
Despite the widespread use of phylogenetic comparative methods for evolution of
continuous characters, and the development of some methods for evolution of discrete
characters, there has been no fully-developed method that could use both classes of characters.
Harvey and Pagel (1991) suggested that discrete characters could be accommodated in analysis
of phylogenetic contrasts by coding two states as 0 and 1 and then treating them as if
continuous. They derived the means and variances of the contrasts from the means and
variances of the two-state discrete stochastic model of change, and proposed that these be
used while treating the two-state character as one undergoing Brownian motion. This would
allow analysis of both kinds of data, but the approximation involved is very rough.

For there to be a fully-developed method that combines continuous and discrete characters,
there must be a well-developed statistical phylogenetic method for discrete characters. Such
a method has been proposed by Pagel (1994) with further development by Lewis (2001). It
assumes that two discrete states exist, called 0 and 1, and that there is a continuous-time
Markov process for changes between these two states. For two discrete characters, Pagel has
shown how a likelihood ratio test can be done of the null hypothesis that the state of one
character has no effect on the transition probabilities of the other character.

It would be possible to develop a mixed continuous/discrete model from Pagel’s model,
but there would be some difficulties. If we had (say) 5 discrete characters, we would need
to specify what the continuous characters’ processes were for all 25 possible combinations of
the states of the discrete characters. This could involve effects on the means of changes of
the continuous character or on the covariances of their changes. Some simplification could be
achieved by making the assumption that the processes in the continuous characters depended
on the states of the discrete characters through some function of their states, as is often done
in statistics when loglinear models are used for contingency tables.

I have suggested an alternative (Felsenstein, 1988 pp. 462-463; Felsenstein 2002, pp. 40-
41; Felsenstein, 2004 pp. 429-431; Felsenstein 2005), which is to use Sewall Wright’s (1934)
threshold model and to assume that the underlying characters change by covarying Brownian
motion along a tree. In this paper, I show that this also leads to a simple and natural
treatment of data which has both discrete and continuous characters. The key is that the
unobserved characters that underlie the discrete characters are assumed to have evolutionary
covariation with the continuous characters, much as the latter do with each other. This has
the advantage of simplicity and straightforwardness. It also naturally allows for within-species
differences in the discrete character. However it is computationally difficult, requiring use of a
Markov chain Monte Carlo (MCMC) integration to infer and test the covariation among the
characters. How this can be done will be explained after I briefly review the threshold model.

The Threshold Model

Sewall Wright (1934) developed the threshold model to fit data on the incidence of extra toes
on the hind feet of guinea pigs in crosses among a series of inbred lines. He assumed that
there was an underlying unobservable continuous character, which has come to be called the
liability. On this scale there was a threshold value. Any individual whose liability was above
that threshold developed state 1, and any individual below the threshold developed state 0



(it does not matter what happens when the liability is exactly at the threshold value, because
such cases are infinitely improbable). The threshold model has been used in human genetics
(most notably by Falconer 1965) to model discrete traits such as having type I diabetes, to
fit incidence of the disease among relatives of affected individuals. Some further review of the
model and these studies will be found in the text by Cavalli-Sforza and Bodmer (1971). The
threshold model has come into regular use in pedigree analysis of discrete traits in quantitative
genetics (Gianola 1982).

For phylogenies, I have suggested (2001) that we treat the liability values of the population
as undergoing a Brownian motion in their mean values. We assume that within each species
the liability values follow a multivariate normal distribution, with common within-species
covariances which do not change through time. The means of these normal distributions
wander by Brownian motion along branches of the phylogeny, in the same way that means of
continuous characters do. The covariances of changes in the species means along the phylogeny
are the evolutionary covariances, which differ from the within-species covariances. At any
moment, we could, in principle, calculate the number of within-species standard deviations
between the population means and the threshold. For example, for one discrete character, if
the mean were one standard deviation above the threshold, we would expect that 0.8413 of
the individuals in that population would show state 1, and 0.1587 of them would show state 0.
A similar but more complex calculation can be done if there are multiple discrete characters.

Although this model can be used to make integrated inferences for discrete characters
within and between species, for the present let us ignore within-species variation and
covariation, and assume that in each population we observe the more frequent of the two
states of the discrete character. If the population mean of the liability exceeds the threshold,
the state we then observe is 1, otherwise 0. The extension of this analysis to within-species
variation in the discrete characters is straightforward and is discussed briefly below. For now,
when we discuss the liability values in a lineage (or at a node on the tree), this is to be taken
to be the population means of the liabilities, and the covariances of their changes are taken
to be the evolutionary covariances.

Hadfield and Nakagawa (2010) have noted that all such models are equivalent to
multivariate “mixed models” of quantitative genetics. For discrete traits such as our 0/1 trait
they note the addition of “transfer functions” to accommodate them. No doubt this is true and
worth exploring. For continuous characters most of the examples they give involve only a single
character with a scalar variance rather than multiple characters with a covariance matrix. For
categorical characters such as 0/1 characters, they do discuss multivariate methods, although
the transfer function that they use has the value of the categorical variable drawn from a
Poisson distribution with the liability as its mean. In the present model, the transfer function
should instead be a step function which rises from 0 to 1 at the threshold. Hadfield and
Nakagawa argue that existing general mixed model software uses advanced algorithmics that
would be vastly better than the specialized programs in use in comparative biology. This will
need to be proven in particular cases. At a minimum, machinery would have to be added to
present-day mixed model programs to use a phylogeny to set up appropriate design matrices.

Ives and Garland (2010) also put forward a model in which there is logistic regression of
discrete traits on continuous variables. In their model the discrete traits change along the
tree according to a two-state stochastic process similar to that used by Pagel (1994) and by



Lewis (2001). The continuous characters influence the discrete traits by logistic regression.
However the discrete characters are assumed to be known traits of the present-day species.
They mention the possibility that these continuous characters could themselves evolve along
the tree, but do not develop methods for that case.

The present paper describes a method embodied in a Markov chain Monte Carlo (MCMC)
program, Threshml, to infer the covariance matrix of changes in continuous characters and in
the liabilities of the discrete characters along a phylogeny.

Sampling from the unobserved values

For continuous characters evolving by correlated Brownian motion, the joint distribution of the
values at the interior nodes of the tree and at the tips is multivariate normal, with covariances
that are easily calculated once the covariances of change in the means of continuous characters
are known. This applies equally to observed continuous characters and to the liabilities that
underlie the discrete traits. A computation of the joint likelihood for all of the observed
characters integrates over all possible character values at the interior nodes of the tree. For
the discrete characters, it must also integrate over all of the liability values in the tips that
fall on the correct sides of the thresholds. Thus if xc are the observed values of the continuous
characters at the tips, if the elements of y are the phenotypes of the discrete characters, and
if xℓ are the (unknown) liability values at the tips, the likelihood for tree T can be written
in terms of the covariance matrix A of changes per unit branch length, and the expectation
vectors µc and µℓ, as the probability density

L(T) = f(xc,y |µc,µℓ,A,T) =
∫

xℓ∈X(y)
φ(xc,xℓ |µc,µℓ,A,T), (1)

where X(y) is the region of liability values in which all of the liabilities are on the correct
sides of their respective thresholds, so that they lead to the observed discrete characters.

The density φ is the joint multivariate normal density of the continuous characters and
the liability values at the tips. Carrying out the integration in (1) involves finding the volume
under this density in a multivariate corner of the density function (the corner in which all
the liabilities are in region X). This is computationally very difficult. The objective of the
method used here is not to compute the likelihood. It is assumed that the tree, including
branch lengths, is supplied by the user (presumably having been inferred from molecular
sequences). We want to make a maximum likelihood inference of the covariances A among
characters of their changes along the branches of the tree. This will be done using an MCMC
EM algorithm (Guo and Thompson 1994). The algorithm used here for the discrete character
liabilities will differ from the more complicated one I previously proposed (Felsenstein 2005).

Stochastic EM algorithm for the Covariances

If we somehow knew the values of the observed continuous characters and the unobserved
liability characters at the tips of the tree, and also their values at all interior nodes of the



tree, we could make a maximum likelihood estimate of the evolutionary covariances A. The
covariance between characters i and j would be estimated by computing

âij =
1

b

∑

k

(xki − x′

ki)(xkj − x′

kj)/vk, (2)

where xki is the value of character i at one end of branch k, and x′

ki is the value of character
i at the other end (and similarly for character j). vk is the length of branch k, and b is the
number of branches in the tree. I will show below that we can avoid the need to infer the
values of the characters at the root of the tree.

The EM algorithm uses knowledge of the distributions to compute the expectation of this
covariance formula over the distribution of the unobserved values of x, given the observed
values and the current estimates of the parameters. These covariances become the new
estimates, as they would if we were making maximum likelihood estimates of the covariances.
This expectation and the maximization of the likelihood are repeated iteratively until the
estimate converges (Dempster, Laird, and Rubin 1977).

In the present case we do not know the distribution of the values of x conditional on the
observed data, but we can use Markov chain Monte Carlo sampling to draw a large sample of
points from this distribution and average the estimates of the covariances over the points in
that sample. This allows us to make an MCMC EM procedure. As such, it will not converge
precisely to the maximum likelihood estimate, but will come near it and then wander in that
vicinity. At each stage we run the Markov chain for as long as we can, to take a sufficiently
large sample of points. How near the resulting estimate comes to the maximum likelihood
estimate depends on how large a sample we are able to choose.

Under the Brownian motion model that we are using, the expectation of the change of
each character in a branch is zero, and thus there do not need to be any parameters for the
means of the changes.

Strategy of MCMC Sampling

The sampler that will be used is a Gibbs sampler (Geman and Geman 1984; Gelfand and
Smith 1990) for the continuous characters and for the liabilities at the interior nodes of the
tree, and a Metropolis sampler (Metropolis et al. 1953) for drawing the species mean liabilities
at the tips. The continuous characters do not need to be sampled at the tips, as they are
observed. A Gibbs sampler is preferable when it can be done, as it samples precisely from
the desired distribution, without any need to reject some of the samples and try again. For
the liabilities at the tips, the distribution has a truncated normal density, and it is difficult to
sample directly from that distribution. The Metropolis sampler is a good practical alternative
for that case. I will describe the details of the sampling below.

A provisional estimate of the covariances of the characters is maintained. At each stage,
it is used to transform the characters so that, given that these were the true covariances, the
changes of the new characters would be independent. The MCMC sampler is then run with
these new characters assumed to be independent, and an estimate of the covariances of these
putatively-independent characters is obtained. This is used to further update the estimates of



the covariances of the original characters. For example, suppose that for the mth cycle of the
MCMC EM algorithm our provisional estimate of the covariance matrix of changes is inferred
to be C. If the vector of original continuous characters and liabilities were called y and had
these covariances, then we could use a matrix square root S of C which satisfies C = SST .
We can then obtain a new vector of characters z = S−1y which would have unit variance and
would be uncorrelated.

If the MCMC sampling of unobserved values of z now infers that the vector of transformed
characters z are not independent, but actually have covariance matrix B, whose matrix square
root is R, it can be shown (and is in Appendix A) that we can make a set of independent
variables by computing R−1z. The matrix square root that transforms the original characters
is then modified from S to SR, so that its inverse is R−1S−1.

The MCMC run consists of a series of Markov chain runs (for example, 30 chains). Each
is run for a large number of steps (such as 100,000 steps) After each chain, the covariance
matrix B is inferred and the transform to independence is adjusted by premultiplying S−1 by
R−1.

Gibbs sampling at interior nodes

The sampling of character values at interior nodes in the tree is done by a Gibbs Sampler. This
is done for both the continuous characters and for the liabilities of the discrete characters. At
each stage of the EM iteration, the current estimate of the covariances is assumed to be known.
If we consider characters z, transformed so that they have unit variances and zero covariances,
we can update the value of each character at each interior node without considering any other
character, and we can consider only the immediately neighboring nodes in the tree. Thus if an
interior node connects to three other nodes, numbered 1, 2, and 3, we can draw a new value
for a character based only on the values of that character in these three neighboring nodes in
the tree.

Previously (Felsenstein 2005) I have given the algorithm for Gibbs sampling of interior
nodes under a Brownian motion model. Appendix B derives these formulas. If a node has
three neighbors, the ith one a branch length vi away, then the Gibbs sampling draws a normally
distributed value x which has expectation

E[z] =
1
v1

z1 + 1
v2

z2 + 1
v3

z3

1
v1

+ 1
v2

+ 1
v3

(3)

and variance

σ2
z =

1
1
v1

+ 1
v2

+ 1
v3

. (4)

This is done separately, thus independently, in each of the transformed characters. For
multifurcating nodes, the extension to more neighbors is obvious. The result is the same
no matter where the tree is rooted.



Sampling the liabilities at the tips

While the values of the continuous characters at the tips of the tree are known, the values
of the liabilities at the tips are not known, but they must be consistent with the observed
discrete characters. In the previous paper (Felsenstein 2005) a sampler was proposed together
with a rather elaborate reweighting method. This has been reconsidered and replaced by a
simpler Metropolis sampler which makes small changes in the liabilities, accepting or rejecting
them according to whether they cause the liability to conflict with the discrete character. A
Metropolis sampler is like a Gibbs sampler, except that it does not draw directly from the
conditional distribution of the quantity, but adds an acceptance-rejection step formulated to
produce the desired conditional distribution.

The sampling of the independent (transformed) characters is very simple: each is changed
by an amount drawn independently from a normal distribution, whose mean is 0 and whose
variance is a parameter set by the user.

This is made more complicated by the covariances among the characters. The characters
z that are sampled on the transformed scales, where they are expected to be independent,
must be examined to see whether they result in any of the liabilities conflicting with the
observed discrete characters. If the current square root of the covariance matrix of the original
continuous characters and the liabilities is called S, then y = Sz undoes the transformation
and returns us to the original character scale. We can then check the variable y, or at least
the coordinates in it that are liabilities, to see whether they are on the wrong sides of their
thresholds.

The computation is made much easier if, in the vector y, the continuous characters are
placed first and then followed by the discrete-character liabilities. The matrix square root S

which we use is lower-triangular, so that in returning to the original scale, the jth character
is a linear transformation of the independent characters z1, z2, . . ., zj. We do not allow any
change in the continuous characters at the tips of the tree. These are affected only by the
first pc of the independent characters, and so those are not changed. The next pd = p − pc

affect the liabilities of the discrete characters, and these need to be changed. As each of
these pd independent characters is sampled, we can compute another one of the liabilities and
immediately check it with its threshold value. The entire set of changes is rejected if any one
of the liabilities is on the wrong side of its threshold value. Thus when there are 7 continuous
characters and z10 is being sampled, after new values z′8 and z′9 have been drawn successfully,
we draw a new value of z10, called z′10, and immediately compute

x′

10 = s10,1z1+s10,2z2+s10,3z3+ s10,4z4+s10,5z5+s10,6z6+ s10,7z7+s10,8z
′

8+s10,9z
′

9+s10,10z
′

10 (5)

We then check x′

10 to see on which side of its threshold it is. If it is on the wrong side, then
the whole set of tip liabilities is rejected and the process starts over with the observed tip
values of the continuous characters, and the choice of a new value of z8, and again proceeds
to z9, z10, and so on, again rejecting the whole set when any of the x′

i is found to be on the
wrong side of the threshold. Rejection rates can be monitored, and the parameter which is
the variance of the proposed normally-distributed changes of the zi adjusted to be smaller if



there is too much rejection, larger if there is too little.
If the new values of the independent characters pass this test, so that the resulting liabilities

imply the correct discrete character values, they still must be checked as to whether they have
too low a density of the normal distribution of the independent characters. Appendix C shows
this calculation, which is straightforward. If any of the values of the independent characters
is rejected (say pc), then we start over at independent character pc + 1 and draw new values
of the independent characters pc + 1, pc + 2, . . ., until we succeed in drawing all pd of them.
The user-defined parameter for the size of the changes in the independent characters allows
us to keep the acceptance rate of the proposals from being either too high or too low.

Testing hypotheses about the covariances

Hypotheses of interest about the covariation of the characters include whether characters are
independent of one another in their evolution. There is some question about how to test this
and what questions are meaningful. Testing whether one particular covariance, say the one
between characters 6 and 8, is nonzero seems of little biological relevance, as they could still be
connected by patterns of covariation with other characters. A more reasonable hypothesis to
test would be whether a set of characters evolves independently of all of the other characters.

A likelihood ratio test can be constructed from the Markov chain Monte Carlo sampling.
The probability (or probability density) of the data under an hypothesis whose parameter
values are Θ can be written as

Prob (D |Θ) =
∫

X(y)
f (x;C) (6)

where x is the vector of values of the continuous characters and liabilities at all nodes of the
tree, including interior nodes, X(y) is the set of points for which x agrees with the observed
discrete phenotypes, and C is the matrix of covariances of the characters. The matrix C is
affected by the parameters Θ. The quantity Prob (D |Θ) should be understood as a probability
if all characters are discrete and as a probability density otherwise.

The MCMC sampler draws from an importance sampling density Prob (D |Θ0). For the
likelihood ratio test of whether one set of variables does not covary with the other variables,
the covariance matrix under the null hypothesis is C0, in which the covariances between the
two sets of variables are constrained to remain zero. The density function of the x values is
given by equation 6 above, with C equal to C0. The basic importance sampling equation in
this case becomes

Prob (D |Θ) = E

[

f (x | C)

f (x | C0) /Prob (D |Θ0)

]

(7)

which is easily rearranged into

Prob (D |Θ)

Prob (D |Θ0)
= E

[

f (x | C)

f (x | C0)

]

(8)

When likelihood ratio testing of covariances is carried out, Threshml does an extra set of



sampling chains, sampling with the covariance matrix C constrained to force the covariances
between sets of variables to zero. For each point at which samples are taken for the test,
the density function of the continuous characters and liabilities at all nodes on the tree is
computed under the null hypothesis and under its alternative. The ratio of these densities
is averaged over all of the samples. The result is a likelihood ratio which can be used in a
likelihood ratio test. If there are p characters, divided into two sets with p1 and p2 characters,
the number of degrees of freedom for the test is p1p2.

Restricted Maximum Likelihood

A subtlety is what we have done regarding the mean vector µ in the above expressions. You
may have noticed that we did not infer it. We sampled from the distribution of character
values at the interior nodes of the unrooted tree, which did not include a root node below the
rootmost fork. The expectations and variances of the continuous character value at a fork
are, as we have seen, influenced by the values at the neighboring nodes, weighted inversely
by the branch lengths to those nodes. By allowing that root node no influence, we in effect
assumed it was infinitely far removed in the past. That in turn has the interesting effect that
the location of the root on the tree does not matter. No matter where in the tree we connect
the root, the character values at the other interior nodes will be unaffected by where that root
is.

The result is something like REML (restricted maximum likelihood) estimation. The joint
distribution of the character values at the tips of the tree will depend only on the unrooted form
of the phylogeny. In the case where there are no discrete characters, the inferences converge on
the results of an ordinary analysis using contrasts – and those are REML estimates. However,
when there are discrete characters, the inferences of root liability are not dependent only
on the differences in character values between tips of the tree, as they would be in REML
estimation. The matter deserves more careful attention than I can give it here.

Issues of power

One serious limitation of the analyses proposed here is that there is very limited power for
inference of covariation of liabilities with each other or with continuous characters. If we
have a phylogeny with 100 species at the tips, the usual contrasts method for inferring the
evolutionary covariances makes that inference from only 99 independent quantities. That
would give the correlation between two characters a standard deviation (if the true correlation
is small) of 0.101535, which is fairly large for a quantity that is constrained to be between -1
and 1.

However, the situation is even worse when we have thresholded continuous characters and
observe only on which side of the threshold they are. Then two sister species will often be
on the same side of the threshold, and thus comparison of their phenotypes provides us with
little information. In the continuous characters case, if there is no within-species sampling
variation we can hope to use the small difference between the sibling species, and scale that



by dividing by the intervening branch length – but for discrete characters that will not work.
So the effective amount of information is considerably less than 99 independent data points.

A similar problem affects the evolutionary covariation of continuous characters when there
is also within-species covariation. The signal of change between closely-related pairs of species
tends in that case to be swamped by the noise of within-species variation. If there were no
within-species covariation, we could take the mean phenotypes of the two species and make
contrasts between them in each character. Their covariances would then be proportional
to the branch length on the path connecting these two species. The branch length would be
small, which would make even small differences between sibling species potentially informative.
But in the presence of within-species covariance, the covariances of the contrasts are mostly
affected by that sampling error, and they convey very little information about the covariances
of evolutionary changes.

One might hope to “make it up in volume” by using less closely related species, to get a
much larger tree. The difficulty with this is that we are relying on a very crude evolutionary
model, and as we deal with a broader range of species, we are correspondingly less confident
that the model holds throughout the tree, and that the covariation can be considered to be
the same.

The lesson from all this is that we have a limited amount that we can discover, and we may
have to learn how to be satisfied with that. In particular, inferences about the phenotypes
and genotypes of ancestral species, inferences that are beloved of popular science media, have
large and irreducible errors. Finding ways of propagating that uncertainty through the further
analyses that we do will be a major challenge.

The program

A computer program, Threshml, has been written to infer covariances of threshold
characters, as well as covariances of both continuous characters and threshold characters.
It uses the MCMC algorithm outlined here. The program, which will also be included
in version 3.7a of the PHYLIP package can, until that release, be downloaded at
http://evolution.gs.washington.edu/phylip/download/threshml/. It is available as C
source code and as Windows, Linux, and Mac OS X executables, with HTML documentation.
After the release of version 3.7a, Threshml will be available with the PHYLIP package at its
usual web site, http://evolution.gs.washington.edu/phylip.html

Simulations

Some computer simulations of the behavior of the method have been done, for a single tree
with 100 species (shown in Figure 1). Changes of three characters were simulated under
a Brownian motion model, where the true covariance matrix (which remained unknown to
Threshml) was taken to be



Figure 1: Phylogeny of 100 species used for the simulations. The phylogeny was generated by
a pure birth process, with birth rate of 1 per unit time.
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The Brownian motion started at phenotypes of (0, 0, 0), and was simulated in 100 replicates,
each replicate generating one data set.

Discrete-character simulation

In this case the data set was taken and all three characters thresholded, so that each became 0
or 1. As we have noted above, the scale of the threshold characters is arbitrary (as long as there
is no within-species variation). As the variance of those liability characters was constrained
to remain 1, we are in effect inferring only the correlation coefficients between the liabilities.
There are three such coefficients in the covariance matrix, which is then expected to be
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Figure 2: Histograms of correlation coefficients r12, r13, and r23 for the characters which
covaried as described in the text. 100 data sets were simulated. Their true correlation
coefficients were 0.535672, 0, and -0.514496. These values are shown by the black triangles.
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Figure 2 shows the histogram of the 100 values of the three correlation coefficients. The
black triangles show the true values. There is little sign of bias, though the values are
not narrowly clustered around the true values. When the truth is a positive or a negative
correlation, the inference is able to infer only a little more than the sign of the correlation
correct.

Discrete and continuous characters

In this case the same Brownian motion simulation was used, but only character 2 was
thresholded to become a discrete character. Figure 3 shows the histogram of the 100 correlation
coefficients. Again, there is no noticeable bias, and again the inference of the correlations is
very rough and can tell us little more than the sign of the correlation.
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Figure 3: Histograms of correlation coefficients r12, r13, and r23 with the same simulation of
100 data sets, except that characters 1 and 3 were not thresholded, but their exact numerical
values used as quantitative characters. The true values are shown by the black triangles.

The covariances for these three characters are shown in Figure 4 for that simulation.
Character 2 (the discrete character liability) had its inferred variance standardized to 1, so
that its covariance with the other two characters was correspondingly affected. The triangles
which show the true values are, in the case of covariances with character 2, adjusted for this
standardization.

Within-species covariances

If we consider the variation and covariation of the liabilities within species, we can make an
analysis of both the within-species and between-species character covariation. We would then
have two covariance matrices to infer, one the evolutionary covariances, and the other the
within-species phenotypic covariances. The data would no longer correspond to the species
means (or the discrete characters implied by the species mean liability), but would consist of
discrete and continuous phenotypes recorded from a sample of individuals from each species.
Sample sizes could vary from species to species, being as small as 1 for some species.

I have not yet implemented or tested such a model, but inferences could be made for it



using an MCMC strategy quite similar to that outlined here. The liabilities (and continuous
character values) for the species means would be sampled, as well as the liabilities and
continuous character values for the individuals and for the hypothetical ancestral nodes. The
individuals in each within-species sample would lie at the tips of branches radiating from the
population mean, with branch length 1. Thus, if the sample size for a species was 4, there
would be a node on the tree that represented the species mean, and a quadrifurcation from
this would lead to the nodes for the individuals, with branch lengths 1. The within-species
covariances would be estimated, in the MCMC EM iteration, from the changes of the liabilities
and continuous character values along those branches. The evolutionary covariances would,
as before, be estimated from the changes along the other branches, the ones connecting the
different species and their ancestors.

The analyses described in this paper do not attempt to take within-species variation into
account, but instead represent each discrete character of a species by the most frequent state,
and each continuous character by the species mean of that character.

When there are no discrete characters, the estimates of the within-species covariances and
the evolutionary covariances from the MCMC EM procedure should be close to those obtained
for the corresponding statistical model in a comparative method analysis with sampling error
(Felsenstein, 2008).

It has not escaped my attention that a quite similar strategy could be used when
some species are represented by samples from multiple populations, especially when we also
have estimates of the rates and pattern of migration between those populations, and their
population sizes.

Connection to quantitative genetics experiments

Another fruitful area for development of these models is to connect them as well to quantitative
genetics experiments which estimate the additive genetic covariances between characters. I
have already discussed this (Felsenstein, 2008) with respect to within- and between-species
analyses of continuous characters. The same applies to data sets that contain discrete
characters, when the threshold model can be used for them. A combined quantitative genetics
and comparative analysis seems the only way to infer how much of the evolutionary covariation
reflects additive genetic covariances and how much reflects selective covariances, which describe
the covariances of selection pressures (Felsenstein, 1988). Covariation of changes in phenotypes
along a phylogeny may reflect either or both, and a pure comparative methods analysis cannot
tease them apart.
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Appendix A. Updating transformations of variables.

If a vector y of variables whose means are zero is inferred to have a covariance matrix C, where
C = SST , if we can invert matrix S we can obtain new variables z = S−1y. The covariances
of z would then be E[zzT ]. This is then E[S−1yyT (S−1)T ], which is S−1

E[yyT ](S−1)T . Since
the expectation of yyT is SST , we can easily see (substituting this) that the covariance matrix
of z is supposed to be the identity matrix I.

Suppose that we obtain z using this transformation, but then find on further sampling
that its covariance matrix is actually B. If we obtain the matrix square root R of B such that
B = RRT , then we can make a further transform u = R−1z. The covariances of u would
then be E[uuT ] = R−1

E[zzT ](R−1)T = R−1B(R−1)T = R−1RRT (R−1)T = I.
In the Metropolis algorithm for sampling liabilities we make use of the marix square-root

S of the covariance matrix C. Once we have computed R, and find that it is not the identity
matrix, the transform is now u = R−1S−1x = SR−1x, so that S must now be replaced by
SR.

Appendix B. Gibbs sampler for interior node character

values under Brownian motion.

Suppose that we have a character x that evolves on a tree by Brownian motion with variance
1 per unit time. Consider using a Gibbs sampler to choose a new value for the character
at one node, where this node has three neighboring nodes whose values are x1, x2, and x3.
Suppose that the variances of change on branches 1, 2, and 3 are 1/v1, 1/v2, and 1/v3. The
value chosen in the Gibbs sampler will have a normal distribution, the same as the conditional
distribution of x given x1, x2, and x3. If we take node 1 as the immediate ancestor of our
node, and nodes 2 and 3 as its descendants, the joint distribution of x2, x3, and x is normal
with means all x1 and covariance matrix







v1 + v2 v1 v1

v1 v1 + v3 v1

v1 v1 v1






=

[

Σ11 Σ12

Σ21 Σ22

]

(9)

where the blocks are

Σ11 =

[

v1 + v2 v1

v1 v1 + v3

]

, Σ12 =

[

v1

v1

]

= ΣT
21, Σ22 = [v1] (10)

For the multivariate normal distribution, if we compute the expectation of x conditional
on the values of x2 and x3, this is (e.g. Rao, 1973, pp. 522-523)

E[x] = x1 + Σ21 Σ−1
11

[

x2 − x1

x3 − x1

]

(11)



and the variance of x is
Var [x] = Σ22 − Σ21 Σ−1

11 Σ12 (12)

These expressions can easily be worked out in straightforward fashion, and lead to the results
in equations 3 and 4.

Appendix C. Rejection rule for independent characters

at tips.

When new values are sampled for the independent characters at the tips, these are for
independent characters m + 1, m + 2, . . ., n. As each is drawn, it is checked for whether
the corresponding discrete character’s liability is on the wrong side of its threshold. After all
of them pass this test, we must also check whether the density of the distribution of this set of
independent characters is too low. If the new values of the independent characters are x′

m+1,
x′

m+2, . . ., x′

n, the density of this set of independent characters conditional on the nearest
(interior) node, node j, which is a branch length v from this tip, is

n
∏

i=m+1

1√
2π

1√
v

exp





−1

2

(

x′

i − x
(j)
i

)2

v





 (13)

Comparing this to the density at the old values xm+1, xm+2, . . ., xn, their ratio simplifies to

exp











−

n
∑

i=m+1
(x′

i − xi)
(

xi + x′

i − 2x
(j)
i

)

2v











. (14)

The acceptance rule is, as usual, that a uniform random number be less than this ratio.
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Figure 4: Histograms of covariance estimates for the 100 replicates of the mixed
continuous/discrete simulation (the one also described by Figure 3). The histograms for the
elements of the lower triangle of the covariance matrix are shown. Character 2, the discrete


