenomenon of hitchhiking. It first was noticed in ex-
perimental evolution in bacteria in chemostat populations. A mysterious phenomenon
called periodic selection was encountered. A population of bacteria, one which had little or
no recombination, had a locus with two alleles whose frequencies were being monitored
through time. The frequency remained relatively constant, because the locus was near
enough to being neutral. Then, suddenly, one allele began to rise rapidly in frequency.
The phenomenon was first discussed by Atwood et. al. (1951) who found some cases in
which these perturbations succeeded one another in periodic fashion, hence the name
“periodic selection”.

The simplest explanation is that a favorable mutant has arisen at another locus and
rapidly increased in the population. Whichever haplotype it has arisen in rapidly takes
over the population. Thus one of the alleles at the marker locus suddenly increases.
When there is no recombination, that allele at the marker locus will go to fixation, limited
only by the rate of mutation away from that allele at the marker locus, or by mutation at
the selected locus.

A subpopulation of haplotypes largely taking over the whole population is referred
to as a selective sweep. The lucky allele at a neutral marker locus increases as a result of
hitchhiking, as it is merely a passenger in a fast-moving selective sweep.

When there is recombination in the population, the hitchhiking effect is less complete.
This has been investigated by Maynard Smith and Haigh (1974) and by Thomson (1977).
As the favored haplotype increases, recombination gradually redistributes the neutral
hitchhiking allele from it to the nonfavored haplotype, and the favored haplotype also
comes to have more and more of the nonhitchhiking allele. In the end, the increase of
the hitchhiking allele is limited – it does not reach fixation. The favored allele at the
selected locus sweeps through the population, but the nearby neutral allele stops short
of fixation.

Figure 8.6 shows the final frequency of a neutral allele that occurs only in the favored
haplotype, which sweeps upward from an initial frequency of 0.001, initially present
in all copies of that haplotype. The recombination fraction between the locus under
selection and the neutral locus is shown, on a logarithmic scale. What is noticeable is that
more selection means that the region around the selected locus in which linked neutral
alleles are made substantilly more frequent by the selective sweep is proportionately
larger.

How much the hitchiking allele ends up increasing in the population depends on the
selection coefficient s of the favored haplotype, and the recombination fraction r between
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Figure 8.6: Final frequency reached by a neutral marker allele, when that al-
lele is present in all copies of the initial haplotype in which a favored allele
occurs at a nearby locus, and only there. The initial frequency of the hap-
lotype is 0.01, and the selection coefficient favoring it (s) is either 0.001 or
0.01. The final frequency of the nearby neutral allele is plotted against the
recombination fraction between the two loci. The curves decline with more
recombination until they approach the initial frequency of the haplotype, 0.01.

the hitchiking locus and the selected site on the favored haplotype. In fact, it depends
almost entirely on the ratio s/r. If s is doubled, the favored haplotype moves through
the population roughly twice as fast, as we have seen in Chapter II. The amount of
gene flow at the neutral locus into the favored haplotype is less the faster that haplotype
increases, as then there is simply less time for recombination to move gene copies at the
neutral locus into the favored haplotype from the less favored haplotype. To have the
same amount of net gene flow (at the neutral locus) into the favored haplotype, we need
to have twice as much recombination. So the ratio s/r is important to the net effect on
the hitchiking neutral locus.

If s/r is large, there will be a large hitchhiking effect and the marker alleles in the
original favored haplotype will be swept nearly to fixation. If s/r is small, the population
composition at the neutral marker locus will be little changed by the selective sweep.
The length of chromosome that is swept through the population is enough that the
recombination fraction between the loci is proportional to s. Note in this numerical
example that nearby markers with recombination fraction as large as s/10 are swept up
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to a final gene frequency of 1/2.
Another consideration is the initial frequency of the favored haplotype. If it is very

low, it will take a longer time until it approaches fixation, with correspondingly more
gene flow between favored and unfavored haplotypes and thus less net effect on the
population frequency of the marker locus. So the amount of recombination necessary to
prevent a selective sweep from having much effect is not only a function of s/r. We must
also take into account effects of random genetic drift in the period when the favorable
allele is rare. If it survives this period, it will rise more rapidly toward fixation than is
implied by the deterministic theory used here. Durrett and Schweinsberg (2004) have
pointed out that the deterministic approximation can be a bad one in this case, and they
have suggested an alternative approximation.

Repeated effects of hitchhiking by selection at nearby loci are also called genetic draft,
in analogy to genetic drift. They could cause large stochastic changes in gene frequency
even when the population size is large. John Gillespie (2000, 2001) has named this
phenomenon and made the most serious investigations of it.

There is a similar phenomenon when geographic differences in fitness, a locus with
different alleles adapted to local populations induces a reduction in effective migration
rate among populations. This happens by selection against migrants. In effect it is
a selective sweep frozen in place by the fitness differences. Petry (1983) has showed
that this induces a reduction of the effective migration rate among local populations,
simply by reduced fitness of the immigrant alleles at one locus, and that this affects the
distribution of neutral genetic variation at nearby loci that are closely enough linked.

A related phenomenon, “gene surfing”, is the spread of alleles, and the stripelike
patterns of their distribution, when one population invades nearby smaller populations.
Edmonds, Lillie, and Cavalli-Sforza (2004) emphasized the importance of gene surfing as
an explanation of these patterns. Hallatschek and Nelson (2008) developed predictions
for these patterns. Note that, unlike hitchhiking, gene surfing results from the spread of
a population, not from linkage disequilibrium of a neutral locus with an advantageous
one.

THE HILL-ROBERTSON EFFECT. What about the effect of two selected loci on each
other? This was investigated by Hill and Robertson (1966). They discovered a phe-
nomenon which has come to be called the Hill-Robertson Effect. Two closely linked
selected loci each interfere with the effectiveness of selection at the other locus. This
effect is strongest when the recombination fraction is small enough that 4Nr is small,
and the effect of selection on the other locus is substantial when 4Ns is greater than 1.

I will give one verbal argument and one simple derivation for a special case to per-
suade you of this. The verbal argument considers the effect of a selected locus on the
effective population size which is relevant to the other locus. We have already seen
in Chapter VI that variation in fitness from individual to individual reduces effective
population size (see, for example, equations VI-49 and VI-53). Note that the variation
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could be environmental, or it could be the result of genetic variation at other loci. If the
background loci are far away, their genotypes in the descendants change greatly over a
rather short time scale. An haplotype in this generation may carry allele B – in a few
generations a typical descendant may instead carry allele b at that locus. But if the back-
ground loci are closely linked, B hangs around for many generations in the descendants.
This magnifies its effect. If B raises the fitness, it continues to do so for some time, and
similarly if allele b lowers the fitness, descendants have their fitness lowered as well.

Thus linked background loci can cause large swings up and down of haplotype fre-
quency. It is as though effective population size at a locus were small. Each locus does
this to its neighbors on the chromosome.

A simple case. Hill and Robertson gave approximations, verbal arguments, and
computer simulations. We can demonstrate the phenomenon more precisely in one sim-
ple case. Suppose that we have a haploid population with two loci that are completely
linked. Each has a favored allele that increases the fitness by a fraction s. Both loci
initially have precisely one copy of the favored allele (there is no additional mutation
beyond the occurrence of these favored alleles).

If we have one copy each, and there is no initial association between the favored
alleles, there are two cases. 1 − 1/N of the time the two copies are on different haploid
genomes. 1/N of the time they are on the same haploid genome. Now use the haploid
version of Kimura’s formula for fixation probability. This is equivalent to equation (VII-
91) but with the population size N halved. Thus

U(p, s) =
1 − exp(−2Nsp)
1 − exp(−2Ns)

(VIII-58)

Considering a favored mutant at one of our two loci, in the case where the mutants are on
different haploid genomes, it is as if they were copies of the same allele. The probability
that one or the other of them fixes is U(2/N, s), and if it does, the probability that it
is the copy at the particular locus that we are watching is 1/2. If the two copies are
in the same haploid genome, the chance that they fix is U(1/N, 2s), and then they do
the particular favored mutant fixes. So the net probability that it fixes is the weighted
average of these fixation probabilities:(

1
N

)
U(1/N, 2s) +

(
1 − 1

N

)
1
2

U(2/N, s) (VIII-59)

We can compare this to the fixation probability of a single copy of the favorable allele at
one locus, with no other selection happening nearby. This is simply U(1/N, s).

Figure 8.7 shows the ratio of the fixation probabilities of the two-locus and one-locus
cases, when N = 100, 000 and various values of the selection coefficient s. For small s,
the one- and two-locus cases have almost the same fixation probability. As s passes 0.1,
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Figure 8.7: The fixation probability of a single copy of a favored allele when a
favored allele in a single copy with the same selection coefficient (s) is tightly
linked but not on average associated with it. What is plotted is the relative fix-
ation probability, compared to the case where there is no other selected locus
nearby. The haploid model discussed in the text is used, with a population
size of 100, 000. Computed using equations (VIII-59) and (VIII-58).

the selection at a nearby locus starts to have a noticeable effect in reducing the fixation
probability.

What is happening is that genetic drift creates random linkage disequilibrium be-
tween the two loci. Sometimes it is coupling disequilibrium, with the two favored alleles
on the same haplotype. Sometimes it is repulsion disequilibrium, with the two favored
alleles on different haplotypes. In the first case the two favored alleles help each other –
the fitness difference between A and a is twice as great as it would be without the dis-
equilibrium. Selection at each locus helps the favored allele at the other. In the second
case, the repulsion disequilibrium means that selection at each locus slows the response
at the other one.

You might suspect that this will all cancel out in the end, that the net result will be
that the change at each locus is not affected by the selection at the other. The results of
Hill and Robertson, and the simple calculation presented here, show that this is not so –
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Figure 8.8: Haplotypes from an asexual haploid population of size 20, from
a simulation of natural selection against deleterious mutants in which the
population has just reached a state in which Muller’s Ratchet advances, with
each haplotype containing at least one deleterious mutation. The circles are
the deleterious mutants.

the negative effects of repulsion disequilibrium are stronger than the positive effects of
coupling disequilibrium. The more closely the two loci are linked, the longer the random
disequilibrium will persist, and the larger its net effect will be.

It is important to realize that, although this is an effect of linkage disequilibrium,
it is quite distinct from the deterministic effects of linkage disequilibrium caused by
interaction of the fitnesses at the two loci. The Hill-Robertson effect occurs even when
the loci have multiplicative fitnesses (so that their fitnesses in effect do not interact).
When there are both deterministic and random linkage disequilibria, it will often be the
case that the random linkage disequilibrium will cause a Hill-Robertson effect that will
be far more noticeable than the effects of the deterministic linkage disequilibrium.

IMPLICATIONS OF THE HILL-ROBERTSON EFFECT. The Hill-Robertson effect oc-
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curs in any case where linked loci are undergoing natural selection and genetic drift. As
such, it shows up in many guises. Some are:

Muller’s Ratchet H. J. Muller (1958, 1964) noticed that when deleterious mutations ac-
cumulate in a nonrecombining genome, it is possible to get into a state in which
all haplotypes have at least one deleterious mutant. Natural selection alone cannot
then eliminate all deleterious mutations. He noted (1964, p. 8) that

If we disregard advantageous mutations ... we find that an asexual pop-
ulation incorporates a kind of ratchet mechanism, such that it can never
get to contain, in any of its lines, a load of mutations smaller than that
already existing in its at present least-loaded lines.

This has come to be called “Muller’s Ratchet”. Figure 8.8 shows a population of
asexual haploids at the moment when the mutant-free chromosomes have been
lost. Every chromosome has at least one deleterious mutant allele, though no locus
is yet fixed for the deleterious allele. The ratchet has advanced; from now on every
haploid genotype will contain at least one deleterious mutant allele. As further
deleterious mutations occur, the ratchet will operate repeatedly. The species con-
tinually loses ground. The ratchet can be unsprung by recombination, which can
reintroduce haplotypes that have no recombination. In the absence of recombina-
tion only back mutation can undo the ratchet, and that will be a weak force unless
most loci have accumulated deleterious mutations.

The Fisher-Muller explanation for the evolution of recombination Earlier, R. A. Fisher
(1930) and H. J. Muller (1932, 1958) had described another related phenomenon.
They both, apparently independently, realized that if there were selective sweeps
occurring at multiple tightly-linked loci, that the selection for favorable alleles at
one locus could interfere with the response at another. If there is no recombina-
tion, and two favorable alleles arise, they will mostly arise in different haplotypes,
and then both cannot reach fixation – one or the other would ultimately be lost.
Of course, there is a small chance that the second of them to arise would arise in
the descendants of the first, in which case they would help each other reach fix-
ation. They pointed out that this showed a strong advantage of recombination –
favorable mutants arising in different individuals can become combined into one
genome. This was the first valid explanation for the evolution of recombination
based on its genetic effects. (Previous arguments that recombination “creates vari-
ation” were based on misunderstandings of the population genetics of multiple
loci, and were not correct – unfortunately those arguments are still often found in
textbooks).

The Fisher-Muller phenomenon was, like Muller’s ratchet, a special case of the
Hill-Robertson effect. In a haploid case, in the Fisher-Muller case the favored alle-
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les start at frequency 1/N each. In the Muller’s ratchet case they start at 1 − 1/N
instead. Otherwise the advantage of recombination has the same source. Crow and
Kimura (1965) gave approximate formulae for the degree of advantage of recom-
bination. Felsenstein (1974) modified these and showed the results of computer
simulation verifying the reality of the phenomenon. Felsenstein and Yokoyama
(1976) showed that it could also lead to selection for a modifier of the amount of
recombination.

Background selection Deleterious mutations occur throughout the genome, and are
generally held to low frequency by countervailing natural selection. It is to be
expected from the Hill-Robertson effect that in regions of the genome in which
recombination is restricted, random linkage disequilibrium between the deleteri-
ous alleles will on average lead selection against them to be less effective. This
has come to be called “background selection”. Charlesworth (1994) argued that,
for loci that are tightly linked, it is approximately equivalent to a reduction of the
effective population size to the fraction of mutation-free haplotypes.

The degeneration of Y chromosomes A dramatic application of the Hill-Robertson ef-
fect was made by Charlesworth (1978b). Although attempts had been made to
model the degeneration of Y chromosomes in X/Y sex determination systems,
there had been no convincing explanation for the fact that functional genes tend
to largely disappear from the Y chromosomes, but to remain on X chromosomes.
Charlesworth realized that Muller’s ratchet provided an explanation. Y chromo-
somes are under strong selection to have no recombination with the corresponding
X chromosomes. Thus Y chromosomes become clonally reproducing, and they
never have opportunities to recombine with each other. X chromosomes do have
opportunities to recombine with each other in females. The Y chromosomes are
then subject to Muller’s Ratchet, which makes the functional gene copies disap-
pear, leaving behind a genetic desert, with only sex-determining genes maintained.
As the functional genes disappear, there will be stronger and stronger selection for
“dosage compensation” for them, in which single copies on the X are made to func-
tion as well as two copies do in the female. Charlesworth’s paper is a landmark in
the understanding of the evolution of Y chromosomes.

The same phenomena also argue for a tendency of areas of the genome with very
low recombination rate to have genes in that region become inactivated. This has
been used by Charlesworth, Sniegowski, and Stephan (1994) to explain the ten-
dency of transposons and repeated DNAs to accumulate near centromeres and
near telomeres of chromosomes.
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VIII.9 Migration and linkage disequilibrium

Selection and genetic drift can both create linkage disequilibrium. So can migration. I
have already discussed this in Chapter IV. It was discussed by Cavalli-Sforza and Bod-
mer (1971, p. 69) and by Prout in Mitton and Koehn (1973). We have seen in equations
(IV-10) and (IV-11) that, even if there is no linkage disequilibrium in any population, a
mixture of populations can be in linkage disequilibrium if the gene frequencies of alleles
at the two loci covary across populations. Thus, if we have one population that is all
AABB, and another that is all aabb, then each is in linkage equilibrium. But if we make
a mixture of the two (in any nontrivial proportion), there will be strong linkage dise-
quilibrium in the mixture. If gene flow continues into the admixed population, this will
continually reinforce the linkage disequilibrium even as it dies away owing to random
mating within the populations. As the gene frequencies in the source populations be-
come more similar, the amount of linkage disequilibrium created by migration becomes
smaller and smaller, so ultimately all of the disequilibrium disappears.

One situation in which linkage disequilibrium will be maintained is when natural
selection keeps the gene frequencies in the populations different. The linkage disequi-
librium within each population is then maintained at an equilibrium, where it is both
dying away by recombination and also constantly replenished by immigration. This has
been discussed by Li and Nei (1974) and by Feldman and Christiansen (1974), and most
completely for the case of selective clines by Slatkin (1975).

Exercises
1. Suppose that we have an infinite haploid population, and two loci that are com-

pletely linked (with no recombination between them), and that there are two alleles
at each locus (A and a, B and b). If the initial haplotype frequencies of AB, Ab, aB,
and ab are 0.01, 0.03, 0.03, and 0.93, and the fitnesses of the haploid genotypes are

AB Ab aB ab
2 1 2 1

if we wait 5 generations, what will be
(a) The gene frequency of A ?
(b) The gene frequency of B ?
(c) The crossproduct ratio measure of linkage disequilibrium ?
(d) The usual measure of linkage disequilibrium D ?

2. Suppose that in an infinite haploid population, with two loci, each of which has
two alleles, that the fitnesses of the four possible haplotypes are

AB Ab aB ab
1.1 1 1 1.1
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If we start with equal frequencies of each of these four haplotypes, and no recom-
bination between the loci what happens to the haplotype frequencies? What would
happen (qualitatively) if the population were instead large but finite?

3. In the cases of the previous question, what would happen if there were a small
amount (say 0.01) of recombination between the loci?

4. In an infinite diploid population, there are two loci, each with two alleles, and at
each locus the fitnesses are 1/2 : 1 : 1/2. The two loci do not interact, so that the
fitnesses are multiplicative across loci (the fitness of AA BB, for example, is 1/4).
Use the Lewontin-Kojima results to predict the linkage disequilibrium between
these loci, and how this depends on the recombination fraction r.

5. A locus is a “balanced lethal system” if there are two alleles, and all homozygotes
die. If two balanced lethal loci are linked to each other with recombination fraction
r, in an infinite population. Is there a value of the recombination fraction below
which there will be expected not to be linkage equilibrium? Assume, of course, that
only double heterozygotes survive. Owing to having only two possible genotypes
of the surviving adults, you should be able to work this out exactly.

Complements/Problems
1. For the case in Exercise 2 above, where the haplotype frequencies have fitnesses

1.1 : 1 : 1 : 1.1, and the recombination fraction is r, calculate what the equilibrium
haplotype frequencies will be as a function of r for the interior equilibrium at which
the gene frequencies at both loci are 1/2. Is this situation stable?

2. When I calculated the conditions for increase of a rare advantageous haplotype
containing two otherwise-deleterious alleles in equation (VIII-15), I casually dropped
the equation for haplotype aB. Check whether this is justified by writing a simi-
lar set of equations with the three rare haplotypes AB, Ab, and aB, dropping all
quadratic terms in the equations. Show that the expressions for the eigenvalues of
this 3× 3 matrix yield the same conditions as before.

3. Consider a neutral locus with two alleles, B and b, which is tightly linked to an
overdominant locus with two alleles, tightly enough that there is no recombination.
Describe some of the possible outcomes if we start with all haplotypes present, in
a finite population. Include a description of the final equilibrium states, as well as
states that persist a long time, but not indefinitely.

4. Set up the equations for one generation of change in the frequencies of the haplo-
types at two linked loci, each with two alleles, where one of them is under (haploid)
natural selection with fitnesses 1+ s : 1 and the other one is neutral. Can you write
a computer program to iterate these equations for t generations? If we start with
a population that is mostly ab with a low frequency (such as 0.001) of AB, can

400



you verify some of the final gene frequencies of the neutral allele after the selective
sweep is over, as shown in Figure 8.6?
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Chapter IX

QUANTITATIVE CHARACTERS

IX.1 What is a Quantitative Character?

We have seen the complexity of treating the effects of natural selection with multiple loci.
Hardly any generalities are available in such a case. Yet animal and plant breeders need
to be able to predict the outcome of artificial selection on traits of economic interest, traits
which are undoubtedly affected by many loci and alleles. Evolutionists need to be able
to interpret natural variation in measurable characters and make statements about the
strength of the evolutionary forces involved in the maintenance of the variation. Human
geneticists are also frequently confronted with traits which are polygenic, that is, affected
significantly by many loci. They must be able to compute the probabilities of various
outcomes in an unborn child, or in an individual thought to be at risk of developing a
condition later in life.

If so little could be said about outcomes when we knew the fitnesses of all genotypes
and their frequencies, we at least had recourse to strongarm methods for computing
gamete frequencies in successive generations. This is inelegant and computationally dif-
ficult, but at least it is possible when all fitnesses and genotype frequencies are known.
Unfortunately, in the particular applications just mentioned, this is not the case. In each
case we are usually dealing not with discrete phenotypes, but with a continuously mea-
surable trait, such as height, length of jaw, or blood glucose concentration. Sometimes
we are instead measuring a count of discrete entities. These cases are respectively that of
a quantitative character and of a meristic character. Even when we believe ourselves to be
dealing with truly discrete phenotypes, we are often actually measuring a quantitative
character. Recall that Mendel’s original characters included the height of the pea plant.
The key to his ability to make a single-gene analysis of this character was the fact that
the distribution of available phenotypes resolved itself into two distinct peaks, which
could be assigned the names “tall” and “short”. There were so few plants of medium
height that Mendel was able to discretize this particular quantitative character.
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Figure 9.1 shows another, hypothetical example. Here we have a single locus with
two alleles, B and b. Each of the three genotypes has a particular distribution of pheno-
types. There is no general rule as to what the distribution of phenotypes will be which
we get from a given genotype. However we should be able to characterize such a distri-
bution by, among other things, its mean. The means of the distributions in our example
are:

BB Bb bb
5 4 2

In the different parts of the Figure we see cases with different amounts of variability
in each of the three distributions. Of course, when we observe a population with a certain
gene frequency (in the Figure it is 0.4) we cannot tell which individuals come from which
distributions if the distributions overlap. As the variability of the distributions increases,
we find first that there comes to be overlap, with ambiguity as to the genotypes of many
individuals whose phenotypes we observe. But at this point we can still tell that there
are three component peaks in the overall distribution of phenotypes. However, when
variability of the individual genotypes becomes greater still, the peaks disappear and all
we see is one broad peak. The same thing happens if there is more than one locus. If the
genotypic means are:

BB Bb bb

AA 6.5 6 4

Aa 5.5 5 3.5

aa 4.5 3 2

and we have linkage equilibrium with pA = 0.4 and pB = 0.5, then Figure 9.2 shows the
distributions of phenotypes which we might see with different amounts of variability
in the distribution of phenotypes produced by a genotype. Once again, we see distinct
nonoverlapping phenotypes when the variability is small, but as the variability increases
our ability to identify genotypes declines, until ultimately there is only a single smooth
distribution.

If this is the situation when we observe a quantitative character, how can we have
any hope of predicting effects of selection or phenotypes of relatives if we are ignorant
of the exact genetic basis of a trait, and therefore also of genotype frequencies? In the
general case, there is nothing that can be done. But if we are willing to make a certain
kind of oversimplified model of the way genes and environment act to determine the
phenotype, we find that general rules do exist, providing us with useful guidelines for
plant and animal breeding and medical genetics. It is with this approximate approach
that we concern ourselves for the rest of this chapter.
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Figure 9.1: Phenotype distributions from a one-locus genetic model with var-
ious amounts of variability in the distributions produced by the genotypes.
There are three genotypes BB, Bb, and bb whose mean phenotypes are 5, 4,
and 2. The gene frequency of B is 0.6. The component distributions used here
are lognormal with equal variances on the log scale. Standard deviations on
the log scale are, for the top, middle, and bottom graphs, 0.02, 0.10, and 0.35.

IX.2 The Model

Our model the quantitative character will be determined by some number of loci, plus
some environmental influences. We make a series of rather restrictive assumptions:
Assumption No. 1: The phenotype is the sum of effects contributed by each of the n
loci, plus an environmental effect, so that we may write

P = μ + g1 + g2 + · · ·+ gn + e (IX-1)

where μ is an arbitrary starting point (not necessarily the population mean). This is really
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Figure 9.2: Phenotype distribution produced by a two-locus model. See text
for details of the genetics. (In this example lognormal distributions with equal
variances in the log scale are used for the distributions of the phenotypes).
Standard deviations on the log scale are, for the top, middle, and bottom
graphs, 0.01, 0.10, and 0.3.

a very special assumption. It places strong constraints on the kinds of gene interaction
which may be present. In real life genes concerned with a trait may interact in wondrous
ways. But in our model, the effect of changing the genotype at one locus is always to
add or subtract the same increment to the phenotype. For example, with four loci the
following scheme is one that satisfies our assumptions:

P = 7 +

⎧⎨⎩
2 if AA
0 if Aa
-1 if aa

⎫⎬⎭+

⎧⎨⎩
1 if BB
0 if Bb
-1 if bb

⎫⎬⎭+

⎧⎨⎩
-2 if CC
-2 if Cc
0 if cc

⎫⎬⎭+

⎧⎨⎩
0.3 if DD
2 if Dd

0.3 if dd

⎫⎬⎭+
environmental

effect

(IX-2)
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This scheme predicts that the phenotype of an AA Bb cc DD individual will be 7 +
2 + 0 + 0 + 0.3, plus an environmental effect. Similarly we can determine from this
scheme the genotypic contribution to the phenotypes for each of the other 80 possible
genotypes. Note that the 81 genotype contributions are here specified by 12 quantities,
so we immediately see that not all phenotypic schemes can be specified in this fashion.
For instance, try as you may you will not be able to find two sets of 3 contributions each
which will result in the phenotypes in the two-locus example of the previous section, the
example which gave rise to Figure 9.2. To prove that it can’t be done, you should (for
example) compare the effect of substituting Bb for BB in a genotype which has AA at
the other locus, with the substitution of Bb for BB in an aa individual. Under our model
both of these substitutions must have the same effect, which they do not have in this
two-locus example.
Assumption No. 2: The genotypes at the n loci are independent of each other.

This amounts to the statement that the population is in linkage equilibrium at all
combinations of loci. It will be violated by any force which tends to produce linkage
disequilibrium, such as selection of many types, random genetic drift, and migration. In
animal and plant breeding, and also in human genetics, artificial crossing or human mi-
gration is quite likely to result in a population which is initially in linkage disequilibrium
and has not had enough time to come back to linkage equilibrium.
Assumption No. 3: The environmental contribution to the phenotype is drawn from
a distribution independently of the genotype and independently of the environmental
contributions in other individuals.

This is the assumption most frequently violated in a serious fashion when quanti-
tative genetics theory is used to analyze data. It can be seen that the general tendency
of these assumptions is to erect a model of a phenotype determined by additive inde-
pendent causes, with only the genetic factors being shared among relatives. As we shall
see, the correlations among relatives can then be used to make some statements about
the genetics of the trait. But when environmental factors act which are common to rela-
tives, then unless this is known it may cause us to mistake the resulting correlations of
phenotypes for evidence of genetic factors, if we are mistakenly making Assumption 3.

In addition to excluding environmentally-based correlations of relatives, these as-
sumptions exclude interactions between loci by requiring locus effects to be additive,
and they also exclude correlation of environmental effects with genotypic effects; this
may be violated if the presence of a particular genotype makes more likely the presence
of a particular environment. Such a correlation leads to confounding of the effects of
these factors, and consequent inability to distinguish them.

Note, however, that dominance (an interaction between the two alleles at a single
locus) is not excluded. In the four locus scheme in (IX-2) C is completely dominant
over c with respect to their contribution to phenotype P. D and d are overdominant, a is
partially dominant over A, and there is complete absence of dominance at the B locus.
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This ability to include dominance leads to many interesting complications.

SCALE TRANSFORMATIONS. Everything said so far assumes that that the genes
act additively on the scale which we happen to be measuring. But it is by no means
obvious that the scale we measure is the scale on on which additivity occurs. Suppose
that we measured the weight of an animal. The weight will be closely related to body
volume in most cases. But why do we assume that genes add increments to the volume?
Could they not as easily act additively on the linear dimensions of the organism, with
the volume (and hence the weight) being simply the cube of a linear size measurement?
Is it not even possible that the genes are additive on the cross-sectional area, with volume
being proportional to the 3/2 power of this quantity, and length to its square root? Faced
with this diversity of possibilities, what are we to do?

If we knew something about the way genes acted in contributing to the character, we
could gain some insight into what is the proper scale. But this presumes the very thing
we are most likely not to know, once we have been forced to the unpleasant expedient
of using quantitative genetic theory. Alternatively, we can make use of a family of scale
transformations such as the power transformation

y =
(xp − 1)

p
+ 1 (IX-3)

which gives us a wide variety of scale changes by varying one parameter, p. When p = 1
it is no change of scale at all. When p = 1/2 or 1/3 it is close to the square root or
cube root, and so on, and when p = 0 it can be shown (by L’Hôpital’s Rule) that (IX-3)
becomes y = 1 + ln x. There is nothing in (IX-3) that prevents p from being greater than
1 or less than zero, and these may be useful regions to consider. One would in theory
make analyses of one’s data for various values of p, pick the value which resulted in the
best fit, and then attempt to correct for the fact that p is estimated from the same data
by reducing the degrees of freedom in the analysis by one.

The value p = 0 is special because the logarithm will often be a highly reasonable
scale on which to assume additivity. In particular, if the various genotypic and envi-
ronmental factors act multiplicatively on the original scale, they will be found to act
additively on the logarithm of the measurement, since ln(xy) = ln x + ln y. Multi-
plicative action of factors is easy to envision if we can persuade ourself that a given
factor (whether genetic or environmental) acts by making a percentage increment in the
trait rather than an absolute increment. This will frequently be quite reasonable. It
is certainly easier to envision a genotypic change as acting to increase (say) weight by
10% of its previous value, rather than by an absolute amount of 10 grams. If so, then
the change multiplies weight by 1.1, and by taking logarithms we see that it adds the
amount ln(1.1) = 0.0953 to the logarithm of the weight.

Multiplicative gene action is certainly more reasonable than additive gene action
when we are dealing with traits which have a natural zero point. If one subtracts fixed
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amounts from a quantity it may become negative, but if one multiplies by fixed positive
quantities it can at worst approach zero. Thus if a particular change is supposed to have
the effect of decreasing the weight by 10g, we are faced with the problem that this may
be unreasonable if the weight starts out at 9g. But if it decreases weight by 20%, this
may be 10g if the organism starts at 50g but is only 1.8g if it starts at 9g. We then never
predict a negative weight.

Some quantitative genetic theory (that concerned with response to selection) and
much data analysis requires that we assume that the character follows a normal dis-
tribution. If our character has a natural zero point, it cannot exactly follow a normal
distribution, for that distribution has tails which spread out to +∞ and −∞. The lower
tail would predict the existence of individuals with negative phenotypes. It may still be
a good enough approximation to use in practice, but there is at least then some pressure
(if only from slight embarrassment) to consider taking logarithms. For if the logarithm
of the phenotype were the quantity which was normally distributed, then as it went to
−∞ the original phenotype would only approach zero. So it is entirely conceivable that
a trait with a natural zero point has its logarithm normally distributed. I would go so
far as to state a conclusion:

For a trait with a natural zero point, first take the logarithm of the
phenotypes and base analysis on it. Do not return to the original
scale unless you can come up with positive reasons why the genetic
or environmental factors are likely to act additively on that scale.

This must be taken with a grain of salt. It is certainly better than always staying on
the original scale. But it would be better yet to estimate the appropriate scale from some
data set, as with the family of transformations (IX-3).

IX.3 Means

A ONE-LOCUS ANALYSIS. One of the properties of an additive model of the phe-
notype is that it greatly simplifies formulas for the mean and variance of the character.
In this section we concentrate on the mean. It is always true (even if the individual
terms are not independent) that the expectation of a sum is the sum of the individual
expectations, so that from (IX-1)

E(P) = E(g1) + E(g2) + · · ·+E(gn) + E(e). (IX-4)

We are going to work with the individual terms E(gi), with a view to establishing re-
lationships which hold for a single locus. However (IX-4) will enable us to assert that
these relationships also hold for the whole phenotype, so that we are accomplishing
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more than we seem to be. However we must first do something about the term E(e).
This will be the mean of the environmental effects on all members of the population. It
is often conveniently disposed of by assuming that it is zero. This does not involve any
extra assumption. Consider expression (IX-2) to see this point: we might assume that
the effects at (say) the first locus were 9, 7, and 6 for AA, Aa, and aa while the mean
environmental effect was (say) 2.3. But how would this differ from assuming that the
effects of genotypes at the first locus were 11.3, 9.3, and 8.3 with a mean environmental
effect of zero? In fact, both schemes make the same prediction of the phenotype of any
particular genotype. We have simply removed 2.3 from the postulated environmental
effect in each individual, only to add it to the postulated contribution of the first locus.

We could have as easily moved any amount we wanted to from one locus to another.
In assuming that E(e) = 0 we make no restrictive assumption. The reader who is
troubled by the sleight-of-hand involved here may take comfort in the realization that
we actually need not go through the procedure at all. All of the relationships we inves-
tigate involve the effects on the mean phenotype of a given genetic change. So we are
actually investigating differences between the means under two situations. The implicit
assumption is that we have changed only the genotypes and not the environments. That
in turn requires that the environmental effects, or at least their mean, be independent of
the genotypic effects. Then writing (IX-1) as P = G + E we have

E(P∗)−E(P) = E(G∗)− E(G) + E(E)−E(E) = E(G∗)−E(G), (IX-5)

where the asterisk denotes the population after some genetic change. Thus we can ignore
the environmental effects in computing changes in the mean, provided our assumptions
are satisfied.

INBREEDING EFFECTS. We have seen that we can gain insight into a multi-locus trait
by considering one locus at a time. If we have a single locus with two alleles, and the
contributions of AA, Aa, and aa to the phenotype are respectively a11, a12, and a22, then
the contribution of this locus to the mean is

E(g) = P a11 + Q a12 + R a22 (IX-6)

where P, Q, and R are the genotype frequencies. We are interested in the effects of in-
breeding on the population mean phenotype. When the population has gene frequency
p of A and inbreeding coefficient f , then using our standard genotype frequency formu-
las given in (V-2), and discovered by Sewall Wright (1921a):

E(g) = [p2(1− f ) + p f ] a11 + 2p(1− p)(1− f )a12 + [(1− p)2(1− f ) + (1− p) f ] a22

= p2a11 + 2p(1− p)a12 + (1− p)2a22 + f p(1− p) [a11 + a22 − 2a12].
(IX-7)
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The first three terms, which lack f , are simply the mean contribution in an outbred
population. Note that f enters into (IX-7) linearly, with no terms in f 2. This means that
each locus has a mean contribution of the form A+ B f , where the gene frequencies enter
into A and B. Then the overall phenotypic mean is of the form ∑ A + f (∑ B), which will
also be linear in f . Thus we have the general result that the mean phenotype is expected to
be linearly related to the inbreeding coefficient f .

But in which direction should the phenotype be expected to change? What will be
the sign of ∑ B? It is much less easy to come up with a general rule, but quite often ∑ B
is negative. Note that the quantity in brackets in the last term of (IX-7) is

[a11 + a22 − 2a12] = 2
[

a11 + a22

2
− a12

]
. (IX-8)

If a12 is equal to the average of a11 and a22, in other words if the heterozygote contribution
is the average of the two homozygote contributions, then this quantity is zero. When
a12 exceeds this average, then the mean declines with inbreeding (note the plus sign
preceding this term in (IX-7)). When a12 is less than the average, inbreeding raises the
population mean. This refers to a single locus only: the general picture will be that
inbreeding will increase the mean contribution at some loci and decrease it at others.
The net effect of inbreeding will depend on the overall sign of ∑ B, there being no
reason to expect B always to have the same sign. However there does appear to be a
vague generalization available: If the trait is positively correlated with vigor, size, or
fitness, inbreeding tends to reduce it. It seems that the heterozygote tends to be closer
to the higher homozygote, so that B tends on average to be negative.

This observation was made in the early years of the century, by the pioneering corn
geneticists E. M. East and D. F. Jones (1919), and G. H. Shull (1908). East and Jones
proposed alternative theories of the occurrence of inbreeding depression. East (1936) fa-
vored the view that the individual loci connected with yield in corn were overdominant.
Jones (1917) proposed an alternative hypothesis that the individual loci tended to have
the allele with the higher homozygote be dominant. There is no way of distinguishing
these hypotheses simply from examination of the mean: both predict inbreeding depres-
sion, and values of the aij can be chosen under either hypothesis to predict any degree of
inbreeding. The controversy over these two views continued for many decades, taking a
biochemical form in the arguments of Muller (1950) and Fincham (1972). It is a curious
fact that East and Jones were colleagues and close collaborators at Harvard for many
years. Their work and Shull’s laid the basis for the spectacular success of hybrid corn in
the American midwest in the 1930’s. I suspect that the fascination with genetic effects
of inbreeding in the early 1900s owed something to the fact that Mendelian genetics had
explanations for it, while in pre-Mendelian theories it had no explanation.

The qualification which must be made to this picture is that we assumed that there is
no change of gene frequency during inbreeding, which is to say that there is no selection.
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Of course formulas (V-2) do not assume that gene frequencies remain at p in any one
inbred line: they only assume that the gene frequency is on average p over all inbred
lines, if there are a great many of them. This amounts to a no-selection assumption. But
we have invoked the correlation of the trait with fitness to obtain an expected direction
for inbreeding changes! So there is quite likely to be natural selection on the trait itself
during inbreeding, resulting in a higher mean phenotype than predicted here, though
probably still depressed somewhat. In addition we have seen in the previous chapter
that selection at nearby loci (associative overdominance) will tend to retard genetic drift
in finite populations. This phenomenon will also occur in most lines during the course
of inbreeding, and tend to have a further effect in slowing the course of inbreeding
depression.

MEANS OF CROSSES AND BACKCROSSES. The second derivation we shall do
concerning means involves the related question of crosses between pure lines. As in the
case of inbreeding, it looks at the mean contribution to a character from a single locus.
The relationships that are found turn out to apply for any number of loci, as long as the
genetic contribution to the character is determined by the sum of effects of the individual
loci.

Suppose that we have two completely inbred lines. If one is fixed for A and the
other for a, the mean contributions of this locus are P1 = a11 and P2 = a22 respectively.
If we now cross these lines to get an F1 strain, the mean contribution in that strain is
F1 = a12, since it is necessarily composed entirely of heterozygotes. Therefore there
is no prediction that we can make of the F1 mean from the mean of the two parental
populations, since knowing a11 and a22 does not allow us to predict a12 as long as there
are no general rules concerning dominance. One might think that there would be no
further generalizations which could be made. But consider the F2 and the two possible
backcrosses. In the former case the genotypic composition is 1/4 AA, 1/2 Aa, and 1/4
aa, so that

F2 = 1
4 a11 +

1
2 a12 +

1
4 a22

= 1
2

(
1
2 a11 +

1
2 a22

)
+ 1

2 a12

= 1
2

(
1
2 P1 +

1
2 P2

)
+ 1

2 F1.

(IX-9)

This linear relationship holds for the contributions at each locus separately, and therefore
will also hold for the overall phenotypic means as well. Now we have a prediction of
the F2 phenotypic mean from those of the P1, P2, and F1 strains. In effect, what it tells
us is that if we consider the F1 mean as well as the “midparent” (the average of the two
parental strains), that although the F1 may differ from the midparent, the F2 will have
moved halfway back toward the midparent. This is commonly found in hybrid corn:
where the F1 is far superior to the original parental lines, the F2 falls far back down
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towards the parent lines’ performance, primarily as a result of the formation of inferior
homozygotes.

Noting that the F2 is in Hardy-Weinberg proportions, the F3 will be the same as the
F2, provided that it is formed by cross-fertilization of F2 individuals. If it is formed by
selfing, the decline toward the midparental value will continue. The backcrosses BC1 =
F1 × P1 and BC2 = F1 × P2 follow similar rules, e.g.

BC1 =
1
2

a11 +
1
2

a12 =
1
2

P1 +
1
2

F1. (IX-10)

so that each backcross should have a mean equal to the average of its parents’ means,
unlike the F1 and the F2.

Our entire derivation has assumed that A is fixed in one parent and a in the other, but
the resulting rules are far more general. If the same allele is fixed in both populations,
the same rules are easily seen to apply (since for that locus the contributions to P1, P2,
F1, etc. are all equal). But the results also generalize to the case where both P1 and P2
are not fixed, but are segregating an Hardy-Weinberg proportions. If the frequency of A
in P1 is p1 and if it is p2 in P2, then

P1 = p2
1 a11 + 2p1(1− p1) a12 + (1− p1)

2 a22

P2 = p2
2 a11 + 2p2(1− p2) a12 + (1− p2)

2 a22

F1 = p1p2 a11 + [p1(1− p2) + p2(1− p1)] a12 + (1− p1)(1− p2) a22

(IX-11)

and since the F2 will be in Hardy-Weinberg proportions with gene frequency p3 =
(p1 + p2)/2 the F2 mean will be

F2 =

[
1
2
(p1 + p2)

]2

a11 + 2
[

1
2
(p1 + p2)

] [
1− 1

2
(p1 + p2)

]
a12 +

[
1− 1

2
(p1 + p2)

]2

a22

(IX-12)
Some algebra will then convince the reader that

F2 =
1
2

(
1
2

P1 +
1
2

P2

)
+

1
2

F1. (IX-13)

Similarly the backcross and F3 relationships can be established in this case as well.
We expect these relationships among crosses of lines to hold very generally, as long

as the initial populations are in Hardy-Weinberg proportions (although at different gene
frequencies), and as long as the trait is determined additively by the genes. In fact, the
fit of the F2 and backcross means to these predictions may be used to check on which
scale the genes are most nearly additive, for that will be the scale on which the fit is best
(all else being equal, as it never is).
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That there is a close relationship between these results on the crosses of strains
and the previous results on inbreeding depression may be seen by considering self-
fertilization starting with F2 individuals, who constitute a population in Hardy-Weinberg
proportions. We can predict the means of the self-fertilized F3, F4, etc. either from the
above approach or by computing an f . It will be found that the self-fertilized population
has a mean which moves halfway towards its ultimate limit each generation, a result
wholly compatible with (IX-7).

The rules concerning means appear to have been established by Serebrovsky (1936a,
1936b) The linearity of the inbreeding effects when expressed as a function of f is proba-
bly due to Sewall Wright. We have already commented on the history of the controversy
over the causes of inbreeding depression. When two pure (i.e., inbred) lines are crossed,
it is frequently found that the hybrid is superior to either. This fact, well-known in the
19th century, is in effect an observation of inbreeding depression in reverse, and the
same two classes of hypothesis (overdominance and dominance) have long been applied
to explain it. A nomenclatural point is in order here. Contrary to much contemporary
usage, heterosis, a term defined originally by Shull (1914) is the phenomenon of hybrid
vigor, irrespective of whether it is caused by dominance or overdominance. Overdomi-
nance (Hull, 1945) is the superiority of the heterozygote at a single locus, and is only one
possible explanation for heterosis.

IX.4 Additive and Dominance Variance

VARIANCES AND COVARIANCES. The additivity of our model of the phenotype
has enabled us to analyze means one locus at a time. A similar simplification is possible
with regard to variances, but requires one more assumption. Means are additive over
loci whether or not the effects of the loci are independent of each other, but the variance
is only additive over loci if the individual loci effects are uncorrelated. This will hold if
the loci are all jointly at linkage equilibrium with respect to each other, for then knowing
the contribution which one locus makes to the phenotype tells us nothing about the
genotype (hence about the contribution) at any other locus. Then the locus effects are
independent, and hence must also be uncorrelated. So under the assumption of linkage
equilibrium we can write

Var (P) = Var (g1) + Var (g2) + · · ·+ Var (gn) + Var (e). (IX-14)

With respect to the environmental contribution we have implicitly assumed that it is un-
correlated with any of the genetic effects. Thus we have now made use of Assumptions
No. 2 and No. 3.

A similar additivity holds with regard to the covariances between relatives, but before
we comment further on that it may be useful to remind the reader of the meaning of
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covariance, and its connection to correlation. Recall that the variance is defined as the
expectation of the squared deviation from the mean:

Var (X) = E[(X − μX)
2] (IX-15)

μX being the expectation of X. The covariance corresponds to this in a sense: it is the
expectation of the product of deviations of two variables, each from its own mean:

Cov (X, Y) = E[(X − μX)(Y − μY)]. (IX-16)

If X and Y are positively related, this means that when X is above its mean Y will also
tend to be above its mean, and when X is below its mean Y will also tend to be below
its mean. So in this case the product (X − μX)(Y − μY) will usually be a product of two
positive or of two negative quantities, so that its expectation will tend to be positive.
This can be seen from examination of Figure 9.6 (below), which shows a scattergram
plot of a large sample from a distribution (in fact a bivariate normal distribution) in
which X and Y have a positive covariance. In this case the axes are the means, so that
we can easily see whether X or Y exceed their means. There are far fewer points in the
upper left and lower right quadrants than in the other two, so that only will the product
(X − μX)(Y − μY) be negative.

We will make use of several properties of the covariance:

1. The covariance of X with itself is its variance. To see this, set Y = X in (IX-16)
and compare the result to (IX-14).

2. If Y is completely independent of X, then their covariance is zero. A detailed proof
of this will be found in the better statistics texts, but we can make this intuitively
plausible by pointing out that for each possible value of X, that is, for each possible
value of X − μX, all possible values of Y− μY are possible, their relative probabili-
ties being unchanged by our knowledge of X. So, the average contribution to (IX-16)
from this category of outcomes will be (X− μX) times the expectation of (Y− μY).
But the latter must be zero, since it is E(Y) − E(μY) = E(Y) − μY = μY − μY.
So each possible value of X makes on average a zero contribution to (IX-15), and it
follows from this that the covariance is zero.

3. If X = a + b and Y = c + d, then Cov (X, Y) = Cov (a, c) + Cov (a, d) +
Cov (b, c) + Cov (b, d). In short, the general result is that the covariance of two
sums is the sum of all possible covariances between a term from one sum and a
term from the other. This can be shown using (IX-15), but we will not do so here.
A particular case which we will use often is when a is independent of d and b is
independent of c. In other words, the case where only quantities having the same
position in the sum are not independent. In this case, we of course have

Cov (X, Y) = Cov (a, c) + Cov (b, d). (IX-17)
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The context in which this will arise is when the sum represents the sum of effects
from different loci, where the loci are in linkage equilibrium, and where X and Y
are the phenotypes in two relatives. Then a and b will be independent, so that a
and d, which are effects at different loci in different individuals, are also going to
be independent. Likewise since c and d are independent, so also will be c and b.
The only nonzero terms will be the covariances between effects at the same locus
in different individuals.

Finally, we should recall the definition of the correlation coefficient between two
variables, X and Y. It is the ratio of their covariance to the product of their standard
deviations:

ρXY = E

[
(X − μX)

σX

(Y − μY)

σY

]
= Cov

(
(X − μX)

σX
,
(Y− μY)

σY

)
(IX-18)

We can therefore think of the correlation coefficient as being the covariance of the two
variables after they have been standardized, that is, after their means have been scaled
to zero (by subtraction of μ) and their standard deviations to 1 (by division by σ). It is
an interesting fact that the correlation coefficient can never be greater than 1 or less than
-1. This can be shown using the Cauchy-Schwartz Inequality. It is relatively easy to see
that the correlation of a variable X with itself will be 1, since it will be the covariance of
the standardized variable with itself, which is in turn the variance of the standardized
variable, which is one.

PHENOTYPIC VARIANCE. One can write a straightforward expression for the variance
of a phenotype P as a function of the individual genotype effects. Since the loci and the
environmental effect are all assumed to be independent, the variance will be a sum of
individual locus variances plus the variance of the environmental effect. Looking at the
effect of a single locus with two alleles„ with the contributions of AA, Aa, and aa to the
phenotype being a11, a12, and a22, we find that its variance is straightforwardly

Var (g) = E(g2)− [E(g)]2

= p2a2
11 + 2p(1− p)a2

12 + (1− p)2a2
22

− [p2a11 + 2p(1− p)a12 + (1− p)2a22]
2.

(IX-19)

This is a straightforward but somewhat dull formula which seems to offer few insights.
One could go forward in a similar plodding fashion to compute complicated formulas
for covariances among relatives. This would not only be very difficult, but would not
necessarily be useful. After all, the resulting formula for the covariances between the
overall phenotypes are going to depend on all of the genotype effects ajk plus all of
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the gene frequencies, plus an unknown environmental variance. This is a large number
of quantities. If the covariances among relatives are complicated functions of many un-
known parameters, there is little hope that we could predict anything about them, or use
any of them to predict other quantities such as the response to artificial selection. Since
we would not know the underlying parameters, the formulas involving covariances,
variances, and response to selection would be at best of academic interest.

VARIANCE COMPONENTS. It turns out that the situation is not so gloomy as this.
All of these observable quantities (variances, covariances, and selection responses) will
depend on the unknown parameters, but only through three intermediate quantities. These
are written VA, VD, and VE, and are known as the additive, dominance, and environ-
mental variances. They are variance components, because the variance of the phenotype is
their sum VA + VD + VE.

The various variances and covariances will depend on the multitude of unknown
parameters only insofar as these affect VA, VD, and VE. The same is (approximately)
true of the selection response, which we discuss later. The implications of these facts
are striking. Suppose we had (say) 6 covariances between different kinds of relatives,
say between full sibs, half-sibs, aunt-nephew, mother-offspring, grandparent-offspring,
and first cousins. If all of these depend only on VA, VD, and VE, we should be able to
use three of the covariances to estimate these three quantities, then use those in turn to
predict the other covariances. Which is to say that there are relationships among various
covariances, since all depend on only three quantities under our admittedly idealized
model. We therefore have some hope of using some covariances to predict others, or
even to predict the response of a character to artificial selection.

This has been the great strength of quantitative genetic theory in animal and plant
breeding: the ability to estimate these three variance components from covariances
among relatives, then use them to predict the response to different selection schemes
with at least modest reliability. The flip side of this happy picture is that once we have
estimated the three variance components, further observations of different covariances
will only refine those estimates and will not lead us to knowledge of the individual
genotype effects or gene frequencies. For any given set of values of VA, VD, and VE there
are vast numbers of combinations of gene frequencies and genotype contributions that
will yield these same three values. So we can make little progress in working out the
genetics of the trait by observing variances and covariances. The very robustness of the
predictions of quantitative genetic theory means that the quantities being predicted will
provide no insight into the underlying causes of the variation. Perhaps this is the version
of the Uncertainty Principle appropriate for quantitative genetics.

ADDITIVE EFFECTS. Having revealed our goal, we must now show that these three
quantities can in fact be obtained. We will start by considering the three genotype effects
a11, a12, and a22 at a two-allele locus. The first step will be to express each of them as a
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sum of three parts. The quantity aij will be replaced by μ + αi + αj + δij. Our objective
will be to find values of μ, α1, α2, and of δ11, δ12 and δ22 such that three conditions hold:

1. The αi account for as much as possible of the variance in the quantity aij in the
particular population we consider,

2. The contributions of the four terms to the quantity aij have zero covariance, so
that they are uncorrelated (that is, if we could somehow pick random individuals
and look at this locus, and record for each individual the four quantities μ, αi,
αj, and δij, we will find zero covariance between these quantities over the whole
population, and

3. Each of the last three terms αi, αj, and δij has mean zero.

The third condition immediately allows us to determine the value of μ. It is the same
for all three genotypes at the locus, and must therefore be the population mean of the
aij:

μ = p2a11 + 2p(1− p)a12 + (1− p)2a22. (IX-20)

The more difficult task is the determination of α1 and α2. Once they are determined,
we can get the last term δij by subtraction by the simple requirements that the four
terms add up to aij in each genotype. Thus the bulk of our derivation goes into getting
α1 and α2. We will do this by a rather indirect regression technique. The reader who
gets a bit overwhelmed by all the covariances in this derivation may wish to skip to the
next subsection, although a careful study of this derivation will pay off in terms of an
understanding of what the variance components VA, VD and VE do and do not mean.

The following three equations obviously hold, by the definitions of our quantities:

a11 = μ + α1 + α1 + δ11

a12 = μ + α1 + α2 + δ12

a22 = μ + α2 + α2 + δ22.

(IX-21)

Now note that these equations can be rewritten in the shorthand form

aij = μ + 2α2 + x(α1 − α2) + δij, (IX-22)

provided that x is a quantity which is 2 when the genotype is A1A1, is 1 when it is A1A2,
and is 0 when the genotype is A2A2. In short, x simply tells us how many A1 alleles
there are in the genotype at this locus. Equation (IX-22) may be seen as telling us what
is the dependence of genotype contribution a on the allele count x, the αi as determining
the coefficients of this regression equation, and the δij as the deviations of the aij from the
regression prediction μ + 2 α2 + x(α1− α2). What we are going to do is to determine the
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αij by carrying out a least squares fit of the aij to this regression line. There is such a re-
gression. Imagine sampling individuals from our population and recording for each the
x and the quantity aij. We would find that when our “sample” was the whole population,

p2 of the time they were (2, a11),

2p(1− p) of the time they were (1, a12),

and (1− p)2 of the time they were (0, a22).

So we do indeed have two random variables x and a.

Relation to regression. It may seem rather arbitrary to choose the least squares
criterion of fit. After all, we are trying to satisfy the three criteria stated above. What
do these have to do with a least-squares regression? In fact, everything. For knowing
the prediction terms μ + 2 α2 + x(α1 − α2) are chosen by a least squares fit to the aij
guarantees us that all three conditions will be met if the αi are determined in this way.
For fitting regression lines by least squares is well-known to guarantee the following
properties:

1. The regression prediction accounts for as much of the variance in the dependent
variable as possible,

2. The deviation of the points from the regression line (the residual) is uncorrelated
with the regression prediction, and

3. The regression line passes through the point (x̄, ȳ) where both variables have their
mean values, and the mean of the deviations from the regression line is zero.

The first condition is clearly the same as the first of our previous three requirements.
The second guarantees us that the δij will be uncorrelated (that is, have zero covariance)
with the quantity μ + αi + αj which is our regression prediction. We will still need to
establish that the two α’s in an individual are uncorrelated but this will be easy. The third
condition is actually our previous third requirement in disguise. For the expectation (the
population mean) of x is simply

E(x) = 2× p2 + 1× 2p(1− p) + 0× (1− p)2

= 2p.
(IX-23)

The regression line at x = 2p will have height

μ + 2α2 + 2p(α1 − α2) = μ + 2pα1 + 2(1− p)α2. (IX-24)
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Since this must be equal to the population mean of the aij, which we already know to
be equal to the constant μ, we must have, as a result of determining the αi by the least
squares regression, that (dropping the 2)

p α1 + (1− p)α2 = 0. (IX-25)

But consider the first term αi in the sum αi + αj. It is dependent only on the identity of
the maternally-derived allele Ai. A fraction p of the time that allele is A1 and 1− p of the
time it is A2. So (IX-23) tells us that the mean value of αi, which will be pα1 + (1− p)α2
is zero. By an exactly similar argument the mean value of αj will also be zero. And since
the deviation of aij from the regression prediction is δij, this quantity too has expectation
zero over the whole population. So we have now nearly satisfied our original three
conditions by choosing the α’s by least squares. All that remains is to show that the
two terms αi and αj are not correlated. This is easily seen to be true, as a consequence
of Hardy-Weinberg proportions. The size of αi (that is, whether it is α1 or α2) depends
only on the allele identity of Ai (which is either A1 or A2). Similarly αj depends only
on the identity of Aj. But by the Hardy-Weinberg law these are independent, since
the population results from random mating. So αi and αj are independent and hence
uncorrelated.

Now that we have established that the least squares procedure will fulfill our require-
ments, all that remains is to carry it out. Figure 9.3 shows the regression in diagrammatic
form. It is well known in statistics that the least squares solution to the slope of the re-
gression line is given by

b = Cov (y, x)/Var (x) (IX-26)

where y is the dependent variable. Thus to determine the slope, which will be α1− α2 by
(IX-22), we must evaluate the covariance of a and x and the variance of x. Our “sample”
is the whole population, so that we compute these quantities as expectations over the
population, the various outcomes being in their expected proportions. The gene dosage
x is the number of copies of the A allele. It has values 2, 1, and 0. The variance of x is
easily determined:

Var (x) = E(x2)− [E(x)]2

= p2 × 4 + 2p(1− p)× 1− (2p)2

= 2p(1− p).

(IX-27)
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Figure 9.3: The regression of a on x. The line is determined by a least squares
fit, weighting each point by its population frequency. The dotted arrows show
the fitted additive values μ + α2 + α2, μ + α1 + α2, and μ + α1 + α1. The solid
arrows show the residuals.

The covariance of a and x requires a bit more computation:

Cov (a, x) = E(ax)−E(a) E(x)

= 2× a11(p2) + 1× a12[2p(1− p)] + 0× a22(1− p)2 − μ(2p)

= 2p2a11 + 2p(1− p)a12 − 2pμ.

(IX-28)

Now since we are requiring that α1 − α2 = Cov (a, x)/Var (x) it follows that (α1 −
α2)Var (x) = Cov (a, x) so that our equation for the slope of a least squares fit is

2p(1− p)(α1 − α2) = 2p2a11 + 2p(1− p)a12 − 2pμ, (IX-29)

or
(1− p)α1 − (1− p)α2 = pa11 + (1− p)a12 − μ. (IX-30)
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The slope is one of the two results of doing a least squares regression. The height of the
line is the other, and it can be found from the requirement that the line pass through
the point (x̄, ȳ). We have already seen that this gives us equation (IX-25). Adding that
equation to (IX-30) we get

α1 = pa11 + (1− p)a12 − μ. (IX-31)

and using (IX-28) together with (IX-19) we find that

α2 = pa12 + (1− p)a22 − μ. (IX-32)

Now we have found the slope and height of our regression of a on x, and determined
α1 and α2 from them. The equations for the δij follow by substituting (IX-20), (IX-31) and
(IX-32) into (IX-22). It turns out that

δ11 = (1− p)2 (a11 − 2a12 + a22). (IX-33)

The expressions for δ12 and δ22 are the same, but with the (1− p)2 replaced, respectively,
by −p(1− p) and p2.

One interpretation of (IX-31) and (IX-32) is worth noting. Since p of the A1 alleles
occur in A1A1 homozygotes, and the rest in A1A2 heterozygotes, (IX-31) represents the
difference between the average contribution at the A locus in an A1-bearing individual,
and the population mean. So it can be thought of as the average excess of A1-bearing
individuals over the population mean. Similarly (IX-31) shows that α2 is the average
excess of those individuals in which a randomly-chosen A2 allele is to be found. This
is strongly reminiscent of our results for natural selection in chapter II, where the mean
relative fitness w̄A entered in. In fact, equation (II-35) showed that

Δp = p w̄A/w̄ − p = p (w̄A − w̄)/w̄ (IX-34)

which shows the quantity w̄A − w̄ playing an important role. It is precisely the average
excess of allele A if the phenotype is the relative fitness w.

Now we have found the quantities μ, αi, αj, and δij for each genotype. But we never
made clear why breaking the genotype contribution aij into these four uncorrelated
parts was worth doing. It now remains for us to show that these can be used to provide
definitions of the quantities VA, VD, and VE and insight into their properties.

We have done the above derivation for a two-allele case, but the results for multi-
ple alleles are entirely analogous. The least squares fit is obtained by minimizing the
weighted mean square of the residual:

Q = ∑
i

∑
j

pi pj(aij − μ− αi − αj)
2 (IX-35)
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and resulting formulas for the αi,

αi = ∑
j

pj aij − μ (IX-36)

have exactly the same interpretation as average excesses.

ADDITIVE AND DOMINANCE VARIANCES. We now know that each individual’s
phenotype could, if we knew the precise genotype, be partitioned into a series of additive
components. Suppose that we write the genotype as Ai AjBkBlCmCn and the correspond-
ing breakdown of the phenotype as

P = μ + αi + αj + δij + μ′ + α′k + α′l + δkl + μ′′ + α′′m + α′′n + δmn + e (IX-37)

where the primes distinguished between the different loci, and e is the environmental
contribution to the phenotype. We can now rearrange this into four groups of terms:

P = (μ + μ′ + μ′′) + (αi + αj + α′k + α′l + α′′m + α′′n) + (δij + δkl + δmn) + e (IX-38)

The first group of terms are constants which do not depend on the genotype. These
will not contribute to the variance of the phenotype. This first group is the estimate of
the phenotype which we would make if we did not know the genotype: it is simply the
population mean. The second group refines this estimate by incorporating the average
effects. These first two groups of terms, taken together, make an estimate of the pheno-
type based only on genes taken one at a time. This estimate is called the breeding value.
The variance of the breeding value will be entirely due to the α’s, of course. This vari-
ance is called the additive variance, and written VA. The next group of terms adds to the
estimate the predicted interactions between the two gene copies at each locus. Each of
the individual terms δij is called a dominance deviation. There is no conventional term for
the sum of the δ’s. The sum of the dominance deviations has a variance called the domi-
nance variance, VD. The environmental effect e has a variance known as the environmental
variance, VE.

Notice that we have set up all the terms in (IX-35) to be uncorrelated with each other.
This means that the four groups of terms must also be uncorrelated, so that in effect
phenotype has been divided into for parts which are uncorrelated:

P = μ + A + D + E (IX-39)

which means that the variance of this sum is the sum of their variances:

Var (P) = VA + VD + VE (IX-40)

since the mean μ does not vary from individual to individual. We have now succeeded
in showing that the variance in phenotype can be divided into three parts. If by some
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feat of genomics the genotype of each individual became known, we could compute all
the αi and δij and obtain these three variance components straightforwardly. In prac-
tice this is unlikely, but as we shall see in the next section, the covariances (and hence
the correlations) between relatives can be computed from these three variance compo-
nents. Hence we can reverse the process and estimate the variance components from the
covariances of relatives.

The dominance variance. It is nevertheless instructive to find the formulas
computing the variance components VA and VD from the genotype effects aij, for then
we can get a picture of how various patterns of dominance affect these components.
The additive variance VA is the variance of a sum of terms, two for each locus and all
uncorrelated. The dominance variance VD is also the variance of a sum of uncorrelated
terms, one per locus. Thus each of these variances is itself a sum of individual locus
additive (or dominance) variances. Let us compute from the aij and the gene frequency
the additive and dominance variances at a single locus for the two-allele case.

Each of the terms αi has is an α1 with probability p and an α2 with probability 1− p.
The variance of one term is thus

Var (αi) = p α2
1 + (1− p) α2

2 (IX-41)

since the mean of αi is known to be zero by (IX-25), which was in turn a byproduct of
our way of defining the α’s. We can now substitute from equations (IX-31) and double
the result (since there are two α’s for this locus, each with variance given by (IX-41)).
After some algebra we find that

Var (αi + αj) = 2p(1− p) [(pa11 + (1− p)a12) − (pa12 + (1− p)a22)]
2, (IX-42)

after using (IX-20) to eliminate μ.
The dominance deviations also have a mean of zero, so that

Var (δij) = p2 δ2
11 + 2p(1− p) δ2

12 + (1− p)2 δ2
22

= p2(a11 − μ− α1 − α1)
2 + 2p(1− p)(a12 − μ− α1 − α2)

2

+(1− p)2(a22 − μ− α2 − α2)
2

(IX-43)

which after a similar, but larger amount of algebra turns out to be

Var (δij) = p2(1− p)2(a11 − 2a12 + a22)
2. (IX-44)

This last formula has an interesting property. Suppose that the genotypic effect at this
locus were actually additive, that is, that the heterozygote effect a12 was the arithmetic
mean of the two homozygote effects. Then a12 = (a11 + a22)/2 and it requires only
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Table 9.1: Fraction of all genetic variance at a locus due to dominance vari-
ance, where p is the frequency of a completely dominant allele.

p fraction
0.1 0.053
0.2 0.111
0.3 0.176
0.4 0.25
0.5 0.333
0.6 0.429
0.7 0.538
0.8 0.667
0.9 0.818

a few simple steps to see that (IX-44) is zero. So when there is additive gene action
within a locus there is no dominance variance. Since the genotypic contribution to
the total phenotypic variance is VA + VD, we find that in this case all of the genotypic
variance will be additive variance. So dominance variance disappears when there is no
dominance, exactly as its name implies. Now suppose that instead the locus showed
complete dominance of the A1 allele. Then in formula (IX-42) we have a11 = a12, so that
it reduces to

Var (αi + αj) = 2 p(1− p)3 (a12 − a22)
2. (IX-45)

A similar calculation is easily done with the dominance variance. Now note that (IX-
44) does not disappear when there is complete dominance. In fact, if we compute the
fraction of the genotypic variance which is due to dominance variance, we find the
numbers given in Table 9.1. Interestingly, when the dominant allele is rare there may
be mostly additive variance. This corresponds to the observation that we will be hard-
pressed to tell whether a rare dominant allele is in fact dominant, since it appears so
rarely in homozygotes. So in this respect as in others the behavior of the rare allele in
heterozygotes is all that we need know.

Note also that the average dominance over loci is not meaningful here. If some
loci show complete dominance, others complete recessivity, such that in some average
sense there is no dominance, there will still be dominance variance in existence. For the
dominance variance VD is the sum of terms from individual loci, and for VD to be zero
(IX-42) shows us that there can be no dominance at any locus.

We thus have found from these formulae that the amount of dominance variance is
a poor indicator of the type of gene action at the individual loci. There can be mostly
additive variance even when all loci show complete dominance. It would be a brave
quantitative geneticist indeed who would make strong statements about gene action
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based on the relative sizes of VA and VD. While they may be useless for this purpose
they will be of great help in analyzing covariances, to which we now turn.

IX.5 Covariances Between Relatives

Now we are ready to compute covariances between relatives. We imagine ourselves to be
dealing with a series of pairs of individuals. In each pair the two individuals are relatives
of a specific sort, such as an individual and its grandmother. If we measure a given
phenotype on all individuals, we can compute the covariance between the phenotypes
of relatives. Each phenotype is a sum of individual locus effects and an environmental
effect, so that calling the phenotypes in the two relatives X and Y we have

X = g1 + g2 + · · ·+ gn + e

Y = g′1 + g′2 + · · ·+ g′n + e′.
(IX-46)

Now we have already seen that the covariance of two sums is the sum of all possible
pairwise covariances involving one term from one sum and one term from the other.
Consider some of these terms. Recall that we are assuming that the environmental effect
is independent of the genotype, so that terms like Cov (gi, e′) or Cov (g′i , e) must be zero,
since if e is independent of the genotypic effect gi of a locus in the same individual, it
must all the more certainly be independent of the genotypic effect g′i of that locus in a
relative. Likewise the environments were assumed independent in the two individuals,
so that Cov (e, e′) is also zero. This assumption is not very realistic in many cases, but
we make it here for heuristic reasons.

This leaves us with terms involving one g and one g′. Now recall that we also as-
sumed linkage equilibrium. This means that the effects of two different loci in the same
individual, gi and gj, are independent. This implies that all terms of the form Cov (gi, g′j),
which involve both different loci and different individuals, should be zero. If gi and gj
are independent, then surely gi and g′j are too. We are left only with those terms which
involve the same locus in the two individuals:

Cov (X, Y) = Cov (g1, g′1) + Cov (g2, g′2) + · · ·+ Cov (gn, g′n) (IX-47)

We are now in a position to compute the covariance locus by locus.
In any particular pair of individuals, if we know whether they are relatives, we can

compute two coefficients:

• f1, the probability that a random copy of a gene at a locus is identical by descent
to one of the two copies at that locus in the other individual.

• f2, the probability that both of the two copies at a locus are identical by descent,
each to one of the two copies at that locus in the other individual.
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If we knew that both of these coefficients were zero, then there would be no identity
by descent between the two individuals. The contribution at a locus in one individual
would be αi + αj + δi j and in the other individual αk + α� + δk�. The indices i, j, k, and �
would be the result of independent random sampling of four genes from the population,
so that there would be no identity by descent between the two individuals at this locus.
Some of the i, j, k, and � could be the same, by accident, but not owing to identity by
descent.

On the other hand, if we knew that f2 = 1, then the contribution from the locus
in both individuals would be αi + αj + δij. In this case Cov (gi, g′i) would involve the
covariance of a quantity with itself. This is precisely the variance of the quantity, as
we have already noted. But that in turn is the contribution to the variance VA + VD at
this locus. (Note an assumption that we have implicitly made: by assuming that each
individual is the product of random mating, we have assumed that the two genes in the
same individual are not identical by descent. That in turn means that if each of the two
genes in one individual are identical by descent to a gene in the relative, they must be
identical by descent to two different genes in that relative. Thus if the first individual is
genotype Ai Aj, the second must be either Ai Aj or AjAi. We are not allowing both the
Ai and the Aj to be identical by descent to the same gene.)

If f1 = 1 but f2 = 0, the genotypes must be Ai Aj and Ai Ak, or Ai Aj and Ak Aj, or
some such. Then the genotype contributions at the locus are of the form αi + αj + δij
and αi + αk + δik. In the covariance these sums, the only terms which could be nonzero
are Cov (αi, αi) and Cov (δij, δik). The latter term is in fact zero, for it turns out that the
dominance deviations of two genotypes are uncorrelated, even if they share one allele in
common (the other being chosen at random). This can be proven using (IX-33). In fact
terms of the form

δ11 [ pδ11 + (1− p)δ12 ] (IX-48)

are always zero, since this equals

δ11 [p(a11 − μ− 2α1) + (1− p)(a12 − μ− α1 − α2)]

= δ11 [pa11 + (1− p)a12 − μ− α1 − pα1 − (1− p)α2]
(IX-49)

which is easily shown to be zero using (IX-25) and (IX-31). Continuing in this fashion
one can show that the covariance of δij with δik is zero. So the covariance at the locus
is simply Cov (αi, αi) = Var (αi). But this is half the contribution of this locus to the
additive variance VA.

In all but the simplest cases some loci will have two, some one, and some no genes
in the first individual which are identical by descent to genes in the second individual.
We now make use of the following property of covariance: if variable x has probability
p1 of being the random quantity x1, and probability p2 of being the random quantity
x2, then its covariance with anything else is simply Cov (p1x1 + p2x2, y) which can be
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shown to be equal to p1Cov (x1, y) + (1− p1)Cov (x2, y). In other words x has the same
covariances as the weighted average of the covariance of x1 with y and the covariance of
x2 with y, the weights being p1 and 1− p1.

Applying this to our situation where there are three possibilities, we can write the
covariance as

Cov (gi, g′i) = f1 V(i)
A + f2 V(i)

D . (IX-50)

where a quantity like V(i)
A is the contribution of locus i to the additive variance. Now we

need only use (IX-47) to add these over all loci to obtain

Cov (X, Y) = f1 VA + f2 VD (IX-51)

This is the result we have been striving for. It tells us the covariances between relatives
as a function of VA, VD, and two probabilities of identity by descent. Those in turn are
easy to compute for simple relationships.

CORRELATIONS. The formula for the covariance of relatives can easily be used to
find the correlation coefficient between the relatives. Recall that the correlation is simply
the covariance divided by the product of the standard deviations. In our model, each
relative is drawn from the population at random (although the two members of each
pair are not drawn independently). For example, if we are examining grandparent-
offspring pairs, it does not matter whether we choose the grandparents at random and
then find a grandchild of each one, or whether we choose the grandchildren at random
and then get a grandparent of each one: in either case if we were to consider the set
of grandparents by itself, it would in effect be randomly sampled from the population.
We are assuming that there are no evolutionary forces acting to change gene frequencies
or create disequilibria, so that even though the grandparents and grandchildren are
sampled from different generations, each group considered alone might just as well
have been sampled from the same generation. Which leads us to the conclusion that
the standard deviations of the trait in the two relatives will be the same, so that their
product will simply be the variance of the trait. Thus the correlation between relatives
will simply be the ratio of their covariance to the variance of the trait:

ρXY = Cov (X, Y)
/√

Var (X)Var (Y) = Cov (X, Y)
/

Var (X) (IX-52)

PARENTS AND OFFSPRING: HERITABILITY. Now we can use these formulas to
examine a specific relationship: that of parents and offspring. We have to compute the
coefficients in (IX-47) first. The coefficient of kinship between parent and offspring is
0.25 so the coefficient of VA is 1/2. Another way of seeing this result is to consider
the probability that a gene drawn from the offspring came from that particular parent,
which is clearly 1/2. The coefficient P2 is the probability that both genes in the offspring
are identical by descent to genes in the parent. This is impossible, since we are in effect
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assuming that there are no other pedigree paths connecting these two individuals. So
the second coefficient is zero. Then

Cov PO = 1
2VA

ρPO = 1
2

VA

VA + VD + VE

(IX-53)

The quantity VA/(VA + VD + VE) will appear repeatedly in this chapter: it is simply the
fraction of the variance in the trait which is additive variance. It is usually written h2

and is called the heritability. The name may be misleading, for h2 is not the fraction of
all variation which is due to genetic causes. That would be (VA + VD)/(VA + VD + VE)
and is sometimes called heritability in the broad sense.

FULL SIBS AND HALF-SIBS. If we have pairs of individuals which are half-sibs,
sharing (say) a common mother but different fathers, then the covariance is easy to
calculate. Once again, there is no chance that both genes in the half-sibs are identical by
descent. The chance that a given randomly-chosen gene in one half-sib is identical by
descent to a gene in the other is 1/4, for that is the probability that we have both chosen
the maternally-derived gene, and that that particular gene in the mother was passed to
the other half-sib. So

Cov HS = 1
4VA

ρHS =
1
4

VA

VA + VD + VE

= 1
4 h2.

(IX-54)

The covariance of full sibs is a bit more complicated. Choosing a gene from one sib, we
know that it came from one of the parents. The chance that that particular parent also
passed the same gene to the other sib is 1/2. So we have computed the first coefficient.
The second (P2) is the chance that both genes in one sib will be found in the other. A
moment’s consideration will show that the two events are independent (see Figure 9.4)
so that the second coefficient must be 1/4. So we can write

Cov FS = 1
2VA + 1

4VD

ρFS =
1
2

VA

VA + VD + VE
+

1
4

VD

VA + VD + VE

(IX-55)

Thus we see that the correlation between full sibs is greater than between parents and
offspring. This is only true to the extent that there is dominance variance in the trait.
Parents and offspring share half their genetic material. So do full sibs, but in addition,
full sibs have the possibility of getting (with probability 1/4) precisely the same diploid
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Figure 9.4: Diagram of the relationship of two full sibs.

Table 9.2: Covariances and correlations for different degrees of relationships.

Covariance Correlation

Parent-offspring 1
2VA

1
2h2

Half sibs 1
4VA

1
4h2

Full sibs 1
2VA + 1

4VD
1
2 h2 + 1

4VD/(VA + VD + VE)

Grandparent-offspring 1
4VA

1
4h2

Aunt/Uncle - Niece/Nephew 1
4VA

1
4h2

Dizygotic twins 1
2VA + 1

4VD
1
2 h2 + 1

4VD/(VA + VD + VE)

Monozygotic twins VA + VD h2 + VD/(VA + VD + VE)

Full first cousins 1
8VA

1
8h2

Unrelated individuals 0 0

genotype at a locus. Thus if there is an effect on the phenotype due not only to the genes
taken singly, but to the particular combination of two genes at a locus, this effect will be
shared by both sibs 1/4 of the time.

OTHER RELATIONSHIPS. The same logic enables us to arrive at formulas for covari-
ances and correlations for other degrees of relationship. Here is a table. It will be a
useful exercise for the reader to see if they can reproduce the results in the table. These
covariances only hold true under the rather limited assumptions of our model. We shall
discuss the pitfalls involved when we discuss the estimation of heritability.
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IX.6 Regression of Offspring on Parents

In our discussion of the effects of artificial selection on a phenotype, we will be particu-
larly interested in the relationship of offspring and parents. If a parent is chosen which
is above the population mean, what distribution of phenotypes do we expect among its
offspring? One way of addressing concerns such as this is to examine the regression of
offspring on parents. If we were to make a scattergram in which we chose individual
parent-offspring pairs at random from the population, then plotted each as a point on
an (X, Y) plane where the horizontal coordinate was the parent’s phenotype, and the
vertical coordinate the offspring’s phenotype, we would see a cloud of points looking
very much like Figure 9.5. Suppose that we tried to fit a straight line through the cloud
of points by least squares, to predict the offspring phenotypes from the phenotype of the
single parent whose phenotype we know. It is a well-known statistical fact that the slope
of the least-squares regression is given by the ratio of covariance of the two variables to
the variance of the variable that is on the horizontal axis:

βOP =
Cov PO

Var O
=

1
2

VA

VA + VD + VE
=

1
2

h2 (IX-56)

Thus the slope should always be less than 1 (though it may not be if our assumptions
are violated). It is more instructive to look at the regression after shifting our axes so
that each runs through the corresponding population mean (of parents or of offspring).
This shift should not affect the slope. Figure 9.6 shows this plot. Since the least-squares
regression line always passes through the sample means, we expect it to pass through
the origin in the shifted graph, as shown in the Figure.

The fact that the regression coefficient is less than 1/2 tells us that we predict the
offspring of an individual to be, on average, less than half as far from the population
mean as it is. This would seem to be a paradox, for it seems to indicate that the offspring
generation will be closer to the mean than the parent generation. If such a process were
to continue indefinitely, there would soon be no variability left at all! Yet this cannot be
so, since we know that this population is in Hardy-Weinberg proportions and linkage
equilibrium, and its genotypic composition will not change over time. In fact, the same
phenomenon is seen if we go backwards in time: computing the regression coefficient of
parents on offspring, we find that

βPO =
Cov PO

Var O
=

1
2

VA

VA + VD + VE
=

1
2

h2 (IX-57)

Thus looking back in time we also seem to see variance decreasing. This seems to say
that the variance of the phenotype just happens to be at a maximum at the moment we
look at it. This is such a ridiculous notion that we know that something must be wrong
with our argument.
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Figure 9.5: Scattergram of a simulated sample of parent-offspring pairs, and
the regression line through these points. The expectations of both parents
and offspring are 10, and the expected slope is 0.5, and this is shown by the
dashed lines. The empirical regression line of the 200 points which passes
through the empirical means at (9.969, 9.917) has slope 0.569, and is shown
by the solid line.

The flaw lies in the fact that we are only predicting the average phenotype of the
offspring of a given individual. Different offspring will have phenotypes which vary
around their expectation. This is an additional source of variance in the next generation.
Although the means from different parents will be more tightly clustered around the
overall population mean than were the phenotypes of the parents, the individual values
will vary more than their predictions, and the variance will be just as great in the next
generation as it is at present. A small regression coefficient reflects an inability to predict
where on the scale the offspring will be, not a prediction that it will be near the popu-
lation mean. The easiest way to see this is to consider what happens if h2 = 0. Then
we cannot make any prediction of offspring’s phenotype from parent’s, but since (say)
VE may be substantial, we are surely wrong in using our measurement of h2 to make a
positive prediction that all offspring will lie at the population mean.

Interesting enough, it is precisely the case of parent-offspring regression which caused
Francis Galton (1889) to coin the term “regression coefficient". Galton noticed that when
the offspring of parents far from the mean were looked at, these offspring had (on aver-
age) “regressed" towards the mean. The regression coefficient was intended to measure
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Figure 9.6: Scattergram of the same simulated sample of parent-offspring
pairs, plotted on scales showing the departure from the empirical mean, and
showing the least squares regression line through these points.

by how much.

REGRESSION ON THE MIDPARENT. It is a natural extension of the preceding dis-
cussion to ask what happens if we try to predict the offspring’s phenotype from the
phenotypes of both parents. Since the two parents contribute equally to the offspring (at
least, in our model they do), the natural quantity to consider is the average phenotype
in the two parents. This is called the midparent, and it seems reasonable to ask how well
the offspring phenotype can be predicted from it. The midparent is

XMP =
1
2

X1 +
1
2

X2, (IX-58)

where X1 and X2 are the phenotypes of the two parents. The covariance will be

Cov (XMP, Y) = Cov
(

1
2

X1 +
1
2

X2, Y
)

=
1
2

Cov (X1, Y) +
1
2

Cov (X2, Y). (IX-59)

Although we have not mentioned it previously, one can easily show from the definition
of covariance that constants like the 1/2 can be removed: Cov (cX, Y) = c Cov (X, Y).
Now we know the two covariances in (IX-59) to each be 1

2VA, so that

Cov (XMP, Y) =
1
2

(
1
2

VA +
1
2

VA

)
=

1
2

VA. (IX-60)
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The regression of offspring on midparent is

βO.MP =
Cov (XM, Y)

Var (XM)
=

1
2VA

1
2(VA + VD + VE)

= h2 (IX-61)

The denominator is determined by the fact that the variance of an average of two inde-
pendent phenotypes is half as great as the variance of one of them. The result (IX-61)
gives us some insight into the meaning of the term “heritability". It measures the frac-
tion of the variation in the phenotype which can be predicted from the phenotypes of the
two parents. As we have seen, this is a very different thing from the fraction of variance
which can be assigned to genetic causes.

IX.7 Estimating variance components and heritability.

Since the covariances between relatives can be written in terms of the three variance com-
ponents, it follows that we can estimate the variance components from the covariances.
In fact we shall see in later sections that to predict the response to artificial selection we
need only two quantities: the total variance of the phenotype and the additive variance
VA. So we can make estimates of these using only two quantities: the observed variance
and one covariance. There are three widely-used procedures:

1. Parent offspring regression. If we collect a series of parent-offspring pairs we can
estimate both the phenotypic variance and the parent-offspring covariance (the
latter depending only on VA). By doubling the regression of offspring on parent
we get an estimate of h2.

2. Half-sib covariances. Alternatively we could have data on groups of half-sibs. The
members of each group all have the same father, but different mothers. Different
groups have different fathers. From these numbers one can obtain, via an analy-
sis of variance (ANOVA), estimates of the overall phenotypic variance and of the
component of variance due to membership in the half-sib groups. This latter com-
ponent should be equal to the half-sib covariance which is 1

4VA. These numbers
again allow us to make estimates of VA + VD + VE and of VA, and thereby of the
heritability.

3. Maximum likelihood. The entire set of data is taken, with the assumption of mul-
tivariate normality of the observations, and with the quantitative genetic model
supplying values for the variances and covariances in terms of the parameters (say
μ, VA, VD, and VE). The likelihood will be the value of the multivariate normal
density function above the point which is the observations. The parameters are
changed until this is maximized. This approach (Hill and Nicholas, 1974; Shaw,
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1987) has the great advantage of using all of the data in an efficient, if computa-
tionally tiresome, manner.

PITFALLS AND LIMITATIONS. It is important not to wander into doing these analy-
ses without first acquiring an understanding of some of the difficulties of interpretation
and a healthy respect for them. The most serious single problem encountered concerns
environmental correlations between individuals. We have been casually assuming that
the environmental contribution to the phenotype is independent in different individu-
als. When one is collecting data this assumption is frequently not met. Relatives not
only share common genetic material between them, but frequently also live in similar
environments. This leads to an extra term in their covariance, due to the fraction of
their environmental variance which is due to factors both share in common. Thus the
covariance formulas should actually look something like

Cov (X, Y) = a VA + d VD + e VE, (IX-62)

where a and d are the coefficients we have been discussing, which involve the fraction
of additive effects and dominance deviations shared between the relatives. These, as
we have seen, can be computed from our knowledge of population genetics. But e is
another matter. It is the fraction of environmental effects on the phenotype which are due
to causes shared by both relatives. Knowing e for a given relationship (say aunt-niece)
requires us to have a model of how the environment acts on the trait. We are customarily
quite ignorant of this. Unless we knew e it would be quite impossible to estimate VA,
VD, and VE. If we allow all possible models of environmental effects to be entertained,
these could predict (at least in principle) all possible patterns of covariances purely on
the basis of VE and an arbitrary set of e’s, without needing to invoke genetic effects at all.
For instance, a 25% correlation among half-sibs might indicate that the trait’s variation
was entirely additive, so that the 25% reflects genetic relationships, 25% of the additive
genetic effects on the character being common to two half-sibs. But it could also be
expected to result if the trait had no genetic variation, with only environmental effects,
about 25% of which are due to factors common to both half-sibs. How are we ever to
untangle this confounding of genetic and environmental factors?

Randomization of environmental effects. In animal and plant breeding we
can hope to reduce this confounding by exercising our control over the environments of
the organisms. This does not mean that we need try to eliminate environmental varia-
tion: all that is necessary is to make environmental effects uncorrelated in relatives. Thus
we may want to allocate cattle randomly to pastures, or seeds randomly to plots, so as to
prevent relatives from experiencing a common environment more frequently than would
be expected at random. Even so, there is a certain amount of common environmental
effect which is irreducible. Mammalian offspring in the same litter will have common
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prenatal environment and pre-weaning care and nutrition. Seeds from the same mother
plant will start with a nutritional package of endosperm which tends to be similar. Even
if the offspring are thereafter placed in totally unrelated environments, this common
environment will bring about some correlation, which may be mistaken for evidence of
genetic variation. It is in an attempt to avoid this that designs for estimating heritability
usually avoid computing the covariance of individuals with the same mother or covari-
ances of mother with offspring. For example, in the parent-offspring regression design,
it is customary to compute the covariance of father with offspring. In the half-sib de-
sign, the half-sibs are paternal half-sibs, which have different mothers. The assumption
behind this is that the father contributes only a sperm or a pollen grain. When the father
also determines part of the environment of the offspring, even these designs will lead to
overestimation of heritability. With animals or plants from natural populations, random-
ization of the environment is next to impossible, unless one can bring the individuals
into the laboratory for cultivation, and do the randomization there. This is a particular
problem with humans, who are not amenable to laboratory culture.

When one cannot randomize. With a population experiencing environments
in an uncontrolled manner, the best one can hope to do is to measure the environment
of each individual, in hopes of removing environmental effects which are common to
relatives, leaving behind only a residue which is genetic. The problem with this approach
is that we must know which aspects of the environment are the ones relevant to the
trait, and we must be able to measure those. This requires us to have a comprehensive
understanding of the way in which the environmental factors affect the trait. But that is
usually the very thing we are most interested in, so we must know the answer before we
can obtain it! In human population genetics, particularly with behavioral measurements
such as I.Q. test scores, this problem becomes quite serious. In assuming that certain
factors (say income) are sufficient measures of a person’s environment, the researcher
builds their own social and political assumptions into the conclusion. If the result is then
used to bolster these views, there is then a logical circularity. It seems that the best that
one can do with this problem is to admit its existence and try to make one’s own social
and political assumptions explicit, so that those viewing the conclusions can evaluate
the results more readily. There is much more that can be said on this subject, but no
space here to say it. There are many sources of error other than common environment,
and it is worth mentioning a few:

1. Genotype-environment interactions: we have in our additive model allowed domi-
nance, which is an interaction effect of two genes. But we have assumed that the
environmental effect does not depend on the genotypic effect, and vice versa. If
they are interdependent, then this interaction is a source of variation which cannot
easily be attributed either to genotype or environment. There is no guarantee that
a genotype which raises the phenotype in one environment will not lower it in
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another. To the extent that this is important, it means that we cannot use a model
in which the phenotype is simply the sum of genotypic and environmental effects.
Feldman and Lewontin (1975) have strongly criticized the use of heritability on
these grounds, arguing that in the presence of genotype-environment interactions
it is a meaningless and potentially misleading quantity.

2. Genotype-environment covariances. This sounds like the same thing as genotype-
environment interaction, but it is not. If there is an association between the distri-
bution of genotypic effects and the environmental effects, this can cause confusion
as to which is acting to cause the phenotypes. For example, in livestock breeding it
is not uncommon for the most productive genotypes to be found more commonly
in the herds of the best-financed breeders, which are likely also to have the most
favorable environments (such as the best food). Under those circumstances the
assumption of randomization of environmental effects will be violated, and the
environmental effects may be mistaken for genetic effects.

3. Genetic interactions. The different loci may also interact, giving rise to extra interac-
tion terms. These genetic interactions affect the covariances between relatives, and
may result in misestimation of heritability.

4. Age and sex effects. Sometimes the trait in individuals of different ages or sexes is
influenced by different genes or different environments. For instance, the weight
of an adult may be a somewhat different character than the weight of its offspring.
If we wrongly assume in our statistical analysis that adults and juveniles (or males
and females) have the same means and variances, we can go considerably wrong
in the analysis. Thus the half-sib design has advantages over the parent-offspring
design, which may involve measuring both adults and juveniles without knowing
whether the trait measured is comparable in both. Even when organisms are mea-
sured at the same age, environmental changes from one generation to the next may
have altered the statistical and genetic properties of the trait.

5. Maternal effects. In mammals, with their large contribution of the parents to the en-
vironment of the offspring, and even in nonmammalian species with effects of the
egg on the offpsring’s environment, maternal effects will be common and can bias
the results obtained with an oversimplified model of independent environmental
effects. Falconer (1965) has given a simple linear model of maternal effects on a
single trait, which can be used to calculate the size of these biases.

6. Sample size. A common mistake is to take a small sample of relatives, and com-
pute from it the covariances and heritabilities without noticing that they have large
statistical errors. This can lead to exact predictions being made from a totally in-
adequate set of measurements. In a sample of 20 pairs of relatives, for example,
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an observed correlation of 0.4 is not significantly different from zero correlation! It
would be of questionable validity to predict from a parent-offspring correlation of
0.4 that the grandparent-offspring correlation will be 0.2, if the sample size were
this small.

7. Epigenetic effects. In recent years it has been discovered that modifications of the
DNA, known as epigenetic effects, can have phenotypic effects and be transmit-
ted to subsequent generations. These do not change the actual DNA sequence.
In general these effects are lost within 3-4 generations and are replaced by new
modifications. As far as is known the modifications have random effects, so that
they do not form a “Lamarckian” system of inheritance, in the sense that their
phenotypic effects are uncorrelated in direction with what the organisms needs to
cope with that particular environment. Epigenetic effects that are correlated in near
relatives will contribute to environmental covariances between relatives, and may
be mistaken for genetic effects, leading to an overestimate of long-term selection
response. They cannot be the basis for long-term evolutionary change, as they con-
tinually revert to their original state on the timescale of a few generations. Slatkin
(2009) and Tal et al. (2010) have considered the effects of epigenetic modifications
on genetic covariances and heritabilities, pointing out the difficulty of accounting
for covariances of all but close relatives by epigenetic effects.

8. Niche construction. Organisms affect their own environment, in ways that in turn
effect their phenotype (and their fitness). Although this might simply be con-
sidered an indirect genetic effect, and therefore already taken into account when
heritabilities are estimated, there is one aspect of these “niche construction” effects
that needs further consideration. That is that the effects on the environment can
persist across generations, so that organisms are thereby affecting their offspring’s
phenotypes as well. Laland et al. (1999) and Laland and Brown (2006) have made
pioneering models of these effects. The model of Falconer (1965) shows some of
the selection response to be accounted for by the maternal effect, and thus is in
some ways touching on the same issues.

IX.8 History and References

Before the rediscovery of Mendel’s work, the dominant theory of heredity involved
“blending” inheritance, according to which the offspring would always be phenotyp-
ically intermediate between its parents. This was clearly an inadequate theory, since
it predicted that all siblings should be identical. Jenkin (1867) pointed out that under
this scheme half of the variability (more properly, half of the variance) should disappear
each generation. In the last decade of the 1800’s Francis Galton (1889, 1897) set forth an
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alternative theory. This was developed further by Karl Pearson (1898), and this school
of genetical theory has come to be called the Biometricians. In its most sophisticated
statements, their theory held that the phenotype value represented a part which was
genetic, and that this could be written as

P = G + E (IX-63)

where

G =
1
4
(P1 + P2)+

1
8
(P11 + P12 + P21 + P22)+

1
16

(P111 + P112 + . . . )+
1

32
(etc. . . . ) (IX-64)

where P1 and P2 are the phenotypes of the two parents, P11, P12, P21, and P22, the pheno-
types of the four grandparents, and so on through all more remote generations. Pearson
called this the Law of Ancestral Heredity. It has some ambiguous and troublesome as-
pects, but it does make predictions of covariances among relatives. It seems not to predict
that there will be a higher covariance among sibs than between parent and offspring. In
quantitative genetics, predictions like this have coefficients that depend on heritabilities
and thus differ from character to character. Galton and Pearson searched instead for a
single equation that would fit all characters, which we now know is impossible.

When Mendel’s laws were rediscovered, a controversy ensued between Mendelians
and Biometricians. The reader will find good accounts of this in Schwartz (2008) and
in Provine’s (1971) book. For a careful reexamination of the what modern quantitative
genetics and statistics have to say about Galton’s work, the monograph by Bulmer (2003)
is essential. The covariances between relatives were only part of the rejection of the Bio-
metricians’ work; it was also undermined by the ability of the Mendelians to explain the
effects of inbreeding. Pearson (1904, 1909a, 1909b) did compute parent-offspring corre-
lations under Mendelian inheritance, under the supposition of complete dominance and
equal gene frequencies of the two alleles. Pearson argued that the Mendelian predictions
were lower than observed correlations. But the statistician G. Udny Yule (1906) argued
that this lack of fit was due to the restrictive assumptions Pearson made.

There the matter lay until it was settled at one blow by R. A. Fisher (1918) in a massive
paper which was only beginning to be completely understood half a century later. Fisher
defined the three variance components and derived the correlations and covariances of
relatives. His paper also contained a detailed treatment of the effects of assortative mat-
ing, and it is this aspect of his paper which has only been well-understood in recent
years. Sewall Wright (1921a), working independently of Fisher, obtained correlations
and covariances among relatives which ignored the dominance variance VD, which his
path coefficient methods could not treat. Most American quantitative genetics theory in
the next two decades is based on Wright’s work, and most English work on Fisher’s. It
is an interesting fact that much of modern statistics springs from this controversy and
from the work of Galton, Pearson, and Fisher. This includes regression, correlation,
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chi-square testing, and the analysis of variance. Although Wright spent more time on
biology than on statistics, his method of path coefficients has recently spread to soci-
ology and economics. The most popular methods for deriving the covariance among
relatives today were developed from G. Malécot’s (1939) reformulation, which made the
derivation accessible to many quantitative geneticists and thus stimulated much further
work.

IX.9 Response to artificial selection

We have been able to establish a connection between various variances, covariances, and
correlations thus far. All can be expressed in terms of three variance components. This
in itself is interesting, but of limited practical use. What has made quantitative genetics
useful in animal and plant breeding is that it also provides us with a prediction of the
response to artificial selection. This in turn can be used to design selection programs.
However before we can derive the response to artificial selection, we need to establish yet
one more assumption. Until now, we have not specified how many loci were involved
in our quantitative character. It is true that if there were only one locus, with large
genotypic effects and no overlap of the genotype, then we could use traditional genetic
analysis, and we would not be interested in variance components, as we would be able to
carry out a far more penetrating analysis. But even in that case, the variance components
could be obtained and the covariances among relatives calculated. For there has been
nothing in our analysis which restricted it from applying to such a case. Once the
assumptions are satisfied, the variance components, covariances and correlations exist
and can be computed. The results apply to any number of loci, any number of alleles,
and any distribution of environmental effects. For an analysis of response to selection,
we must abandon this generality and restrict things somewhat.

NORMALLY DISTRIBUTED PHENOTYPES. We shall assume that each locus con-
tributes only a small fraction of the variance in the character. The character is assumed
to be polygenic, affected by genetic variation at many loci. We also assume that the envi-
ronmental effect is drawn from a normal distribution. These assumptions enable us to
specify the distribution of the character. Recall that the phenotype is the sum

P = g1 + g2 + g3 + · · ·+ gn + e. (IX-65)

The gi are independent of each other, and we have assumed that each contributes only
a small fraction of the variance. In mathematical statistics, the Central Limit Theorem
tells us that the distribution of a sum such as g1 + · · ·+ gn will approach a normal dis-
tribution as we consider cases with more and more loci (provided each locus contributes
less and less of the variance as we progress from case to case). We therefore make the
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approximation of saying that the sum of the genotypic effects follows a normal distri-
bution. Now our phenotype P is the sum of two parts, each of which is drawn from a
normal distribution. Furthermore, these two parts are independent of each other. The
identity of the genotype has been assumed not to affect the environmental effect. The
sum of two independent normal variables is again normally distributed, so that we con-
clude that the phenotype will follow a normal distribution. Cases of actual polygenic
characters which are not normally distributed are quite frequent. Presumably they do
not follow the rather special assumptions of our model. In some cases a scale trans-
formation will restore normality. More often, there is no particular reason to believe
that the assumptions of our model are actually true, and the use of quantitative genetic
theory amounts of an act of faith, an approximation made out of lack of any alternative.
Figure 9.7 shows the approach to normality as we consider cases with larger and larger
numbers of loci. The character is the sum of effects at n loci, with complete dominance
at each locus and at each locus a gene frequency of 0.4 for the dominant allele. The
locus effects are scaled so that all loci have equal effect, and so that the environmental
effects contribute 20% of the variance. The approach to normality can be seen to be quite
rapid: it should be a good approximation even when the character is controlled by only
a modest number of loci.

Multivariate normality. There are two properties of normal distributions which
we will need. The first concerns pairs of relatives. It can be shown that if there are
enough loci to have normality of the distribution of phenotypes, then if we draw pairs
of relatives from the population and look at their phenotypes, these pairs of numbers
will follow a bivariate normal distribution. Such a distribution was used to produce
the numbers used to plot Figure 9.5. Furthermore any set of k relatives (say a mother,
father, and four offspring) will, if drawn repeatedly from a population, yield a k-tuple
of phenotypes which are drawn from a k-variate normal distribution. This fact is highly
useful in constructing statistical tests of hypotheses, but we shall make use of it for
only one purpose here. That purpose is the establishment of another consequence of
normality. This is the linearity of conditional means. What we mean by this is that
if we choose a female whose phenotype is (say) 37.5 cm, and have her mate with a
randomly chosen male, then the average phenotype of the offspring she, and all other
females with the same phenotype, produces will be exactly the prediction we would
make from the regression line expressing the regression of offspring on their parents,
evaluated at a parental phenotype of 37.5 cm. This may sound completely tautologous,
but it is not. Any other joint distribution other than a bivariate normal one would not
give this precise linearity of the dependence of offspring mean on parental phenotype.
One set of examples which do not show precisely this linearity is all the n-locus cases.
It is only as n becomes large that the linearity becomes precise. A similar linearity of
offspring means holds when we specify the phenotypes of both parents. From both
of them we can predict the offspring phenotype, and the regression line will turn out
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Figure 9.7: Distribution of phenotypes in phenotypes controlled by different
numbers of loci. Each locus is completely dominant, with gene frequency of
the dominant allele being 0.4. All loci have equal effects. The cases are scaled
to have equal variance, with environmental effects contributing 20% of that
variance.

also to give the mean phenotype of offspring produced by all pairs of parents having
the same two parental phenotypes as these. The predictions we make from the parents
are easily written in terms of the regression of offspring on parent. For the case where
we choose one parent (say the mother) and based on its phenotype try to predict its
offspring’s phenotype, then the prediction is obtained from the regression line

E(Y) = μ + βOP (X − μ) (IX-66)

where X and Y are the phenotypes of mother and offspring. In the case where we
know the phenotypes of both parents, it can be shown that the prediction is made by a
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least-squares regression on two variables, and this turns out to be simply

E(Y) = μ + βOP (X1 − μ) + βOP (X2 − μ), (IX-67)

X1 and X2 being the phenotypes of the two parents. Schraiber and Landis (2015) have
investigated further conditions under which normality will not hold – they find reasons
to be concerned particularly when there are few loci determining the character, and
when there is a “heavy-tailed” distribution of mutational effects, which includes both
mutations of small effect, and much rarer mutations of large effect.

RESPONSE TO SELECTION. Now we are in a position to use these formulas to
obtain the selection response. Suppose that we were to select from a population a set of
individuals for use as parents, and mate them at random, then predict the phenotypes
from the offspring of each mating. The average of the predictions will tell us how far
the offspring mean will be above the original population mean. Note that in (IX-62) βOP
will be 1

2h2. Averaging over all the X1’s and X2’s which we choose, we find that

E(Ȳ) = μ +
1
2

h2(X̄1 − μ) +
1
2

h2(X̄2 − μ), (IX-68)

where Ȳ is the offspring mean and X̄1 and X̄2 are the mean phenotypes of the female
and male parents which we have selected. We can immediately see that the response to
selection depends only on the mean phenotypes of the selected female and male parents,
and thus not at all on the way in which they are mated. However if we wish to use the
formula again in the next generation of a selection program, we must know that our
assumptions hold in that generation as well. This will scarcely ever be precisely true,
but if our mating of the selected parents is random it may nearly be true. If we select
equal numbers of males and females, and let X̄ be the average phenotype of the selected
parents, then (IX-68) can be rewritten as the Breeder’s Equation

E(Ȳ − μ) = h2(X̄ − μ). (IX-69)

In a sense, then, h2 is the fraction of the selection applied to the parents which has an
effect on their offspring. If h2 = 0.3, then by choosing parents who average 10 kg above
the population mean, we obtain offspring who are expected to average 3 kg above the
original population mean. Note that formulas (IX-68) and (IX-69) are applicable when
we select only one sex and choose the members of the other sex at random. If, say, we
mate selected females with randomly-chosen males, then X̄2 will be equal to μ, so that
the last term of (IX-68) vanishes. This is exactly what we would have found by using
(IX-66) instead of (IX-67). Note also that when there are unequal numbers of the two
sexes, (IX-68) shows that we should base our predictions on the simple average of X̄1
and X̄2, not on the overall average parental phenotype.
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RESPONSE TO TRUNCATION SELECTION. We have still not said how we se-
lected the parents. An animal or plant breeder trying to make as large a change as
possible in one generation will usually try to use as parents the individuals with the
largest values of the phenotype which they want to increase. Suppose that the breeder
knows that they want to breed from (say) the upper 20% of the herd. How much re-
sponse can be expected? As we can see from (IX-69) and its predecessors, this depends
entirely on how far above the population mean the selected individuals will be. When
the character follows a normal distribution, this is easily computed. We can look at a
standard normal distribution (one with mean zero and variance 1) and ask what is the
mean of the individuals who make up the top 20% of the distribution. Suppose that this
is designated as i. We are actually interested in the mean phenotype of the top 20% of
a normal distribution with mean μ and standard deviation σ. If we express this as a
deviation I from its mean, we are saying that the mean phenotype is μ + I. I is widely
used and is called the selection differential.

If we have observed I and want to make a prediction from this, we need only multiply
I by the heritability of the character. If we have not yet observed I, we need to predict
what it will be. The fact that we are considering normal distributions makes this easy.
We know that in the standard normal distribution the top 20% is i standard deviations
(i × 1) above its mean (0). Then in any other normal distribution the top 20% is also i
standard deviations above its mean. So the mean phenotype of selected individuals is

μ + I = μ + i σ (IX-70)

or
I = i σ. (IX-71)

This implies that we need only a single table, which tells us for each fraction of
individuals retained what the value of i will be. From this along with the standard
deviation we can use (IX-71) to find I, the expected difference between the phenotypes
of the selected parents and the population mean. Equation (IX-64) tells us that we expect
a fraction h2 of this selection differential to show up in the selection response of the mean
of the offspring. An example may be useful. Suppose that we have a population of mice
weighing an average of 20g, with standard deviation of 2g. We have taken covariances of
relatives and obtained an estimate of h2 = 0.3, and wish to predict the result of breeding
from the top 10% of the population. For the top 10% one can show that i, the standardized
selection differential, is 1.76. Then we expect the top 10% to be 2× 1.76 = 3.52 g above
the population mean, so that the mean of selected parents should be 23.52g. The mean
of the resulting offspring will be (0.3)(3.52) = 1.056 g above the original population
mean. So the offspring mean will be expected to be 21.056 g. All that is missing is the
table of i as a function of the fraction selected. We need to compute, for a standardized
normal distribution, the mean of the top S of the curve, where S is the fraction selected.
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A bit of algebra gives this, as follows. The selected parents will show a distribution of
phenotypes which is the tail of a normal distribution. It will have density function

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
S

1√
2π

exp[−x2/2], x ≥ c

0 x < c,

(IX-72)

where c is the point at which we must truncate a normal distribution so that a fraction S
of the area is above the cutoff point. The average value of x in this distribution is what
we seek. It is:

i = E(x) =
∫ ∞

−∞
x f (x) dx

=
∫ ∞

c

x
S
√

2π
exp[−x2/2] dx

=
1

S
√

2π

∫ ∞

c
x e−x2/2 dx

(IX-73)

and noticing that the quantity under the integral sign is the derivative of − exp(−x2/2),
we get

i =
1

S
√

2π
e−c2/2, (IX-74)

so that the standardized selection differential is simply the height of a standard normal
curve at the cutoff point c, divided by the fraction of area (S) above the cutoff point. The
cutoff point c and the height of the curve at that point can be determined using standard
normal tables. Table 9.2 shows values of i: Note that even when we select the top
0.001 of the parents, we get a selection differential of only 3.4 standard deviations: there
effectively aren’t any individuals available who are more than four standard deviations
above their population mean.

SELECTION EFFECTS AT A SINGLE LOCUS. To what is the selection response due?
If the response has been the result of creating a departure from Hardy-Weinberg propor-
tions, or creating linkage disequilibrium, then we would not expect it to be retained in
future generations: the population will fall back to its previous mean. But if the selection
response is mostly a result of changing gene frequencies, then we may expect the gain
to persist, and perhaps we may even expect a further gain if the selection procedure is
repeated each generation. We now show that the gain is in fact due to changes of gene
frequency. To do this we need the amount of change due to selection caused at one locus
during the process of truncation selection. Suppose that we have a two-allele locus. Let
us ask how likely it is that a copy of the A1 allele survived selection. When we computed
the average excess α1 for this allele, this was the mean phenotype of all bearers of A1
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Table 9.3: Standardized selection differentials, i, corresponding to various
fractions of parents selected (S), as well as cutoff points c.

S i c
0.90 0.195 -1.2816
0.80 0.350 -0.8416
0.70 0.497 -0.5244
0.60 0.644 -0.2533
0.50 0.798 0
0.40 0.966 0.2533
0.30 1.159 0.5244
0.20 1.400 0.8416
0.10 1.755 1.2816
0.05 2.063 1.6449
0.01 2.665 2.326

0.001 3.367 3.090

alleles, weighted by the the number of A1 alleles they carry and expressed as an excess
over the population mean. Furthermore, knowing that an individual carries A1 tells us
nothing about the rest of its genome or the environmental variance. Since the bulk of the
variance comes from those sources, and only a little of it has been eliminated by fixing
one allele at A1, we will approximate well by saying that A1-bearing individuals have a
mean of μ + α1 and a variance of σ2. When we save all individuals whose phenotypes
are beyond a value of c, what fraction of A1 genes survive selection? Let φ(x; μ, σ2) be
the density of the normal distribution with mean μ and variance σ2. The fraction of
surviving A1-bearing individuals is

w1 =
∫ ∞

c
φ(x; μ + α1, σ2) dx

=
∫ c+α1

c
φ(x; μ + α1, σ2) dx +

∫ ∞

c+α1

φ(x; μ + α1, σ2) dx
(IX-75)

The rightmost term is the area beyond c + α1 in a normal distribution centered at μ + α1.
This will be the same as the area beyond c in a distribution centered at μ. This we have
already specified to be S, the fraction saved. So

w1 =
∫ c+α1

c
φ(x; μ + α1, σ) dx + S

� α1φ(c; μ, σ) + S
(IX-76)
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The second line of this expression is obtained by assuming that α1 is small. The integral
of a curve over a short interval of width α1 is nearly its height times α1. Now we notice
that the height of the normal curve at the cutoff point c will simply be iS/σ, where i is
the standardized selection differential. So

w1

S
� 1 +

α1 i
σ

(IX-77)

Thus the A1 alleles are expected to increase in frequency by a fraction iα1/σ of their
previous value. There is not the space for it here, but one can show using the new
gene frequency p′ � p(1 + iα1/σ) and making use of (IX-22) and (IX-31), that the
contribution of this locus towards the mean of the offspring is increased by

(i/σ) [ 2p α2
1 + 2(1− p) α2

2 ]. (IX-78)

Thus, adding over loci, the changes in gene frequency bring about an increase of the
mean by

ΔG = iVA/σ = iσVA/(VA + VD + VE) = ih2σ = Ih2 (IX-79)

But this is a fraction h2 of the original selection differential. So the changes in gene
frequency account for all of the response to selection. The gain due to selection should
thus be permanent and enduring.

EFFECTS OF REPEATED SELECTION. The first time selection is applied, the gain is
entirely due to changes of gene frequency at the individual loci influencing the trait. If
the assumptions which were used in establishing this result continue to hold, we should
expect to see continued gain from repeated generations of selection. Chief among the
assumptions is the independence of genotypes at different loci, in other words, linkage
equilibrium, and if a single generation of truncation selection generates no linkage dis-
equilibrium, it should remain in that state. Unfortunately for our analysis, truncation
selection does generate some linkage disequilibrium. In fact, it tends to put alleles which
increase the phenotype in repulsion, so that the net effect is to decrease the variance of
the trait. The usual method of analysis in animal and plant breeding is to ignore this dis-
equilibrium, and assume that the loci are loosely linked, so that little disequilibrium will
remain in the next generation. If this assumption is a reasonable one, then we should
again expect to see a selection response of Ih2 in the next generation.

Bulmer (1971) has presented an approximation which corrects for the linkage dise-
quilibrium induced between unlinked loci. Even if we ignore disequilibrium we must
still know what selection does to h2 and σ. We shall assume that the environmental
effects remain the same from generation to generation, and that the loci continue to
contribute additively to the phenotype. Other than linkage disequilibrium, the only
quantities which could change from one generation to the next are the gene frequencies.
If there are many loci contributing substantially to the character, then the average excess
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α1 of one allele will be small compared to the standard deviation of the character. For-
mula (IX-77) then provides us with some assurance that selection will make only small
changes in gene frequency at any one locus. Thus the variance components VA and VD
will change little in any one generation. Therefore h2 and σ will also change little. The
usual procedure in predicting response to selection is to assume that h2 and σ remain
unchanged from their initial values, so that if a constant fraction S of the population is
saved each generation, the response in each generation will be ih2σ.

COMPLICATIONS AND LIMITATIONS. The calculation of the response to artificial
selection is quite assumption-bound, so that there are a great many places where the
argument could go wrong. One of the most vulnerable assumptions is the constancy
of the range of environmental effects. In actual animal and plant breeding, the condi-
tions of husbandry are changing continuously, just as the genetic characteristics of the
strains are. Under modern industrialized agriculture, there is frequently a tendency for
increased mechanization of rearing to lower costs but also to result in more unfavorable
conditions for the animal or plant. So the environment is continually deteriorating, and
this creates a serious problem for anyone who wants to know whether selection is in
fact bringing about the predicted improvement. Selection which is in fact counteracting
the deteriorating environment may appear to be having no effect. Alternatively, selec-
tion may receive credit for increases of yield which are actually the result of improved
agricultural techniques. Clearly in any breeding program it is worth paying a great deal
of attention to long-term environmental changes, and attempting to measure them and
correct for them.

Natural selection. A second source of difficulties is natural selection. We have
assumed that it is absent in our model of a quantitative character, but clearly this is
unjustified in general. Characters which have not been under strong artificial selection
may owe their present values to natural selection. This natural selection is far more likely
to be stabilizing selection than directional selection. In applying artificial selection we
are reshaping the organism to our own requirements, not those of natural selection. It is
quite likely that among our selected parents, fertility is lowest in those which appear best
to us for our own requirements. Likewise among their offspring, those may survive least
well which most closely fit our requirements. Natural selection and artificial selection
will then be antagonists. As the phenotype departs farther from the original population
mean, the intensity of natural selection may increase. Ultimately we will reach a point
in the selection program where natural selection prevents further progress from artificial
selection. If we see the plateau of selection response, we may mistakenly conclude that
it is a result of fixation of the favorable alleles. Imagine our surprise when we cease
artificial selection, and observe the phenotype gradually receding towards its original
value, owing to the unopposed operation of natural selection! A more careful approach
would involve checking at the plateau to see whether heritability had reached zero. If it
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has not, then we have the paradoxical situation of being unable to get further response
to artificial selection in spite of the presence of additive genetic variance. There is an
increasing suspicion among animal and plant breeders that many of these paradoxical
plateaus in selection response are the result of natural selection.

Gene interaction. A third source of complications is gene interaction. We have
assumed that on some scale the different loci have effects that add up. Sometimes the
proper choice of a scale transformation will bring one nearer to this idealization, but in
general genes interact by a variety of complex mechanisms, so that there is no reason to
expect perfect additivity. Some considerable effort has gone into incorporating genetic
interaction into quantitative genetic theory. Cockerham (1954) and Kempthorne (1954)
independently arrived at a method for breaking down the phenotypic variance into mul-
tiple components when interaction is present. They were able to find reasonably simple
formulas for the covariances between relatives in terms of these variance components.
Griffing (1960) made substantial progress towards predicting selection response when
interaction between loci is present. The difficulty with these papers is that the approach
they use is not very useful in practice. Even if we only allow for two locus interaction,
the variance is broken down into six components:

VT = VA + VD + VAA + VAD + VDD + VE. (IX-80)

Finding enough different covariances of relatives, and large enough sample sizes, to es-
timate these six quantities is essentially impossible in practice. The variance components
approach to interaction has had little impact in practice. The best we can do in practice
is to ensure that we remove interaction effects as much as possible by scale transforma-
tion. Beyond that we can only look for an understanding of the effects of individual loci,
which is easier wished for than achieved.

Genetic drift. Another serious complication is the presence of genetic drift. This
can cause changes in the variance components. A careful study of this problem has been
made by Robertson (1960). He found that the fixation probability formulas of Kimura
could be applied, to predict the limiting phenotype under selection. The average result
of genetic drift is to reduce the heritability. If only N adults are preserved each gener-
ation, the additive genetic variance will ultimately disappear, and no further progress
will be made thereafter. This is actually simply another way of stating that in a finite
population, there is a nonzero chance of losing advantageous alleles. Thus we may
be less interested in rates of change of phenotype than in the ultimate selection limit.
A particularly interesting result concerns the case in which n individuals are screened
with only a fraction retained. In that case if n is fixed, the more strongly we select, the
fewer adults we will choose. There is then a tradeoff between the immediate response,
which is greater the more strongly we select, and the selection limit, which is less the
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fewer adults we save. On the other hand, if we select weakly we will make little progress
before our additive genetic variance is lost. Robertson showed that the optimum pro-
cedure, from the point of view of the selection limit, is to save the upper half of the
population. This can be proven using our equation (IX-74) to compute the value of 4Ns,
and finding the level of selection which maximized that quantity. Hill and Robertson
(1966) subsequently investigated the effects of linkage on selection limits. As we saw
in section VIII.8, they found an interesting phenomenon (the “Hill-Robertson effect”) in
that selection at neighboring loci in a small population tended to interfere with selection
response at all of these loci, even if the loci neither interact in their fitnesses nor are in
initial linkage disequilibrium. This phenomenon seems to be quite general. Hill (1971,
1972a, 1972b) has made a more exhaustive study of the effects which finite population
size will have on the variability of selection response.

Two lesser concerns are with the finiteness of the number of loci and with the fact
that we never quite achieve the selection intensities we expect. Latter (1965) has looked
into the effects of having a few loci with large effects on the character. He finds that this
will rarely cause serious difficulties. Hill (1976) and Rawlings (1976) have investigated
the possibility that the top (say) 20% of the group of individuals may not be near the top
20% of a normal distribution, owing to the fact that there are groups of relatives among
them. This seems to be a secondary problem compared to the others we have mentioned.

IX.10 History and References

While selecting the top of a herd or crop is an ancient practice, it was only in the 1930’s
that quantitative genetics attempted to predict the response to selection. Haldane (1930c)
was the first to compute the selection intensity by reference to tails of normal curves.
Using the work of Fisher, Wright, and Haldane, Jay L. Lush fought for the introduction
of quantitative genetics into animal breeding. His book, Animal Breeding Plans (1937)
was a landmark in introducing these techniques to wider audiences. Of particular note
during the early years of quantitative genetics were the papers of Fairfield Smith (1936)
and Hazel (1943) on “index selection” (selection based on a combination of traits), of
Hazel and Lush (1943) and Lush (1947a,b) on selection based on the performance of near
relatives, of Comstock, Robinson, and Harvey (1949) and Dickerson (1952) on selection
of two lines based on the performance of the cross between them, and of Robertson and
Lerner (1949) and Dempster and Lerner (1950) on all-or-none traits. We have already
cited a number of more recent papers which extend or check selection theory. The
reader interested in further enlightenment will find it in the excellent books by Falconer
and MacKay (1996) and Lynch and Walsh (1998).
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Exercises

1. Suppose that we have a trait controlled by two alleles at each of two unlinked loci,
and that (i) all double homozygotes have phenotype 1, (ii) all single heterozygotes
have phenotype 2, and (iii) all double heterozygotes have phenotype 4. If we cross
two strains, one AABB and the other aabb, what are the mean phenotypes of these
parent strains? of the F1? of the F2? of the two backcrosses F1 × P1 and F1 × P2?
Are the rules concerning means of crosses obeyed? Why or why not?

2. In the above case, would the rules concerning means of crosses be obeyed if instead
of measuring the phenotype we measured its logarithm? its square root?

3. Suppose that a trait is the sum of effects at two loci. At one locus the contributions
of AA, Aa, and aa are 1, 3, and 2. At the other locus the contributions of BB, Bb,
and bb are 2, 1, and 6. If both A and B have gene frequencies of 0.6, compute the
mean phenotype when the inbreeding coefficient is f . Does this depend on the
probability F11 that both loci are simultaneously inbred? Why or why not?

4. Compute the total phenotypic variance in a one-locus trait where there are no
environmental effects and the phenotypic means of AA, Aa, and aa are 1, 1, and 0.
Obtain this variance as a function of gene frequency, p. By direct enumeration of
all possibilities and their relative frequencies obtain the covariance of parents and
offspring in this case. What do these two expressions tell you about the way that
the heritability depends on p? Does this depend on the aij?

5. Suppose that there is a quantitative character in which there is only one gene af-
fecting it, and the rest of the variation is environmental effects. If the average
phenotypes of the three genotypes are for AA, Aa and aa the quantities 11.0, 11.0,
and 8.0, and there are Hardy-Weinberg proportions of the genotypes with gene
frequency p of allele A,

(a) What will be the mean phenotype in the population, as a function of p ?

(b) What will be the variance of the phenotype as a function of p ? (Note that the
variance is the expectation (theoretical mean) of the square of the character,
x2, minus the square of the expectation of the character).

(c) If the frequency of allele A is 0.4, and if the environmental effect on the pheno-
type of an individual is drawn at random from a distribution that has variance
10, and simply added to the genetic effect, what fraction of the variance of the
character is genetic?

(d) Is this the heritability of the character? Why or why not? (You are not asked to
calculate that number).
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6. In terms of the three variance components VA, VD, and VE, and/or the heritability,
what are the covariance and the correlation between your maternal half-sib and
your paternal uncle?

7. Use (IX-51) and (IX-52) to compute the covariance and correlation of an individual
with itself. What is wrong with this?

8. Suppose that we find no inbreeding depression in a trait which is the sum of
effects at loci each with two alleles. Does this mean that the trait has no dominance
variance if the trait depends on only one locus? two loci?

9. Consider a trait whose numerical value is controlled by two loci, without any envi-
ronmental variance. If the values specified by the genotypes at these two two-allele
loci are:

BB Bb bb
AA 6 7 8
Aa 7 8 9
aa 8 9 10

and both genes have 50:50 gene frequencies (so that pA = 0.5 and pB = 0.5)

(i) What will the mean value of this phenotype be?

(ii) What will its variance be? Its standard deviation?

(iii) Are these two loci individually additive in the effects of their alleles? Do they
show any interaction (epistasis)?

(iv) In view of (iii), what will the heritability of the trait be?

(v) If we carry out artificial selection, saving all those individuals whose pheno-
types are 8 or greater, what will the response to selection be in the first off-
spring generation?

10. Suppose that we have a trait that shows a mean of 105.2, a variance of 30.6, and a
father-offspring correlation of 0.45. What is the heritability? If we choose fathers
that measure exactly 110 on the scale, what will be the mean trait value of their
offspring if they each mate with a randomly chosen female?

11. Suppose that we find a parent-offspring correlation of 0.1 and a grandparent-
offspring correlation of 0.03. Can we determine heritability from this? Why or
why not?

12. Suppose that we have two genotypes, one with mean phenotype 10 and the other
with mean phenotype 11. The environmental effect is normally distributed with
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mean zero and variance 1.2. Use a table of areas of the normal distribution to
compute the fitnesses of these genotypes under a regime of truncation selection
where all individuals above 11.2 are saved.

13. Suppose that we have an overdominant locus with the mean phenotypes 3, 4, and
2 for genotypes AA, Aa, and aa, a gene frequency of 2/3 for A, and an environ-
mental contribution which is normally distributed with variance 1. Compute the
heritability of this trait. Based on this, what will be the response to one generation
of truncation selection in which all individuals above 5 are saved?

14. In the preceding exercise, use tables of the normal distribution to compute the
fitnesses of the three genotypes when we carry out truncation selection saving
individuals with phenotypes above 5. Do we expect to see any response to one
generation of this selection?

15. Is there a discrepancy between the answers to exercises 13 and 14? Explain why
we do or do not expect one to exist.

Complements/Problems

1. If the two loci in Exercise 1 of this chapter instead had recombination fraction r
between them, how would the mean phenotype of the F2 generation depend on r?

2. If two traits are each determined multiplicatively by many loci, and we are inter-
ested in their ratio, does taking logarithms make this ratio additively determined
by the loci in the sense that the log (of the ratio) is now additively determined by
the loci? Is this result altered if some of the same loci contribute two the two traits?

3. If we have a trait (say, numbers of bristles) which has for each genotype a Poisson
distribution, then it is known that its environmental variance can approximately
be made constant over all genotypes by working not with the number of bristles
but with its square root. To be able to use this transformation and our model of
determination of a phenotype, what would be have to assume about the way effects
at different loci combined?

4. Do the relationships among means of inbred lines and their crosses and backcrosses
hold when we have multiple alleles? When we have a sex-linked trait with two alle-
les and with hemizygotes which always resemble the corresponding homozygote?

5. Does the linearity of the effect of inbreeding on the population mean continue to
hold in the case of multiple alleles?
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6. Use (IX-35) to confirm the multiple-allele formula (IX-36) by differentiating Q with
respect to αi and equating the result to zero.

7. What is the correlation between the additive effect A and the total phenotype μ +
A + D + E? Can you see from this why heritability is written h2 ?

8. If we have locus at which recessive deleterious mutants occur at rate u, with the fit-
ness of the homozygote between these alleles being 1− s, we know that we should
have an equilibrium frequency

√
u/s of the deleterious mutant allele.

(i) What is the additive genetic variance of fitness at this equilibrium?

(ii) What is the total variance of fitness in this case?

(iii) What is the heritability of fitness in this case?

(iv) Suppose that there are n such loci with all of them being in linkage equilib-
rium, so that genotypes at one locus are independent of genoptypes at any
other. The natural logarithm of the fitness predicted for an individual by its
genotype is the sum of the logs of the predictions for each locus (because
the predicted fitness is the products of the predicted fitnesses at each locus).
What is the heritability of log predicted fitness? How does it depend on n?
Why didn’t we ask about the predicted fitness itself in this case, instead of its
logarithm?

9. If one predicted the phenotype of an individual from the mean of two of its siblings
(by regression), will this be a better or worse prediction of its phenotype than the
midparent? How does the presence of environmental correlations affect this result?

10. Which is expected to be the better predictor of an individual’s phenotype, if no
environmental correlations are present, the midparent or the mean of the four
grandparents? Are the two predictions going to be the same?

11. In terms of h2, what is the (genetic) correlation between offspring and midparent?
What is the regression coefficient of midparent on offspring (i.e. with X being the
phenotype of the offspring and Y the midparent)?

12. In a one locus two-allele case with genotypic means 1, 3, and 4 of genotypes AA,
Aa, and aa and no environmental variance, is the regression of offspring on parent
perfectly linear?
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13. Suppose that one genotype has mean μ1 and environmental variance σ2
1 , and that

another has mean μ2 and environmental variance σ2
2 . What is the rule as to which

genotype has higher fitness under truncation selection if μ1 �= μ2 and σ1 = σ2? If
μ1 = μ2 and σ1 �= σ2? What does the latter say about one of the possible unpleas-
ant side effects of truncation selection? What is the general rule for arbitrary μ1,
μ2, σ1, and σ2?

14. Can we use the ultimate limit reached under truncation selection to get an idea of
how many loci are affecting variation in a trait? What are the limitations of this
approach?

15. (Harder) Suppose that we take n males and n females from a random-mating pop-
ulation, and construct a diallel cross by making all n2 possible matings and measur-
ing one offspring from each. If we arrange the resulting numbers in a square and
do an analysis of variance, what are the expected variance components for rows,
columns, and interaction in terms of VA, VD, and VE?

16. (Harder) How are the results altered in the preceding problem by using instead
males from n inbred lines and females from n other inbred lines, each line being
totally inbred starting independently from the same population?
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Chapter X

MOLECULAR POPULATION
GENETICS

X.1 Introduction

The flood of molecular sequences in molecular evolution has reached inside populations.
It is no longer true that each species is necessarily represented by only one sequence of
each gene (“the mouse sequence”, “the human sequence”). Now it has become more
common for some attempt to be made to assess population-level variability by collecting
population samples of sequences at a single locus. We are now seeing more and more
studies that sequence multiple loci in the same individuals and populations, adding
an additional dimension to the data. In addition, genomics is no longer content with
sequencing one genome of one species, but has expanded, not only to multiple species,
but to characterization of genetic variability within and between populations.

These developments of the 1980’s and 1990’s, together with the previous expansion
of restriction-sites data, has created a new field of evolutionary genetics, molecular evo-
lutionary genetics. It is now joined by evolutionary genomics.

X.2 Mutation models

While the genetic drift, natural selection, and migration of sequences is normal, the way
they mutate is distinct. When a sequence with many sites in it undergoes mutation, one
does not merely see a series of distinct alleles, but to some extent one can reconstruct
the history of the mutations by examining the sequences in detail. With n sites, there are
in a nucleotide sequence 4n possible sequences.

THE JUKES-CANTOR MODEL. The simplest possible model of mutation simply as-
sumes that the same mutational process, with the same mutation rate, occurs at all n
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sites independently. The simplest model for mutation at a single site is to assume that
each nucleotide has the same probability of mutation, and when it mutates it changes to
one of the three other possible bases with equal probability. This is the model of Jukes
and Cantor (1969).

If the mutation rate is μ per unit generation per site, and if Pij is the probability that
base i changes to base j in one generation, then the mutation matrix looks like this:

P =

⎡⎢⎢⎢⎢⎢⎣
1− μ μ/3 μ/3 μ/3

μ/3 1− μ μ/3 μ/3

μ/3 μ/3 1− μ μ/3

μ/3 μ/3 μ/3 1− μ

⎤⎥⎥⎥⎥⎥⎦ . (X-1)

For the whole sequence, the probability that one mutates, in one generation, from one
given sequence to another that differs from it in m out of the n sites, is easily computed
as the probability of getting particular changes at those m sites and no change at the
others:

(μ/3)m (1− μ)n−m. (X-2)

We will have use for the transition probability at a site between base i and base j in
t generations. This is of course the ij element of the t-th power of the mutation matrix
P. While that can be directly computed, we can get it more easily by a slightly indirect
argument, which we will also need for some further models below.

Note that if t is large and μ is small, we may approximate the process by having
time (measured in units of generations) be a continuous scale, with a constant risk of
mutation. Now notice also that if we had a type of mutation that changed a base to one
of the four bases chosen at random, with equal probability of the four outcomes, this
would look almost like the Jukes-Cantor model, except that 1/4 of the time it would
make no change at all. Now imagine that we have this altered mutation model but we
increase the rate to 4

3μ. In that model the mutations that change the bases occur at rate
μ, continuously in time.

But in that altered model (the one with increased mutation rate) it is quite easy to
compute the probability that we end up with base j after having started with base i.
If there has been any mutation at all during the time time span t, then the probability
of ending up at base j is 1/4. Now mutation in this continuous-time version of the
model has a dynamics like waiting for the first atomic decay of a radioactive substance.
Thus the probability that there is no decay at all in t units of time is the exponential
exp(− 4

3 μt). Putting all of this together, we easily show that the transition probabilities
(they are called that for mathematical reasons, not having anything to do with transitions

458



and transversions) are

Pij = 1
4

(
1− e− 4

3 μ t
)

(i �= j)

Pij = e− 4
3 μ t + 1

4

(
1− e− 4

3 μ t
)

(i = j)
(X-3)

We can also compute, from (X-3), the expected fraction of sites in which two se-
quences will differ, as a function of mutation rate and time. This is useful in some kinds
of phylogenetic inferences. Adding up the three values of Pij for the changes from base
i to all three different bases, the expected fraction D of sites differing becomes

D =
3
4

(
1− e−

4
3 μ t

)
. (X-4)

This equation can easily be inverted to solve for the “branch length” μt as a function of
D by solving for the exponential and then taking logarithms:

μt = − 3
4

ln
(

1− 4
3

D
)

. (X-5)

KIMURA’S 2-PARAMETER MODEL. The Jukes-Cantor model is easy to analyze, but
lacks some of the structure of more realistic models of base change. The most notable
absence is the inequality of transitions and transversions. This was corrected by Kimura
(1980), whose “2-parameter model” (sometimes called the K2P model) we now describe.
This model has the simplest form of transition-transversion inequality possible. All four
bases are equally frequent. They all mutate with equal rates μ. When they do, the
probability of transition is R times as great as the total probabilities of both possible
transversions. The result is the mutation matrix for bases ordered A, G, C, T:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− μ R
R+1 μ μ

2R+2
μ

2R+2

R
R+1 μ 1− μ μ

2R+2
μ

2R+2

μ
2R+2

μ
2R+2 1− μ R

R+1 μ

μ
2R+2

μ
2R+2

R
R+1 μ 1− μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(X-6)

I have expressed this matrix, not in Kimura’s original parameterization, but in one
of my own that uses the more immediately meaningful parameters μ (the total rate of
potentially observable mutations) and R (the transition/transversion ratio).
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For many purposes what we need for each of these models is the transition probabili-
ties, where the “transitions” are all changes of state. In molecular biology changes among
purines or among pyrimidines are referred to as “transitions” and all other changes as
“transversions”. I will try to make it clear when the word transition is used in its stochas-
tic processes sense and when it is used in its molecular biology sense. In the latter case
the word transversion is usually nearby.

The simplest method of computing the transition probabilities for Kimura’s 2-parameter
model is to use a method similar to the one used above for the Jukes-Cantor model. Let’s
assume that time is continuous, as before. We can reframe the K2P model as involving
two kinds of events. One (type II) occurs at rate β = 2μ/(R + 1). When it occurs, a ran-
dom one of the four bases is chosen to replace the present base. This gives us the correct
rate of transversions such as A → C and A → T. However it does not give us enough
transitions such as A→ G. To get those to come out, we must add another kind of event
(type I) with rate α = (R− 1

2)μ/(R + 1) that can make either no change or a transition,
and cannot make a transversion. If this event happens, and the base was a purine, one
of the two purines is chosen at random to replace the base. If it was a pyrimidine, one
of the two pyrimidines is chosen at random to replace the base.

This keeps the model the same, but defining these imaginary events makes the cal-
culations easy. If a lineage has even a single event of type II, its final state is random
among all 4 bases. If it has no event of type II but at least one of type I, it is random
among both purines, or among both pyrimidines, depending on which type of base was
present. Note that sometimes either event will result in no change, so not all these events
are real, but imagining them does result in the right probabilities.

The upshot is that the probability of a particular transversion change (say getting a T
given that one started with an A) is

Prob(T | A, t) =
(

1 − e−β μ t
) 1

4
(X-7)

and the probability of the transition change is

Prob(G | A, t) = e−β μ t (1 − e−α μ t) 1
2

+
(

1− e−β μ t
) 1

4
(X-8)

THE HKY MODEL. The Kimura K2P model allows for inequality of transitions and
transversions, but is still unrealistic in always leading to equal equilibrium frequencies
of the four bases. Hasegawa, Kishino, and Yano (1985) introduced a model that allows
for inequality of base frequencies. Its rates of change for the bases ordered A, G, C, T
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can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎣

−− (α + β) μ πG β μ πC β μ πT

(α + β) μ πA −− β μ πC β μ πT

β μ πA β μ πG −− (α + β) μ πT

β μ πA β μ πG (α + β) μ πC −−

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(X-9)

The transition (and transversion) probabilities for this model can be worked out similarly
to Kimura’s model (see Felsenstein, 2004, chapter 13). The equilibrium frequencies of this
model are the quantities (πA, πG, πC, πT) which are, in effect, parameters of the model.
To get the overall transition/transversion ratio to be R and the overall rate of base change
to be μ it is necessary to set

α =
R

R + 1
1
F
− 1

R + 1
1

1− F
(X-10)

β = 1 − α F (X-11)

where
F = 2 πA πG + 2 πC πT. (X-12)

Note that for some small values of R some rates in the matrix become negative – not all
values of R can be achieved.

There is a similar but slightly different model introduced by me, the F84 model, and
a more general model due to Tamura and Nei (1993) that includes both as special cases.
For all of these the net probabilities of change can be calculated (see Felsenstein, 2004,
chapter 13).

THE GENERAL TIME-REVERSIBLE MODEL. A 9-parameter model can be defined
that has the often-desired property of reversibility. This ensures that the fraction of all
changes that are from state i to state j is expected to be equal to the fraction that are
from state j to state i. (Note that this is not the same as assuming that the transition
probability matrix is symmetric).

We will not make use of the property of reversibility here, but it is still worth stating
the model, as the only widely-used 9-parameter model. It has rate matrix

To: A G C T
From:

A −− πG α πC β πT γ

G πA α −− πC δ πT ε

C πA β πG δ −− πT ζ

T πA γ πG ε πC ζ −−

(X-13)
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This has four base frequencies and six other rates; there are a total of nine parameters if
we standardize the total rate of change to 1 by insisting that

2πA πG α + 2πA πC β + 2πA πT γ + 2πG πC δ + 2πG πT ε + 2πC πT ζ = 1 (X-14)

The GTR model was introduced by Lanave et al. (1984). There are no simple formulas for
transition probabilities, at least not ones any simpler than using the general solution to
the cubic equation. It is best to compute transition probabilities by numerical calculation
of the eigenvalues and eigenvectors. This can be done by expressing the rate matrix as a
product of a diagonal matrix and a symmetric matrix (see Felsenstein, 2004, chapter 13).

X.3 Approximate mutation models

While these mutation models attempt to approach realism, calculations using them may
suffer from intractability. Two models, one of which we have already seen, sacrifice some
of the realism for greater tractability.

THE INFINITE-ALLELES MODEL. We have already seen (in Chapter VII) the infinite-
alleles model of Kimura and Crow (1964). It assumes that all alleles mutate at equal
rates, and when they do, all give rise only to new alleles that have never been seen
before. When it is used for nucleotide sequences, this model in effect treats all sequences
as differing, without inquiring at which sites they differ or by how many sites. Any
statistical treatment based on this method will thus necessarily discard all information
about which alleles are historically close to each other.

THE INFINITE-SITES MODEL. To model this historical information an “infinite-sites”
model has been proposed (Kimura, 1969; Ewens, 1974; Watterson, 1975). In this model
each mutational event occurs at a new site, introducing an alternative allele at that site.
The original haplotype is known, and so is the presence or absence of the alternative
allele at each other site. The model has been used only in the case where there is no
recombination between sites; the exact order of sites is thus unimportant.

The infinite-sites model does retain rather powerful historical information: it is possi-
ble to reconstruct for each haplotype which haplotype was its parent. Figure 10.1 shows
an example of haplotypes produced by mutation in the infinite-sites model. The sites
that have mutated are shown, with the new mutant always designated as 1 and the orig-
inal state as 0. The historical information is accessible. For instance, the haplotype 0100
is intermediate between haplotypes 0000 and 0110.

Although it is possible to have a version of the infinite-sites model that has recombi-
nation between the sites, this does not lead to tractable mathematics, so work with the
infinite-sites model generally assumes that there is no recombination. Given that, the
left-right order of sites is arbitrary. Thus, the haplotypes in Figure 10.1 could just as well
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0000

1000 0100

01010110

Figure 10.1: An example of haplotypes produced by mutation in the infinite-
sites model. On the left are the alleles, with the arrows indicating the events
and the locations of mutation indicated by vertical marks. On the right is the
same case with the states at each site indicated by 0 and 1, and only the sites
that actually mutate shown.

have been been (in the order in which the haplotypes are shown across the Figure) 0010,
0000, 1000, 1001, and 1010.

One of the consequences of the infinite-sites model is that each mutational event gives
rise to at most one additional haplotype. “At most”, because some of the haplotypes can
be lost by genetic drift. For any given pair of sites, there can be only three combinations
of states. Thus, in the Figure, sites 1 and 4 show three different combinations: 10, 00, and
01. Combination 11 could arise for these two sites only by recombination, as recurrent
mutation is not allowed in the model. Since recombination is assumed to not be present
within a locus, no more than three combinations can be present at two sites. It can be
shown that if all pairs of sites pass the three-state test, the set of haplotypes can have
arisen by mutation in an infinite-sites model.

We can test whether a set of sequences could possibly result from an mutation in
an infinite-sites model by asking, for each pair of sites, how many states are present. If
some DNA haplotypes that have no more than two different bases present at each site
have, at sites 12 and 18, states CA, CG, AG, and GG, then they fail the test. This three-
state test was introduced by Hudson (2001); it is a version of a test introduced earlier
in systematics by E. O. Wilson (1965). Strobeck and Morgan (1978) have shown that in
a model with multiple sites, intragenic recombination may have a substantial effect in
generating new sequences in addition to the effect of mutation.

Before showing how models such as these may be used in molecular population
genetics, we need to introduce the standard model for genealogies of gene copies, the
coalescent.
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X.4 The Coalescent

The presence of possibilities of inferring the history of mutations means that we can
to some extent see the ancestry of the sequences in a population sample. If we have a
segment of DNA that does not undergo recombination very often (and we will see how
often this is), then the ancestry of the sequences in a sample forms a tree. It is not a
phylogenetic tree, because the sequences at the tips of its branches are not from different
species. We have seen, in chapter VI, that a pair of gene copies in an isolated random-
mating population will be identical by descent an average of 2Ne generations ago. This
classic result of Sewall Wright’s has more recently been extended in an important result
by J. F. C. Kingman (1982a, 1982b, 1982c). It characterizes the tree of ancestry of gene
copies in such an isolated population.

Kingman’s result is an approximation, but a very accurate one in most cases. Con-
sider the lineages of ancestry from n copies of a gene, in a population of size N, where
n � N. Each copy will have such a lineage, extending back to a parent, a grandparent,
a greatgrandparent, and beyond. It is important to realize that we are talking about
the lineage of copies which are traced back to previous copies, not individuals traced
back to previous individuals. Figure 10.2 shows three such lineages of gene copies in
a population of 12 individuals. Each individual has two immediate ancestors, but each
gene copy has only one (for example your maternal copy of the Hemoglobin β locus may
come from your mother’s father, and specifically from his paternal copy, which comes
in turn from his father’s maternal copy, and so on.

The figure shows a correct simulation of a population that reproduces according to
the Wright-Fisher model, and the ancestry of three copies of the gene. These lineages
combine as one goes backwards, until there is only a single lineage. This process of the
merging of lineages is called a coalescent, a term introduced by Kingman.

In the Wright-Fisher model each lineage in effect “chooses” its immediate ancestor,
both in terms of choosing the parent individual and choosing the gene copy within that
individual. There are 2N copies of the gene to choose from. We may ask what is the
probability that, in a given generation, two copies “choose” the same parent copies. If
there are n copies and the first two of them happen to be the ones that choose the same
parent copy, the probability of this happening is

1
2N

(
1− 1

2N

)(
1− 2

2N

)(
1− 3

2N

)
. . .
(

1− n− 2
2N

)
(X-15)

because the first copy chooses some parent copy or other (with probability 1), the second
independently happens to choose the same copy (with probability 1/(2N)), the third
chooses a parent copy different from that one (with probability 1− 1/(2N)), the fourth
chooses a parent copy different from those two copies, and so on. This is only one of
the n(n − 1)/2 possible pairs of copies that could have the same parent. These events,
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Time

Figure 10.2: The coalescence of lineages in population reproducing according
to a Wright-Fisher model. The dark lines show the genealogy at the gene
level of a sample of three copies of the gene.

which each have exactly two individuals with the same parent, are mutually exclusive,
so we can add their probabilities. Collecting together terms in 1/N and 1/N2 and so on,
we get for the probability that exactly two lineages coalesce in this generation

n(n− 1)
2

1
2N

+ terms in
1

N2 (X-16)

A similar argument yields the probability that three lineages happen to coalesce in
the same generation as

n(n− 1)(n− 2)
6

1
4N2 + terms in

1
N3 (X-17)
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This will be considerably smaller than the probability (X-16) of pairwise coalescence if
(n− 2)/(6N) is considerably less than 1. Probabilities of coalescence of more than three
lineages in the same generation are even smaller. Hence when n � N we need only
consider pairwise coalescences.

A good approximation to the process is that in each generation there is a small proba-
bility n(n− 1)/(4N) of coalescence. If there is a coalescence, it is of two lineages. Which
two? The answer should be obvious – a random pair of lineages. We have a process
that goes back in time, generation by generation, having a constant small probability of
a coalescence. If we ask what the distribution of the time (going backwards) until coa-
lescence is, it is the distribution of the time to the first “heads” in a series of coin tosses
with a small probability of “heads”. The average number of tosses will be the reciprocal
of the heads probability, 4N/(n(n − 1)).

Technically the distribution is a geometric distribution, but it is excellently approxi-
mated by an exponential distribution with the same mean. An exponential distribution
is the distribution of the time until a random event that can occur at any point in a
continuous time, such as the time until the next radioactive decay detected by a Geiger
counter. Making that approximation, we get a process which goes back an exponentially
distributed number of generations, with mean 4N/(n(n − 1)), then coalesces two ran-
dom lineages. At that point there are now n− 1 lineages. It is obvious that the process
now continues, but with n− 1 replacing n throughout the mathematics. So the next coa-
lescent event, proceeding backwards, occurs after a time that is exponentially distributed
with mean 4N/((n− 1)(n− 2)), and involves two random lineages. This continues until
there are only two lineages left, and these coalesce after a time that is exponentially dis-
tributed with mean time 2N generations, which is precisely the time predicted in Sewall
Wright’s original work.

Figure 10.3 shows such a coalescent. The time uk is exponentially distributed with
mean 4N/(k(k − 1)).

How long will it take for the sample of n genes to coalesce to one copy? We can get
an idea by adding up the mean times. Noting that 1/(k(k − 1)) = 1/(k − 1)− 1/k, we
find that

4N
n(n− 1)

+
4N

(n− 1)(n− 2)
+

4N
(n− 2)(n− 3)

+ · · ·+ 4N
2

= 4N
(

1
n− 1

− 1
n
+

1
n− 2

− 1
n− 1

+
1

n− 3
− 1

n− 2
+ · · ·+ 1

1
− 1

2

)

= 4N
(

1− 1
n

)
.

(X-18)

The expected time for a whole population to coalesce is thus nearly 4N generations.
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Figure 10.3: Kingman’s n-coalescent process, an approximation to the geneal-
ogy of gene copies in an isolated random-mating population

A similar process applies to mitochondrial genes, which are effectively haploid and
are only descended from the females in the population. One simply replaces 4N by 2Nf ,
so that the time to coalescence is about 4 times less.

THE APPROXIMATION. The accuracy of the coalescent as an approximation to the
genealogical tree of gene copies in a Wright-Fisher model has been investigated by Fu
(2006). The approximation, which is quite accurate, becomes more so the smaller n is
compared to N. Technically it is a diffusion approximation. If we take N → ∞, the time
for n lineages to coalesce to fewer than n does not approach a limit, because it has mean
4N/(n(n − 1)), which becomes infinite. But if we make the same time scale change that
a diffusion approximation does (as we saw in Chapter VII), there is a limit: if time is
measured in units of N generations, then the distribution approaches an exponential
distribution with mean 4/(n(n − 1)) of these units. The distribution then converges.
Note that this same limit also guarantees that with probability 1, the coalescence involves
two lineages and not more.

This change of time scales is often ignored. It is often good enough for practi-
cal purposes to say that the coalescence time is exponentially distributed with mean
4N/(n(n − 1)), as I have done above. Many other complications in the breeding sys-
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m21 m32

m m12 23

1 2 3

Figure 10.4: Migration and coalescence in three populations. Looking back-
ward, the events are, in order, coalescence in population 3, coalescence in
population 2, migration to population 1 from population 2, migration to pop-
ulation 3 from population 2, coalescence in population 3, migration to pop-
ulation 2 from population 1, coalescence in population 1, and coalescence in
population 2.

tem can be handled by simply replacing the actual population size N with the effective
population size Ne.

X.5 Coalescents with migration

If there are two or more populations, with constant rates of migration mij from popula-
tion j into population i, the coalescent distribution of genealogies is easy to obtain. As
we go back in time, with ni lineages in population i, whose size is Ni, there is a constant
rate n1(n1 − 1)/(4N1) of coalescence in population 1, n2(n2 − 1)/(4N2) in population 2,
and so on for all the populations. There is also a constant rate mij, for each lineage in
population i, of events in which it proves to be newly arrived from population j by a
migration event at that time. Figure 10.4 shows a series of events in three populations in
which there is migration and coalescence.

We can use this figure to show how to draw a genealogy in a coalescent with three
populations. We start at the top. There are 3 lineages in population #1, 2 in population
#2, and 4 in population #3. In population #1, the 3 lineages have a rate 3× 2/(4N) of
coalescence. Each of these 3 also has a rate m12 of migration events (we are looking
backwards). Likewise, in population #2, the rate of coalescence is 2/(4N) and the total
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rate of migration events is 2m21 + 2m23. In population #3, the rate of coalescence is
4× 3/(4N) and the rate of migrations is 4m32.

We don’t draw genealogies separately for the populations. Instead we take the total
rate of occurrence of events:

6
4N

+
2

4N
+

12
4N

+ 3 m12 + 2 m21 + 2 m23 + 4 m32 (X-19)

consider the time back to the next (i.e., previous) event to be drawn from an exponential
distribution with this rate of events. When that time is drawn, we then must decide
which event happened. It is like sitting waiting for a telephone call, when the rate of
events is 0.02 business calls per minute and 0.01 personal calls per minute. Their total
is 0.03, so we will wait an exponentially distributed length of time with mean 1/0.03 =
33.333 minutes. When a call occurs, it has probability 0.02/0.03 = 2/3 of being a business
call, and 0.01/0.03 = 1/3 of being a personal call.

So if the total rate of events is 5/N + 3 m12 + 2 m21 + 2 m23 + 4 m32, the probability
that the event is a coalescence in population #1 is 6/(4N) divided by this, and so on. We
choose among the events in proportion to their rates of occurrence. Having chosen an
event (in the case of the genealogy shown in the Figure it was a coalescence in population
#3), we change the genealogy by carrying out the coalescence. If it had been a migration
we would move the lineage into the appropriate population. Now there are 3, 2, and 3
lineages in the three populations. We recalculate the rates of events accordingly, and also
recalculate their total rate. Then once again we draw the time back to the next (previous)
event, and again draw what kind of event it is. This continues until the last remaining
lineages coalesce and there is only one lineage.

Coalescents with migration are easy to sample in this way. Their properties are less
easy to derive mathematically. Takahata and Slatkin (1990) could derive the mean time
to coalescence for two lineages, one from each of two populations, but they found no
simple form for the density function of the time to coalescence. It would have to be a
mixture of sums of different numbers of exponential densities, depending on how many
migration events occurred on the way back to the coalescence. Wakeley and Lessard
(2006) have found that if there are low rates of migration, the genealogy of samples from
multiple populations involve two limiting processes, coalescence within populations and
a longer-term coalescence between lineages ancestral to each population.

X.6 Coalescents with population growth

If there is only a single population, but it is changing size, the coalescent is also compli-
cated. The rate of coalescence is no longer constant as we go back in time. Instead, if the
population size is N(t) when we have gone back t units of time, the rate of coalescence
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at that moment, for k lineages, is k(k − 1)/(4N(t)). If we pass through a population
bottleneck where N(t) is small, there will be a higher rate of coalescence in that period.

The simplest way of drawing a genealogy is to imagine that, when population size
is small, it is as if the time clock is running faster, so that there is more opportunity for
coalescence. Following that line of argument, the total opportunity for coalescence, back
to actual time t, can be calculated and equated to a fictional time τ that would give the
same opportunity for coalescence in a population that had constant size:

k(k − 1) τ

4N(0)
=

∫ t

0

k(k− 1) u
4N(u)

du (X-20)

where the variable of integration, u is time back (not mutation rate). What this does
is to add up the total rate of coalescence back to time t, and allow us to calculate τ, a
number of generations in a population of constant size that would give the same amount
of coalescence. Of course the k(k − 1) and the 4 can be eliminated.

For a population that is growing exponentially at rate g as we go forward in time,

N(t) = N(0) exp(−g t) (X-21)

in which case we can use (X-20) to calculate that

τ =
1
g
(
egt − 1

)
(X-22)

To draw a coalescent genealogy, we use the constant population size N(0) and draw a
genealogy. On going back to a coalescence at time T, we consider this as the fictional time
τ and solve for what the real time would have been, using equation X-22 and solving
for t in terms of τ. A somewhat more extended version of this derivation is given in my
book on phylogenies (Felsenstein, 2004, pp. 460-461).

This false-time-scale argument was developed by Kingman (1982c) and is also de-
scribed by Slatkin and Hudson (1991). They pointed out that with exponential popu-
lation growth in which 4N(0)g is substantial, the shape of the coalescent tree becomes
closer and closer to a “star” tree which has all of its splitting near the base.

RECOMBINATION. In the arguments so far, there has been no recombination within
a locus. Each gene copy was descended from a single gene copy in the previous gen-
eration. Suppose that there was a recombination between sites 221 and 222 in a locus,
but no others occurred all the way back to coalescence. The front end of the gene, the
first 221 sites, have an ordinary coalescent. For the rest, we follow the same genealogy,
except for the lineage leading back to the recombination event. When we get back to that
event, the rear end of the gene, say sites 222 to 1000, come from a different copy in the
immediate parent. Following their ancestry back one has a different coalescent lineage.
It goes back and ultimately coalesces with one of the other lineages.
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1 142 143 417 418 562

Figure 10.5: Three coalescent trees generated by two recombination events
along a chromosome during the ancestry of four haplotypes. The recombi-
nation events are the gray disks. Note that one lineage becomes a “ghost”
lineage after the first recombination, but its bottom part and a coalescent
event are restored to relevance after a new lineage coalesces with it following
the second recombination.

Thus there is an ordinary coalescent for sites 1 to 221, and another one for sites
222-1000, which differs by having one lineage unhooked and then allowed to coalesce
elsewhere. Figure 10.5 shows the result of two recombination events. As one moves
along the chromosome, one has one coalescent, then another, and then a third. Note that
some coalescent events that were in the first coalescent and not in the second show up
again in the third.

As one moves long the chromosome and passes points where, in the coalescent an-
cestry, there was a recombination, the genealogical tree gradually changes. Moving far
enough along the chromosome, the tree becomes very different.

TREES AND D’S. How far along the chromosome is enough for this? We can imagine
two sites far enough apart that they have recombination fraction r, in a population of
size N. At each site there is a straightforward coalescent – the question is whether these
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are the same. Following a single lineage down to the root of the coalescent is about 4N
generations. The expected number of recombination events between these sites in 4N
generations is 4Nr. When this number exceeds 1, we expect the two sites to become
separated on most lineages before either coalesces. It turns out that 4Nr > 1 defines the
amount of recombination at which sites have substantially different coalescent trees.

Recall from Chapter VIII that this is also the condition for two sites to have substantial
linkage disequilibrium generated by genetic drift. This is not an accident. When sites are
in linkage disequilibrium, it is because they share genetic drift events in their ancestry,
because they trace back to the same ancestors. Shared coalescent trees and noticeable
D’s indicate the same associations.

But how far is this? Recall that in the example in Chapter VIII, if we have an organism
with one recombination every 100 million bases in each generation, and an effective
population size of 100,000, the distance along the chromosome at which 4Nr = 1 is
when r = 1/(4N), which is a mere 250 bases. However, if recombination has “hot
spots”, the regions between those hot spots will be longer, and the recombinations will
be clustered in the hot spots, where the tree will change rapidly.

The upshot of all this is that no one locus shows us the tree of ancestry of the species.
Instead each region of the genome has a different tree, going back to many different
coalescent events. There may be a mitochondrial Eve, but there is a Y-chromosome
Adam (who did not know Eve and lived at a different time). There is also a Cytochrome
Sam and a Hemoglobin Helen, and many others. If trees change, say, every 10,000 bases,
your ancestry involves about 320,000 different trees. If you happen to discover the tree
for one region of the genome, you ought to think twice (or perhaps 320,000 times), before
claiming that it shows “the ancestry” of the species.

THE ANCESTRAL RECOMBINATION GRAPH. Taking all the trees for a set of hap-
lotypes, we can superimpose them and make a graph showing recombination events.
Each recombination event is a fork splitting downwards. Below each event, we indicate
which sites have ancestry along each lineage. Figure 10.6 shows this for the trees from
Figure 10.5. It is possible to work back through time, drawing the ancestral recombina-
tion graph. The process is very similar to that used for coalescents with recombination.
You need to know, at each time in the past, what are the possible events that can occur
and their rates (the probability of occurrence per unit time). For example, in the graph
in Figure 10.6, as we work backward in time, down the graph, the events are

1. a recombination separating sites 417 and 418,
2. a coalescence of lineages,
3. a recombination separating sites 142 and 143,
4. a coalescence of lineages,
5. a coalescence of lineages, and
6. a coalescence of the remaining two lineages.
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Figure 10.6: The ancestral recombination graph for the case shown in Figure
10.5. Each lineage lists the sites that have their ancestry along that lineage.

If we have generated this graph down as far as event number 4, at that point we have
4 lineages. The first has all sites 1-562, the second has sites 1-142 and 418-562, the third
has sites 143-417, and the fourth has all sites 1-562. There is then a total rate 4× 3/(4N)
of coalescence of lineages. There is also a rate of recombination. In the first lineage
there are 561 intervals between bases at which recombination can happen. The second
may look as if it can have recombination in any of (142-1)+(562-418) places. But not
so: a recombination between sites 142 and 418 does have an observable consequence,
so we have to count them too. There are actually 561 places where there could be a
recombination in that lineage. The third lineage has 417-143 = 274 places, and the fourth
has 561 places. Thus the total rate of recombination is the rate r of recombination per
base multiplied by 561+561+274+561 = 1,957.

To generate the next event down the recombination graph, we need only draw an
interval of time from an exponential distribution whose mean is 1/(3/N + 1957r). Then
we need further random numbers to determine whether the event is a coalescence (as it
was on the graph in the Figure) or a recombination. For each of those we need to choose
which lineages coalesce, or which interval of the 1957 suffered the recombination.

Ancestral recombination graphs were first discussed by Hudson (1983). He also pro-
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duced a computer program that has been the basis for most subsequent programs simu-
lating these graphs. A more detailed mathematical treatment will be found in the paper
by Griffiths and Marjoram (1997).

FURTHER READING ON COALESCENTS. My book on phylogenies (Felsenstein,
2004, Chapters 26-28) may be consulted for a more detailed description of the coales-
cent. Hein, Schierup, and Wiuf (2004) have written the first book devoted entirely to
the coalescent. It contains many clear and illuminating descriptions of the population
genetic theory involved. A more recent book by Wakeley (2008) is a strong competitor,
with particularly clear explanations and examples.

X.7 Some summary statistics

In the first years after DNA sequences became available, the most widely used meth-
ods of estimating population parameters such as 4N and the neutral mutation rate μ

were to compute summary statistics. We can use what we know about the coalescent
to simplify these arguments. Generally these estimators are examples of the Method of
Moments. This approach computes the expectation of the statistic in terms of our param-
eters, equate it to the observed value, and solve for the parameters. Although tempting
because it is often easy to do, this approach is usually lacking in statistical power.

NUCLEOTIDE DIVERSITY. Kimura (1968b) introduced the nucleotide diversity π,
defined as the average number of differences per site between pairs of sequences drawn
from a sample. The expectation of this quantity is easy to compute under neutral models
of substitution. As it is the average of all pairs of sequences, its expectation is the
expectation of any pair, say the first two sequences. If the two sequences coalesce t
generations ago, the probability density for t will be the usual coalescent density

f (t) =
1

2N
e−

t
2N (X-23)

For a Jukes-Cantor model, we can simply average the fraction of sites different in a
total time of 2t generations (down t and back up another t), weighting by this density
function:

E[π] =
∫ ∞

0

1
2N

e−
t

2N
3
4

(
1 − e

−4
3

μ(2t))
dt (X-24)

Collecting terms this becomes

E[π] =
∫ ∞

0
e

3
8N
− t

(
1

2N

)
dt −

∫ ∞

0
e

3
8N −t

(
1

2N
+

8
3

μ

)
dt (X-25)
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which is easily evaluated and turns out to be

E[π] =
3
4
− 3

8N
1

1
2N + 8

3μ
, (X-26)

and this in turn works out to be

E[π] =
Θ

1 + 4
3Θ

(X-27)

where Θ = 4Nμ. Thus for small values of Θ we can simply estimate it as π, while for
slightly larger values we can use:

Θ̂ =
π

1 − 4
3 π

(X-28)

Note that what we can estimate is not either μ or N, but instead their product Nμ,
here used in the more natural form of 4Nμ. This can be seen by thinking about the
coalescent genealogy. If we double N, the coalescent gets twice as deep. If at the same
time we halve μ, we expect half as many mutations per site per unit time, and so we
expect the same total number of mutations to be visible. Since what we see in a contem-
porary sample is the pattern of differences caused by mutation, these two cases will be
indistinguishable. The product Nμ is thus what we can actually infer.

NUMBER OF SEGREGATING SITES. Watterson (1975) introduced this statistic, using
the infinite-sites mutation model which he introduced in that paper. One takes the
sample of n sequences and counts at how many sites there is variation. Consider the
sequences to be mutating according to the infinite-sites model, so that each mutation is
a different site. What is the expectation of the quantity S, the number of segregating
sites? All mutations can be seen, as none ever obscure each other or reverse each other.
So the expected number of segregating sites is the expected number of mutations on the
coalescent tree before all lineages coalesce into one.

Suppose that the total mutation rate along the sequence is U. We can compute the
expected numbers of mutations in each of the n − 1 coalescence intervals. In the one
which has k lineages and coalesces to k − 1, the expected time is 4N/(k(k − 1)) and
there are k lineages having that length, so the expected total tree length in this interval
is 4N/(k − 1). The expected number of mutations in that interval is U times this, or
4NU/(k − 1). Adding up over all intervals, from n lineages down to the bottommost
one that has 2 lineages:

E[S] = 4NU
(

1
n− 1

+
1

n− 2
+ · · ·+ 1

3
+

1
2
+

1
1

)
. (X-29)
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To make a method-of-moments estimator, we simply divide S by the quantity in paren-
theses to get a quantity that has expectation θ = 4NU:

θ̂ = S
/(

1 +
1
2
+

1
3
+

1
4
+ · · ·+ 1

n− 1

)
, (X-30)

It has become conventional in population genetics to have θ be computed as the product
of 4N and the total mutation rate of the sequence. Note that to make it into 4Nμ, where
μ is the mutation rate per site, it is necessary to divide by the number of sites.

As an example, consider a set of sequences that evolved in a population where the
per-site value Θ = 0.003. In a simulated sample of 10 sequences of 500 sites evolving
according to a Jukes-Cantor model, I found 6 sites varying, with a mean pairwise differ-
ence of 0.008533. Using (X-28) the estimate of Θ is 0.00863. Using Watterson’s estimator
we would get θ = 6/(1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9) = 2.1209.
However is this per-locus, so we would get an estimate of Θ = 0.004242 once we divide
by 500. Both of these are higher than the true value, with the Watterson estimator being
closer. They are not identical, showing that they respond to somewhat different aspects
of the data. As Watterson’s estimator is derived from a model that does not allow mul-
tiple “hits” at one site, we would expect it to be, on average, a bit low. However, that is
unlikely to be an important effect for values of Θ this small.

Interestingly, it is possible to argue in a similar fashion that the estimator of Θ should
be the same, even if the sequences are known to undergo recombination. At each base,
the probability that the site is segregating is as given above, and since S is the sum over
sites, its expectation is not affected if the sequence has recombination causing different
sites to have different coalescent genealogies.

TAJIMA’S TEST. Tajima (1989) uses these two estimates of Θ to test the neutral mutation
theory. Taking the difference between the nucleotide diversity and Watterson’s estimator,
he uses formulas for variances of these estimators, and derives one for their covariance.
He is then able to compute a standard deviation for their difference, and divide by
this. If we have deleterious mutants at low frequencies in the locus, these would be
expected to increase the number of segregating sites without having much impact on the
mean number of differences between sequences. This will cause his statistic to become
negative. He argues that balancing selection on some sites at this locus would make the
statistic tend to be positive.

Tajima’s test is fairly widely used. It is fairly robust and simple, though it does
require that we have only a single population.

THE SITE-FREQUENCY SPECTRUM. Neutral mutation and genetic drift predict the
distribution of gene frequencies in an isolated random-mating population, and this can
be used to predict the distribution of outcomes in a sample of n copies from the pop-
ulation. Usually this is done using the infinite-alleles model and the elegant theorems

476



by Ewens (1972), one of the high-water marks of theoretical population genetics. This
distribution of sample outcomes can then be compared to SNPs found in samples.

For simplicity, and to show that the result holds more broadly, I will derive it for a
single site that evolves according to a Jukes-Cantor model of mutation. One of the conve-
nient properties of that model is that we can easily derive the distribution of population
gene frequency of one of the four bases, say C. In a Jukes-Cantor model with four bases,
we can simply lump the other three bases, A, G, and T and consider then to be a single
allele, not-C. For those two alleles, we then see that C has probability μ of mutating to
not-C, and not-C has probability μ/3 of mutating to C. The resulting distribution is then
available from equation VII-119. In fact it is exactly the distributions shown in Figure
7.5, where the probability reverse mutation is 1/3 of the probability of forward mutation.
The density function will be

φ(p) = K p4Nμ−1(1− p)
4
3 Nμ−1 (X-31)

where p is the frequency of the C allele (and using N for the effective population size).
When we take a sample from a population that has gene frequency p, the probability

of finding C a total of i times in a sample of n copies will of course simply be the binomial
sampling probability

Prob (i | n, p) =
n!

i!(n− i)!
pi(1− p)n−i (X-32)

To get the overall probability of i copies, averaged over the distribution of p, we have
to multiply these two and integrate over all possible values of p. Moving the constants
outside the integral, this is

Prob (i | n) = K
n!

i!(n− i)!

∫ 1

0
p4Nμ−1(1− p)

4
3 Nμ−1 pi(1− p)n−i dp (X-33)

The integral can be rewritten by collecting terms in p and in 1− p:

Prob (i | n) = K
n!

i!(n− i)!

∫ 1

0
pi+4Nμ−1 (1− p)n−i+ 4

3 Nμ−1 dp. (X-34)

The integral is well-known, from the theory of Beta distributions, to be

Γ(i + 4Nμ) Γ(n − i + 4
3 Nμ)

Γ(n + 16
3 Nμ)

. (X-35)

The result is

Prob (i | n) = K
n!

i!(n− i)!
Γ(i + 4Nμ) Γ(n − i + 4

3 Nμ)

Γ(n + 16
3 Nμ)

. (X-36)
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We are interested only in the relative values for different numbers of copies of allele
C, and we will rescale these to add to 1. So we can aggregate all the terms that lack i
into a constant K, and then we have

Prob (i | n) = K
Γ(i + 4Nμ) Γ(n − i + 4

3 Nμ)

i!(n− i)!
(X-37)

That is fairly simple, but we can do better if we allow μ to be small. In eukaryotes the mu-
tation rate per base is in fact about 10−8, so this should be reasonable. As μ approaches
0, the numerator terms become Γ(i)Γ(n − i). For integers, it is a well-known property of
the Gamma function that Γ(k) = (k− 1)! The factorials then cancel appropriately so that
we finally get

Prob (i | n) =
K

i(n− i)
. (X-38)

which is the result found by Ewens (1972; see also his 2004 book, section 3.6.2). This
simple formula allows us to predict this distribution, the site frequency spectrum or SFS.
Computing it is simple: after the quantities 1/(i(n − i)) are computed, we simply sum
them and divide them all by that sum so that they add to 1. We can infer that a similar
result will hold for other, more realistic models of mutation; although this has not been
formally proven, you won’t get me to bet against it.

As SNP chips have made it possible to screen populations for large numbers of SNP
loci in ever-larger samples, the SFS has become more widely used. In most cases there
are only two alleles at each SNP locus, and in most of thoses cases we cannot tell which
allele arose most recently. It is usually necessary to use the frequency of the rarer allele,
so that the observed allele frequencies are less than or equal to 0.5. If our data are
summarized in this way, we need to fold the expected distribution around 0.5, so that
there are classes only for values of i that do not exceed n/2. This doubles the height of
every class in our histogram, except for the 0.5 class if the sample size is even.

As beautiful as this theory is, its application has some limits. Technically it is for a
single population which has reached a stationary state under mutation and genetic drift.
Thus it does not predict the SFS (or the joint SFS) for two or more populations that are
connected by migration. The assumption of a stationary state also makes the SFS incor-
rect for populations that have been changing size, as is certainly the case for most human
populations. Evans, Shvets, and Slatkin (2007) have given differential equations for the
change of the gene frequency spectrum toward its equilibrium. Another interesting at-
tempt to use a combination of simulation methods and diffusion-equations analysis to
cope with these complications has been made by Gutenkunst et al. (2009). Progress has
also been made on developing a theory of joint SFS in two recently-diverged popula-
tions (Chen et al., 2007). But for one population, Myers, Fefferman, and Patterson (2008)
have shown that information about historical population sizes is absent from the site
frequency spectrum.
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The major limitation of the SFS is that it ignores linkage disequilibrium between sites,
particularly nearby sites. There is information in the joint patterns of occurrence of SNP
alleles at nearby loci, and all of that information is lost when we examine loci one at a
time. To retain all information we need full likelihood or Bayesian methods, which we
now will discuss.

X.8 Likelihood calculations

Summary statistics are simple and robust, but are not necessarily efficient. To make an
efficient estimation of Θ we need to ask whether it is possible to compute the likelihood
for a sample of sequences. For most of the 1980s no one seems to have even posed this
question (but see Strobeck, 1984). It is perhaps not surprising that little progress was
made, that summary statistics methods were in use, but is astonishing that no one even
pointed out that likelihood-based estimators were of potential interest.

As we shall see, likelihood (and Bayesian) methods are difficult, but since the work of
Griffiths (1989), Griffiths and Tavaré (1994), and Kuhner, Yamato, and Felsenstein (1995)
they have become practical. They involve sampling a large number of possible genealo-
gies from the huge set of all possible genealogies that could connect the sequences in the
sample. Although they have been slow to be adopted, these methods are the future of
data analysis for sequences sampled within species.

THE LIKELIHOOD. Computing the likelihood under the neutral mutation model
is almost impossible to consider unless we can think of the genealogy underlying the
sample. If we knew the genealogy G∗ that connects the members of the sample, we
could use it to estimate the effective population size Ne (Felsenstein, 1992a). However,
this genealogy is not available to us: it is only hinted at by the sequences, especially if
the number of segregating sites is small, as it often is. For the case of an infinite-sites
model, Griffiths (1989) proposed to compute the likelihood by a recursion which sums
over all possible genealogies. This is possible because, in the infinite-sites model, each
site defines a partitioning of the sequences which reflects a feature of the true coalescent
tree. Griffiths’ recursion method, while an intellectual breakthrough, was not practical
for more samples of more than a few sequences.

In more realistic models of sequence evolution, parallel and reverse mutations allow
any possible sequence sample to have some nonzero probability of occurrence, no matter
what the true coalescent. This rules out use of exact recursions. As we will see, the num-
ber of possible genealogies is so great that, unless there is a remarkable breakthrough
yielding a formula that sums over genealogies, only sampling methods have any chance
to yield usable likelihood or Bayesian methods.

SUMMING OVER TREES. To give a simple idea of the logic involved, let’s consider first
the simple case of two sequences. As above, we are interested in the case of estimation
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of N and μ in a single random-mating population which has maintained its current
size for a long time. With nonrecombining sequences, the coalescent tree is simply two
sequences coalescing, with the coalescence time drawn from an exponential distribution
with mean 2N.

The likelihood is the probability of the two sequences, summed (integrated, in this
case) over all possible coalescence times, with each term weighted by the probability of
that coalescence time:

L = Prob(D |N, μ) =
∫ ∞

0
Prob(t |N) Prob(D | t, μ) dt (X-39)

The term Prob(t |N) is the density function of the exponential distribution with mean
2N. The other term, Prob(D | t, μ) is familiar in phylogenetic inference – it is known
there as the likelihood for this tree. Details of its calculation may be found in my recent
book (Felsenstein, 2004). On larger trees, it can be efficiently calculated by a “pruning”
algorithm that calculates conditional likelihoods recursively down the tree.

For our purposes, we only need to note that since branch lengths in transition proba-
bility formulas for DNA models occur only as products like μ t with the mutation rates,

Prob(D | t, μ) = Prob(D | μt, 1), (X-40)

which simply means that, if the mutation rate is μ, the probability of the outcome in t
units of time is the same as it would be if the mutation rate were 1, but only μt units
of time had elapsed. So if the mutation rate is 10−9 per site, the probability when
108 generations has elapsed is the same as if the mutation rate were 1 per site and 0.1
generations had elapsed.

Putting this into equation X-39 together with the density function of the two-sequence
coalescent, the likelihood becomes

L = Prob(D |N, μ) =
∫ ∞

0

1
2N

e−
t

2N Prob(D | μ t, 1) dt. (X-41)

Changing variables to a new time scale u which is measured in expected numbers of
changes per site, so that μ t = u we replace t by u/μ and dt by (1/μ) du. This leaves us
with

L = Prob(D |N, μ) =
∫ ∞

0

1
2Nμ

e−
u

2Nμ Prob(D | u, 1) du. (X-42)

The essential point about this is that the likelihood turns out to be a function, not of the
quantities N and μ separately, but only of their product Nμ.

Figure 10.7 shows the Kingman distributions of divergence time μt for three different
values of Θ and the probability of getting the two sequences under a Jukes-Cantor model,
when they are 1000 bases long and differ at 5 sites. This is one of the few cases simple
enough to integrate the product of the Kingman densities and the probability of the
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Figure 10.7: Inference from two sequences of 1000 bases that are 0.5% differ-
ent. Left, the Kingman distributions of time of divergence for three different
values of Θ, and also the probability of the sequences for different times of
divergence (dark curve). Right, likelihoods computed by integrating different
priors against that curve. The values for those three values of Θ are shown as
points.

sequences. Integrating these for Kingman densities for different values of Θ, we get the
likelihood curve shown on the right-hand side of the figure, with the three values 0.005,
0.01, and 0.02 indicated by circular points. Note that Θ = 0.005 has a lower likelihood,
because the smaller values of t have too low a probability of giving rise to the observed
data. Θ = 0.01 is the maximum likelihood value; Θ = 0.02 leads us to expect too many
values of t that would lead to too large a divergence of the sequences, so it has lower
likelihood.

In a case this simple, a single numerical integration can allow us to average over our
uncertainty about the coalescent tree. In cases with more sequences, the space of trees
grows much larger. The relevant entities are trees which have their interior nodes in
a particular time order. These are called “labeled histories”, and Edwards (1970) has
shown how to count them. A labeled history is essentially a sequence of coalescences.
When there are n sequences, the number of different possible pairwise coalescences is
simply (n

2), which is n(n − 1)/2. Taking the product of these for n, n − 1, n − 2, . . . , 2
we find that there are n!(n − 1)!/2n−1 possible labeled histories. This can be a very
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large number: for n = 10 there are fully 2.571× 109 of them. Each such tree has n− 1
interior nodes, each of which can slide up and down between the next highest and
lowest of them. As with the two-sequence case, the times of the nodes matter. Thus the
summation over all trees for 10 sequences is actually a set of 2.571× 109 integrals, each
of them 9-dimensional!

Formally, we can write the likelihood in all these cases as

L = ∑
G∗

Prob(G∗|N) Prob(D|G∗, μ) (X-43)

provided that we understand that the summation is over all labeled histories and is
also an integration over all node times within each of these. In general, we can change
the time scale, as we could in the two-species case, scaling time in units of expected
mutations per site. As it did in that case, it removes μ as a separate parameter and
causes it to enter only as the product with N, so that the parameter is again Θ = 4Nμ.
Letting G be the tree with branch lengths in units of expected mutations per site rather
than generations, the equation can then be written

L = ∑
G

Prob(G |Θ) Prob(D |G) (X-44)

These equations were first given by me (Felsenstein, 1988; see also 1992b).
If the summation could be done analytically, and result in a closed-form formula, we

could go forward with this approach straightforwardly. So far, no one has discovered a
way to do this.

MONTE CARLO INTEGRATION. Given that a numerical approach is then needed,
we are faced with a vast number of high-dimensional integrals. Doing even one of them
is extraordinarily difficult by conventional numerical integration. The normal method
is to lay a grid over the space and evaluate heights of the curve at each grid point. For
a one-dimensional numerical integration, one can usually achieve good coverage of the
relevant areas with, say, 1000 points. For a 9-dimensional integration, a lattice with that
many points would allow us only 2 points in each dimension. And we have not one, but
billions of integrations to do.

To deal with such apparently hopeless cases, applied mathematicians have developed
Monte Carlo integration. The general idea is that instead of defining a grid, we sample
points at random from the domain, and evaluate the height of the function above each.
If enough points are taken, this gives us a good estimate of the average height of the
function, and thus of the value of the integral. You can see that if a relatively smooth
function is evaluated over a two-dimensional space such as the floor of a room, a sample
of, say, 1000 points at random from the floor would give a good result. The name
“Monte Carlo” refers to the famous gambling casino, as the method relies heavily on the
randomness.
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However, it is less easy to see what happens with higher dimensionality. One is
tempted, in the present case, to draw trees at random from the Kingman prior, and
evaluate Prob(D |G) for each. Equation X-44 is of this form: the probability of the data
is averaged over the Kingman prior. With a large enough sample this will work, in
theory. In practice, it does not. Results are wildly variable from one run to another, and
are clearly not getting a consistent answer.

The reason appears to be that most of the trees drawn conflict with the data strongly
enough that they make little contribution to the integral. Only a tiny fraction of all
trees group similar sequences together, and these account for most of the area under the
integral. If we evaluated a function over the floor of a room, and the function consisted
of a high peak over one floor tile, but was nearly zero everywhere else, you can see that
a Monte Carlo approach would be likely to fail. Most of the points would be drawn from
places where the function was nearly zero. The estimate of the integral would depend
heavily on exactly how many points were drawn over the one floor tile, and this would
vary greatly from one run to another.

IMPORTANCE SAMPLING. To cope with this problem, importance sampling was de-
veloped. If there were some way of concentrating the sampling in the relevant region,
the integral could be reliably evaluated. You might wonder if this was so. After all,
if many of the points are then concentrated in the part of the domain where the func-
tion if highest, won’t we get a misleadingly large estimate of the integral? This can be
avoided by correcting these samples for their greater concentration in that region. If a
certain area has twice as many points as another, we need to take each of those points as
representative of only half as much area.

Doing this importance sampling correction, the noisiness of the integral is greatly
reduced. We define an appropriate density function g(x) and sample from it. We weight
each of the samples inversely by how dense the samples will be in that region. This is
seen in a simple manipulation of an integral. If the function we integrate is f (x), the
integral of this function can be rewritten as∫

f (x) dx =
∫ f (x)

g(x)
g(x) dx = Eg

[
f (x)
g(x)

]
, (X-45)

as the expectation of a quantity h(x) under distribution g(x) is the integral of the prod-
uct h(x) g(x). So our original integral of f (x) is simply the expectation of f (x)/g(x)
evaluated at points drawn from the density function g(x). The expectation is approxi-
mated by averaging the values of f /g for a large sample of points. If the function g(x)
is chosen carefully enough, it can greatly reduce the uncertainty in the integral. In the
most optimistic case, if g(x) is proportional to f (x), each sample computes the constant
of proportionality, which happens also to be the value of the integral! Only a single
point would be needed. Of course, we are never in a situation this good.
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Figure 10.8: Three contour plots of the same function (in a nonbiological
case) showing (left) a conventional grid for numerical integration, (center) a
random sampling of points over the rectangle, and (right) points randomly
sampled from a distribution that concentrates in the region where the func-
tion is large. The right-hand random sampling makes a much better estimate
of the integral than the other two, if the samples are each weighted inversely
according to how densely points are sampled in that region

Figure 10.8 shows importance sampling in a two-dimensional domain. The leftmost
of the three contour plots shows a function and a rectangular grid of points. The center
plot shows the same function with randomly sampled points. The rightmost plot shows
points concentrated in the region in which the function is high. It should be apparent
that it makes a much more relevant sample than the other two.

COMPUTING LIKELIHOODS. A number of different importance sampling methods
have been developed for likelihoods with coalescents. For many of them, one draws
from an importance density g(G |Θ) a series of coalescent trees G1, G2, . . . , Gn. for some
particular value Θ = Θ0. To estimate the likelihood for other values of Θ one wants to
use this sample to estimate the integral in equation X-44. This is done by computing an
average:

Eg

[
Prob(D |G) Prob(G |Θ)

g(G |Θ0)

]
≈ 1

n

n

∑
i=1

Prob(D |Gi) Prob(Gi |Θ)

g(Gi |Θ0)
(X-46)

Usually a sample of hundreds of thousands of trees G is needed to attain any accuracy.
There are two major variants of this approximation of the likelihood curve. In some

cases we know the function g(G |Θ). In others we know it only up to a constant. This is
possible because the Metropolis-Hastings sampling uses only the ratios of different g’s
for different trees G′ and G.
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A major issue in the likelihood approach is that the sampling is much more accu-
rate when the “driving value” Θ0 is close to the values of Θ for which we need the
likelihoods.

BAYESIAN SAMPLERS. An alternative method that is coming into wide use is to take
a Bayesian approach, where one has a prior distribution Prob (Θ) on Θ. We want to
know what the posterior distribution of Θ is. The easiest way to do this is to consider
the joint distribution of Θ and G, and sample from it. The posterior distribution of Θ is
then approximated by simply taking the pairs (Θi, Gi) and ignoring the G’s. By Bayes’
Theorem,

Prob(Θ, G |D) =
Prob(Θ, G) Prob(D |Θ, G)

Prob(D)

(X-47)

=
Prob(Θ) Prob(G |Θ) Prob(D | Theta, G)

Prob(D)

The last term in the numerator can be simplified to Prob(D |G) if G has its time scale
as average mutations per site, but this is not essential. The denominator is intractable,
but it need not be computed, as we shall note below. One can sample from the posterior
by using Hastings-Metropolis sampling and then the denominator cancels out, and we
are using the ratio of numerators to do the acceptance and rejection. For the Bayesian ap-
proach, there are no arbitrarily-chosen parameters that control the sampling: it involves
trying both new G’s and new Θ’s.

GRIFFITHS-TAVARÉ INDEPENDENT SAMPLING. The pioneering importance sam-
pling method for coalescents was Griffiths and Tavaré’s (1994) independent sampling
method. It was developed from the exact recursion calculation of Griffiths (1989). They
thought of their method as approximating it by sampling paths through the recursion. It
is not immediately obvious that this can also be seen as importance sampling of genealo-
gies. The sequence of events in their recursion correspond to mutations to particular
bases at particular sites and coalescences of particular lineages in the past. The history
of a set of sequences is described by these events. In choosing a sample path through
the recursion, they are specifying the past history of events.

Their sampler chooses particular sites to have had a mutation, or particular pairs of
identical sequences to coalesce. The original method assumed an infinite sites model.
The use of a DNA sequence model instead was difficult, because they had no bias in
their sampling toward having two different sequences become more similar as they were
followed back into the past. Their sampler did have the proper correction for the prob-
abilities of events, but when used on sequence models it would sometimes have a very
low chance of coming up with a sequence of events that accounted for a reasonable
fraction of the total probability.
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Nevertheless, their sampling method was not only pioneering, it had some advan-
tages. The importance sampling function g is known, and there is no undetermined
constant of proportionality. Each step in the sampling is quite rapid. Most significantly,
each sample path, each reconstruction of the past history of events, is independent of
the others. Thus their method cannot get stuck in one region of tree (or history) space.
This category of methods are sometimes called IS (Independent Sampling) methods.

These advantages are counterbalanced by the frequency with which an improbable
sequence of events is reconstructed, which can make a very large number of samples
necessary. Griffiths and Tavaré’s paper allowed not only for a constant population size,
but also could estimate population growth rate in an exponentially growing population.
Griffiths and Marjoram (1997) extended the method to deal with recombining coales-
cents, using ancestral recombination graphs. Bahlo and Griffiths (2000) extended the
method to multiple populations with migration.

Stephens and Donnelly (2000) developed a biased reconstruction of mutations which
went far towards making reasonable reconstructions. It tended to reconstruct more often
mutations that carried a DNA sequence toward the others. The bias of their sampling
was correctly compensated for in the importance sampling weighting. The result was a
tenfold speedup of the method.

MARKOV CHAIN MONTE CARLO SAMPLING. Another approach was proposed
by Kuhner, Yamato, and Felsenstein (1995). We used Metropolis-Hastings sampling to
draw points from the distribution of genealogies. The Metropolis algorithm involves
proposing changes from a current genealogy G to a new one G′. If we are trying to
sample from an importance sampling density g(x), we evaluate the density at the new
point and at the old one. If g(G′)/g(G) is greater than 1, we accept the new point (and
thus move to the new genealogy G). If g(G′)/g(G) is less than or equal to 1, we draw a
random fraction R, accepting the new point when R < g(G′)/g(G). This has the effect
of accepting a fraction g(G′)/g(G) of the time. In effect, it is a Markov process which
achieves the desired equilibrium distribution. It is of the increasingly popular class of
Markov chain Monte Carlo (MCMC) methods.

It can be shown that if the proposal distribution is able, in principle, to move any-
where in the space, the resulting distribution of points will be the desired distribution
defined by the function g(G). The samples are autocorrelated, so that a large number of
samples may be needed to explore the space. The twin dangers are moving too far and
altering the tree so much that the new tree is highly likely to be rejected, and moving too
little so that one gets stuck in the initial area and does not adequately explore the space.

The importance sampling density used is simply proportional to the product Prob(G |Θ0)×
Prob (D |G) for a driving value. The unknown constant of proportionality turns out to
be the likelihood at the driving value, L(Θ0). This in turn means that, although the
method does not infer the likelihood L(Θ), it infers the likelihood ratio L(Θ)/L(Θ0).
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The proposed moves in this case were erasures of a portion of the tree and its reforma-
tion with possible local rearrangements of branches and changes of times of coalescence.
Later papers extended the method, altering the rearrangement scheme somewhat, to
deal with exponentially growing populations (Kuhner, Yamato, and Felsenstein, 1998),
with migration among two or more populations (Beerli and Felsenstein, 1999, 2001), and
recombining sequences (Kuhner, Yamato, and Felsenstein, 2000).

Each move in these methods is more work than with the Griffiths-Tavaré independent
sampling, as the probabilities of the data sum over all possible past histories of mutation,
using the standard “pruning” algorithms for recursive computation of likelihoods on a
tree. The trees are also necessary autocorrelated, and the possibility exists of failing to
explore the space well enough. On the other hand, the importance sampling density is
closer to the desired form, and most samples will not be wasted.

For further developments (including work on ascertainment correction with SNPs,
haplotype inference, and some remarkable progress on coalescents with natural selec-
tion), the reader may want to consult the review in my book (Felsenstein, 2004, Chapters
26-28). The paper by Felsenstein et al. (1999) goes into some detail on why the Griffiths-
Tavaré sampler is best regarded as carrying out importance sampling. Some of the
material on this particular subject in my book (on page 481 of the book) is incorrect. A
new method of importance sampling (Slatkin, 2002) promises further progress, but this
has not yet been carefully investigated.

needs evaluation

APPROXIMATE BAYESIAN COMPUTATION. A more popular, if less powerful ap-
proach avoids using the full density function Prob (G |Θ)Prob (D |G). Instead it chooses
some easily-computed sample statistics (such as the average heterozygosity). For any
proposed value of the parameter Θ, we do a simple computer simulation to draw a set
of DNA sequences and from that to obtain a value of the statistic S. If the S is suffi-
ciently close to the observed value, that Θ is accepted as a sample from the posterior
distribuion of Θ. This is called Approximate Bayesian computation or ABC. It was first
used in population genetics by Fu and Li (1997) for a single parameter, and extended to
multiple summary statistics by Weiss and von Haeseler (1998). A useful review is the
one by Beaumont, Zhang, and Balding (2002).

The advantage of ABC is that it is fast and relatively easy. The disadvantage is that
the choice of summary statistic needs to be a wise one, or there will be a loss of statistical
power. Nevertheless, the samples from the posterior distribution using ABC are valid
ones, provided the threshold for closeness to the observed summary statistic S is small. If
these are not required to be small, the posterior distribution will be inaccurately assessed.
If they are required to be small, the number of acceptances will be low and the simulation
will need to run longer.

AN OBJECTIVE. When they can be done, sampling methods (both IS and MCMC)
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are the state of the art in statistical inference from population samples of molecular se-
quences. When they are not practical, one must fall back on methods such as ABC. The
sampling methods give hope of a “black box” which will accommodate many of the
possible complications of evolutionary models (multiple loci, diploid genotypes, recom-
bination, population size changes, migration, even simple kinds of natural selection).
The user will specify what evolutionary scenarios to allow and what kinds of data have
been supplied. The user will need to understand the evolutionary models employed,
but may be relatively insulated from having to master the details of the sampling. The
program will then run the sampler and provide a likelihood surface, or a Bayesian poste-
rior distribution, for the genetic or population parameters. We are not there yet, though
many of the pieces have been tested. The great unknown is how much sampling will be
necessary in complicated models, and how long it will take for long stretched of genome.

Exercises

1. If two sequences differ at 65% of their positions and have evolved by a Jukes-Cantor
model, what is the best estimate of the branch length between them?

2. Use the Jukes-Cantor model for the following computation: if two sequences dif-
fer at 10% of their sites, what is the branch length between them? If the second
sequence then evolves into a third one by changing a completely different 10% of
its sequence, what was the branch length between these two (that should be easy)?
Compare the total branch length to the branch length you get when taking the first
and third sequence and considering that they differ at 20% of their sites. Why the
discrepancy?

3. A sample of 5 DNA sequences of 100 sites length has five segregating sites, each
having a single copy of its variant nucleotide. Compute the estimate of θ from Wat-
terson’s number-of-segregating sites estimator. Compute 4Nμ from the nucleotide
diversity. Taking the number of total sites into account, compare these [careful!
you have to alter one of these numbers]. Are they supposed to be the same?

4. There are two populations (of diploid organisms), #1 having 10,000 individuals,
#2 having 1,000 individuals. These population sizes have remained the same for a
long time. We have sampled 6 copies of a gene from population #1 and 4 copies
from population #2.

(a) Using the coalescent approximation, if we have no migration between the pop-
ulations, and we go back in time until we finally find that there are two of the
6 copies in population #1 come from the same copy, on average how many
generations will that be? If we go back in time from the present until all 6
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copies come from the same copy, on average how many generations will that
be?

(b) If we do the same thing in population #2, on average how many generations
will that be? If we go back in time from the present until all 4 copies come
from the same copy, on average how many generations will that be?

(c) What is the probability that, going back from the present, that the first of these
populations (going backwards) to have a coalescence will be population #1?
[Hint: calculate for each population a probability of coalescence per unit time, where
time is scaled in generations. Roughly, this should be the reciprocal of the expected
number of generations until that event. The probability that the first one (going
backwards in time) coalesces in population #1 will be proportional to the probability of
coalescence per unit time in that population, compared to the similar quantity in the
other population.]

(d) Now suppose that there is a 0.0001 migration rate in each direction between the
two populations, so that in each generation there is a probability 0.0001 that
a lineage is newly arrived from the other population. This probability applies
separately to each lineage. What are the relative probabilities, going back one
generation from the present, that (i) There is a coalescence in population #1,
(ii) there is a coalescence in population #2, (iii) there is a lineage in #1 that
is newly arrived from population #2, and (iv) there is a lineage in #2 that is
newly arrived from population #1.

5. For four samples of a chromosome, each with two loci, A and B, that we are fol-
lowing, draw a coalescent tree that includes a single recombination event, such that
the common ancestor at locus A is at a different time than the common ancestor
at locus B. Is that always the case on any two-locus coalescent? Indicate on each
branch of the coalescent which locus or loci that end up in the sampled chromo-
some copies are inherited along that branch. Note that you do not need to specify
which alleles at the loci are present.

Also write out the two coalescent trees for the individual loci. Hint – look at the
section on coalescents with recombination.

Problems/Complements

1. Calculate the expectation of the nucleotide diversity between a pair of sequences
under the Kimura 2-parameter model. How does it depend on the transition/transversion
ratio R?

2. Suppose that a fraction f of the time a mitochondrion comes from the male parent
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instead of the female parent.

(a) What is the probability that two gene copies in different individuals come from
the same copy in the previous generation?

(b) Does this depend on whether the two individuals are both females, both males,
or one of each? Why or why not?

(c) What is the distribution of the number of generations back to coalescence?

(d) If we have a population of 100,000 individuals with a 1% chance that each one
has mitochondria derived from the male parent, what is the mean time to
coalescence of a mitochondrial gene? How much larger is this than it would
be if all mitochondria were derived from the female parent?

3. Consider a Moran model (described in Chapter VI) in which, at each instant in
continuous time, one individual in a haploid population is killed and replaced by
a copy of one of the others. What is the exact distribution of time to coalescence
of two copies? What is the exact process that corresponds to the coalescent? How
does it compare to the coalescent that has the same effective population size?

4. What is the exact distribution of trees from a sample of three gene copies from a
diploid Wright-Fisher model with N = 4?

5. Draw an ancestral recombination graph with one recombination event, in which
two different loci have different times of their Most Recent Common Ancestor
(MRCA).
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Chapter XI

POLYGENIC CHARACTERS IN
NATURAL POPULATIONS

XI.1 Phenotypic Evolution Models

The theory of quantitative genetics is a short-term theory, projecting response to selec-
tion for a few generations starting with a population in linkage equilibrium. It is far
harder to predict long term distributions of quantitative characters or to take linkage
disequilibrium into account. We have already seen in Chapter IX that optimizing selec-
tion will generate linkage disequilibrium. It is in part the realization of that fact, along
with the short-term nature of the theory, which has prevented the application of quanti-
tative genetics theory to natural selection. In the last decade this has begun to change. A
class of models known as phenotypic evolution models has been developed, starting with
the work of Kimura (1965), Slatkin (1970) and Bulmer (1971). These models attempt to
take linkage disequilibrium effects into account, while remaining within a quantitative
genetics framework so that gene and gamete frequencies need not be followed explicitly.
These models approximate the genetics of the trait, some so severely that the genetics
disappears from view, and the model then speaks only of the evolution of phenotypes.
While the proponents of these approaches sometimes regard them as more general than
explicitly genetic models, they seem to involve rather restrictive genetic assumptions in
the ways in which the phenotypes of parents are allowed to affect those of their offspring.

EFFECT OF OPTIMIZING SELECTION. We will have space here only to sketch a sim-
ple case: the balance between optimizing selection and mutation. Optimizing selection
will continually reduce the variance of the selected phenotype. Mutation will increase
it. A balance will be reached between these two forces, and we are trying to find what it
will be. Let us start by assuming that the phenotype in which we are interested follows a
normal distribution with mean zero and variance σ2, so that its distribution has density
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function:
f (x) =

1
σ
√

2π
exp[−x2/2σ2]. (XI-1)

The kind of natural selection to which we expose these individuals is called optimizing
selection. The fitness function is shaped like a normal distribution:

w(x) = exp[−x2/(2S)]. (XI-2)

Thus the highest fitness is at the phenotype which also happens to be the population
mean, namely zero. We make that simplification purely to avoid having to worry about
the mean. In general, terms for the mean do appear in phenotypic evolution models. If
we now look at the distribution of phenotypes among survivors of selection (assuming
the fitness to be expressed through viability, or else weighting individuals by their fer-
tilities), this is easily shown to have a density function proportional to f (x)w(x). This
turns out to be a normal distribution with mean zero and variance

σ2
as = 1/(1/σ2 + 1/S). (XI-3)

Thus, the effect of selection has been to reduce the variance of the phenotype by an
amount depending on the parameter S, which reflects the strength of selection. A small
S indicates strong selection, for then, by (XI-2), fitness will fall off rapidly as the phe-
notype departs from zero. This part of the argument is easy: the difficulties, as well as
the differences between the various models, arise when we ask what this reduction in
phenotypic variance implies for the offspring distribution.

XI.2 Kimura’s model

Kimura (1965) made the pioneering model of the mutation-selection balance in quan-
titative characters. He assumed that the gametes would have a normal distribution of
genetic effects. If we take the reduction of the phenotypic variance that is implied by
equation (XI-3), half of it will come by creating a negative correlation between the effects
in the two gametes, and half by reducing the variances of the gamete effects, by elimi-
nating more extreme haplotypes. So the change in genetic variance from selection is (if
there is no environmental variance)

1
2

(
G− GS

G + S

)
= −1

2
G2

G + S
(XI-4)

If we then assume that mutation adds U to the genetic variance, the net change in the
genetic variance of an individual is

−1
2

G2

G + S
+ U. (XI-5)
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At equilibrium we can equate this to zero, and obtain as the equilibrium genetic variance
Kimura’s result:

G = U +
√

U2 + 2US (XI-6)

Note that this derivation assumes that the gametes remain normally distributed. As we
will see, this is not uncontroversial.

XI.3 Lande’s model

The most sophisticated development of the normally-distributed phenotypic evolution
models was by Lande (1976b), who made them model changes due to linkage disequi-
librium. If the reduction of phenotypic variance is accomplished mostly by changing
the gene frequencies, then we should expect the variance to continue at its new value
in the next generation. On the other hand, if it reflects primarily the creation of linkage
disequilibria, then we expect that as part of that disequilibrium breaks down the vari-
ance should return part of the way towards its previous value. It is here that the genetic
assumptions become critical. We will describe Lande’s scheme briefly, then present the
equations for a restricted version of it.

Lande starts by assuming that the phenotype is the sum of individual allele effects
at n loci. There are no dominance effects allowed in his model. The allele effects are
then assumed to follow a 2n-variate normal distribution. This is a strong simplifying
assumption. It can be regarded as an approximation to the situation we would have
if there were two alleles per locus. It could not then be exact because, among other
things, the effects at one locus are then not normally distributed. Alternatively, one
could imagine that there were an infinite number of possible alleles at each locus, and
that the allele effects follow a normal distribution. A multivariate normal distribution is
completely characterized by its means, variances and covariances. Thus, as long as we
can approximate the joint distribution of allele effects as being 2n-variate normal, we can
obtain a complete description of the distribution if we know the mean and variances at
each of the 2n sites, and the pairwise covariances between them.

In this model it is usual to assume that there is random mating. This ensures that
the covariances between sites on different gametes are zero at the beginning of each
generation. The means and variances reflect the gene frequencies at each locus, and the
covariances between sites on the same gamete are the equivalent of linkage disequilibria.
In Lande’s model we expect linkage disequilibrium to arise when optimizing selection
acts. Suppose that capital letters represent alleles which increase the phenotype. An
individual copy of A is more likely to survive if it is in an individual which has a b than
a B at the next locus, so that after selection there will be a lack of independence between
loci. This extends to genes on different gametes as well: a A is more likely to survive
if the gamete opposite it (the one which came from the other parent) has a b than if
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it has a B. This is true as well for two genes at the same locus: an Aa is more likely to
survive selection than an AA, so that the two genes at one locus are not independent after
selection. Lande is able to compute the means, variances, and covariances after selection
in terms of the means, variances, and covariances before selection. This involves matrix
algebra, and is too complex a derivation to give here.

A SYMMETRIZED VERSION. Instead, let us impose some further restrictions. Let us
assume that the loci are completely exchangeable: all have the same means, all the same
variances, and all pairwise covariances are equal. This state of complete symmetry can
only be maintained if all pairs of loci have the same recombination fraction. That in turn
will only be true if all pairs of loci are completely linked or all completely unlinked.
Suppose that the n loci are all unlinked. We now have a model in which the variance at
each of the 2n genes is v, and the covariance (before selection) between pairs of genes
from the same parent is c, and the mean effect at each gene is m. Under this symmetry all
of Lande’s matrix expressions become much simpler, though we shall still not give them
here. A simple result emerges (readers interested in its derivation can consult Appendix
2 of the paper by Felsenstein, 1979b). Let us focus on the changes in the variances and
covariances. The optimizing selection will reduce the variances v, make the covariances
c more negative, and create a negative covariance between genes which are on opposite
gametes. The generalization which emerges for the case of exchangeable loci is that
there is an equal reduction x in each of these terms. Thus, after selection v′ = v− x and
c′ = c− x. Also, a negative covariance of −x is created between each pair of genes on
opposite gametes (these covariances being zero before selection, due to random mating).
Recombination will not affect the variances v, but it will have an easily calculable effect
on the covariance. Two genes at different loci in the gametes produced by a survivor of
selection are equally likely to have come from the same or from opposite gametes. So

c′ =
1
2
(c− x) +

1
2
(−x) =

1
2

c− x (XI-7)

At the beginning of the next generation, after these gametes have combined at random,
the phenotypic variance will consist of two parts. One part is due to the variance terms.
There are 2n of these, each being v′. The other part of the phenotypic variance is due
to the covariances c′. There are 2n(n − 1) of these. Let us call these two parts of the
variance respectively V and C. It should be clear from all of this that V will be changed
by −2nx by selection, and C by −2n(n− 1)x. It remains to determine x. Recall that the
total change of phenotypic variance is divided equally among the 4n2 possible terms.
The total change of variance can be computed from (XI-3) to be −σ4/(σ2 + S). Since
σ2 = V + C, we have

4n2x = (V + C)2/(S + V + C) (XI-8)
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so that we finally obtain for the changes in V and C under selection and recombination:

V ′ = V − 1
2n

(V + C)2

S + V + C

C′ =
1
2

C − n− 1
2n

(V + C)2

S + V + C

(XI-9)

EFFECT OF MUTATION. Now we can easily add the change caused by mutation.
Suppose that we regard mutation as adding a random amount to the effect of each gene.
If e and e′ are two such random increments, then since Cov (x + e, x + e′) = Cov (x, x′),
the mutation effects do not alter the covariances. Since Var (x + e) = Var (x) + Var (e),
they do increase the variances. Thus we model mutation by saying that it adds a quantity
with mean zero and variance u to each gene effect. The net effect is to add U = 2nu to
the total of the variances, so that if mutation follows selection and recombination in the
life cycle we can write simply

V ′′ = V ′ + U. (XI-10)

When the whole system reaches equilibrium (which we assume it will), we must have
V ′′ = V and C′ = C. Using (XI-9) and (XI-10) this gives

V ′′ −V = 0 = U − 1
2n

(V + C)2

S + V + C
(XI-11)

and
1
2

C = −n− 1
2n

(V + C)2

S + V + C
(XI-12)

These can easily be solved for V and C in terms of U, S, and n. The result is

C = −2(n− 1)U (XI-13)

and
V = (3n− 2)U +

√
n2U2 + 2nUS, (XI-14)

predicting a total genetic variance at equilibrium of

V + C = nU +
√

n2U2 + 2nUS. (XI-15)

Thus we are able to make an approximate calculation under this simplified version of
Lande’s model of the amount of variance and covariance maintained at an equilibrium
between mutation and optimizing selection. An interesting feature of this equilibrium
is that the amount of variance maintained depends on the number of loci n. It is not
altogether obvious that this would be so, for we have already taken U to be the total
mutational increment of the genetic variance, summed over all loci. But the model
maintains a substantial amount of genetic variation at equilibrium. In effect, the term in
n comes from the interference caused by variation at each locus in the selection at the
others.
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ENVIRONMENTAL VARIANCE. So far the model has assumed that the character
has no environmental variance. If we add to the model an environmental variance E,
then we must distinguish between the breeding value and the phenotype. If A is the
breeding value and A + e the phenotype, then we can calculate the fitness as a function
of the breeding value in the following fashion:

w(A) = ∑
e

Prob(e) exp[−(A + e− P)2/(2S)]. (XI-16)

When Prob(e) is taken to be a normal distribution with mean zero and variance E, the
summation is an integration. We finally find that

w(A) = K exp[−(A− P)2/2(S + E)], (XI-17)

where K is a constant which need not concern us. Thus the effect of the environmental
variance is to weaken the selection by replacing S by S + E throughout the derivation
of this section. The equilibrium genetic variances and covariances V, C, and V + C can
be obtained in this fashion. Of course, it must be kept in mind that the equilibrium
phenotypic variance will be V + C + E, not just V + C. In effect, the environmental vari-
ance weakens the selection by causing some of it to be expended uselessly in eliminating
extreme individuals who owe their phenotypes to the environment. The presence of
environmental variance means that the phenotype is no longer a reliable guide to the
breeding value, and this lessens the effect of selection on the phenotype.

THE MEAN. As an aside, we may add that under this model, the population mean
follows the equation:

M′ = M(S + E) + P(V + C)
S + E + V + C

(XI-18)

If the mean were to start at a different value than the optimum phenotype P, this equa-
tion simply predicts that at equilibrium M′ = M = P. This can hardly be a great
surprise.

STRENGTHS AND LIMITATIONS. Lande’s model allows us to obtain an equilibrium
solution for the amount of variance maintained by mutation, and also to describe the
effect of linkage disequilibrium (via the covariance terms) without having to follow 2n
different quantities. This is not achieved without cost. Although the population is as-
sumed to have all gene effects multivariate normally distributed, this cannot be strictly
true. Even within the confines of Lande’s model, multivariate normality is violated. The
problem is with the recombination process. Although the optimizing selection leaves
the survivors in a multivariate normal distribution, the recombination process will give
a gamete pool which is a mixture of gametes which have undergone different kinds of
recombination. This mixture cannot be multivariate normal. The conditions for main-
tenance of exact multivariate normality under Lande’s model have been investigated
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(Felsenstein, 1977), and it is found to be essentially impossible as long as recombination
exists. Thus Lande’s model is an approximation. There has as yet been no detailed
investigation of the validity of the approximation, but it seems likely that it is a good
one if selection is weak and recombination moderate to strong. The advantage to using
Lande’s model or one of the other phenotypic evolution models is that they allow us
to explicitly allow for the changes in genetic variance as a result of selection, mutation,
and recombination. For some further insights into the behavior of Lande’s model see the
paper by Chevalet (1994).

XI.4 Bulmer’s model

A different prediction of the equilibrium between mutation and selection was made by
Bulmer (1974) and it is instructive to compare it with Lande’s. His derivation is a bit
complex; we will simplify it by crude but painless approximations. Bulmer worked
out approximations for a character controlled by n two-allele loci, and in effect showed
that selection at the loci does not interact. We simply take this non-interaction as an
assumption.

Imagine a single locus in which there is a mutation-selection balance. At equilibrium
the mean fitness at the locus is reduced by 2u. The mean fitness at that locus is essentially
1− 2u � exp(−2u). With n loci the mean fitness is then approximately exp(−2nu). What
level of genetic variability will lead to such a reduction in fitness? If the quantitative
character has no environmental variation, so that its variance σ2 = G is entirely genetic,
then we can compute the mean fitness by integrating the product of (XI-1) and (XI-2):

w̄ =
∫ 1√

G
√

2π
exp[−x2/(2G)] exp[−x2/(2S)] dx (XI-19)

which can be evaluated by noting that it is

1√
G
√

2π

∫
exp[−x2/(2G)] exp[−x2/(2S)] dx

=
√

S
G+S

⎛⎝ 1√
2π
√

1
1
G + 1

S

∫
exp

[
− x2

2

(
1
G + 1

S

)]
dx

⎞⎠ (XI-20)

We recognize the integral of a normal distribution in the expression in large parentheses;
it is 1, leaving us with

w̄ =

√
S

G + S
= e−2nu. (XI-21)

Solving for G, we get

G = S
(

e4nu − 1
)

(XI-22)
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or, to good approximation if 4nu is small,

G � 4nuS (XI-23)

It will also help to recall that (from the previous section), the effect of environmental
variance E is to increase S to S + E. That immediately gives us the result for genetic
variance in that more general case:

G = 4nu(S + E) (XI-24)

Note that in expression (XI-24) the size of the mutational effects is completely absent!
This is the analogue of the effect in ordinary mutational load arguments, where the se-
lection coefficient s does not appear in the expression for the mutational load. Doubling
the size of the mutational effects would lead to a lower frequency of the mutants, for the
same net genetic variance maintained by the mutation-selection balance.

COMPARISON OF THE TWO MODELS. In Lande’s model, the size of mutational ef-
fects affects U and the result. It is thus immediately apparent that Lande’s and Bulmer’s
approximations must differ. A numerical example will help. Suppose that a quanti-
tative character has its variation due to 30 loci, each with mutation rates 10−5. The
mutants change the character by 0.1 phenotypic units each, on average. Thus the vari-
ance due to mutation from each locus in each generation is 2× 10−5× 10−2 = 2× 10−7.
So Lande’s U is 0.000006. Now suppose that S = 10, so that in the 0.1 units on the
phenotypic scale that a typical mutation moves the phenotype, the fitness drops by
exp(−0.01/20) � 0.0005.

Substituting into Lande’s formula (XI-12) we get

G = V + C = 0.00018+
√

3.6× 10−11 + 60× 6× 10−6× 10 = 0.06018. (XI-25)

while in Bulmer’s formula we get instead

G = 4× 30× 0.00001× 10 = 0.0120. (XI-26)

so that Lande’s predicts five times as much variance as Bulmer’s. The difference is not
quite as great when measured in standard deviations, Lande’s predicting 0.24532 while
Bulmer predicts 0.109545.

The difference between the two predictions is greater when mutation rates are smaller,
when number of loci is larger, when mutation effects are larger, or when selection is
stronger (S is smaller).

Why the difference between the two predictions? Lande’s argument assumes that
the distribution of genotypes is normal, which is most nearly achieved when selection is
weak. Bulmer’s argument ignores (as given here) or approximates away (in its original
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form) the linkage disequilibria that arise between loci. It may be doubted that, for many
cases of interest, the Lande result is more accurate. In the above numerical example, the
equilibrium genetic standard deviation is predicted to be no more than the size of two
mutation effects. This suggests that in few cases will a mutant re-mutate before selection
eliminates it. So the linkage disequilibria may have little effect, and normality may be
hard to assume.

For a more detailed examination of these questions, see the comprehensive study by
of these models by Turelli (1984).

XI.5 Other models

The other phenotypic evolution models can mostly be obtained as special cases of our
symmetrized version of Lande’s model. Kimura’s model (1965) is essentially the case
in which n = 1, so that C is always zero. Bulmer’s earlier model of 1971 is the case
where n = ∞, which implies that V remains unchanged at its initial value if there is no
mutation. Cavalli-Sforza and Feldman (1976) give a system of equations reminiscent of
the one-locus case, but they do not take into account the negative covariance between the
effects of the two copies of a gene after selection, and consequently their results differ
from Lande’s. Slatkin’s (1970) system imposes an external constraint in the form of an
assumed constancy of within-sibship variance: this constancy does not obtain in Lande’s
model and amounts to an arbitrary assumption.

A PHILOSOPHICAL DIFFERENCE. From a genetic point of view, the other phenotypic
models are justified to the extent that they can be derived from a model such as Lande’s,
which attempts to take genetic factors into account. Many authors prefer the position
that their models are arbitrary assumptions about the evolution of phenotypes, without
specifically genetic assumptions. The difficulty with this position is that if it is then
asserted that these phenotypic models are more general than the genetic models, one
has to account for the fact that all of the other models either arise as special cases of
Lande’s model or are incompatible with it.

SOME FURTHER REFERENCES. The phenotypic evolution models have found ap-
plication in a number of contexts, particularly in ecology. Of particular interest are
the papers of Roughgarden (1972, 1974a, 1974b) Slatkin and Lande (1976), and Slatkin
(1979) on the evolution of niche overlap, the papers of Lande (1976a, 1977) on long-
term evolutionary effects, and the work of Feldman and Cavalli-Sforza (Cavalli-Sforza
and Feldman, 1976, 1978; Feldman and Cavalli-Sforza 1977) on models incorporating
cultural transmission.
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Complements/Problems

1. In the phenotypic evolution models of Lande and Bulmer given above, how is the
equilibrium variance of a trait under optimizing selection vs. mutation affected
by doubling the number of loci and halving the contribution to the mutational
variance U in each locus?

2. Evolutionary quantitative geneticists often assume, for simplicity, that there is an
equilibrium between new variation arising by mutation and old variation disap-
pearing by selection and by genetic drift. For Bulmer’s model, with 10 loci affecting
the trait and having equal strengths of selection and equal mutation rates, see if you
can use the diffusion equations for an equilibrium between mutation and selection.
Work out (numerically) the variance in the amount of genetic variance contributed
by that locus. For Bulmer’s model the individual loci contribute additively to the
overall genetic variance. With 10 loci, we can add these variances. What will be
the coefficient of variation, from generation to generation, of the genetic variance
maintained by the balance of mutation, genetic drift, and selection?
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