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"I am not a detective," Major Danby replied W1th indignation, his
cheeks flushing again. "I'm a university professor with a highly de-
veloped sense of right and wrong, and I wouldn't try to deceive you.
I wouldn't lie to anyone.' | :

, "What would you do if one of the men in the group asked you about
‘this conversation?"

”I would lie to him."

- Joseph Heller, Catch-22
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INTRODUCTION

In the last ten years there has been an increasing controversy over
taxonomic methods. This has in part beén stimulated by the availability of
eléctronic computers and the possibility of analyzing taxonomic data auto-
matically. The primary controversy has been over whether taxdnbmic clagsi-

- fication shoﬁld be based on phylogenetic relationship or phenotypic (phenetic)
gimilarity. The purpose of a hierarchical classificationvis to facilitate the
‘storage‘and retrieval of information concérning the organisms. The contro-
versy is thus as much technological as biological.> All parties-admit that é
‘real phylogeny underlies observed blological simiiarities. .Methods for pfo-
‘ducing phyiogenies éan be discussed in terms of the truth or falsity of the
_results, in contrast to methods for producing‘classifiéatiohs; which must be
discussed in terms of the ﬁsefulnéés of the classification. In this thesis

:I will briefly examine some of tl:lé previously pul'oiished methods for ir‘nferr’ing
phylogeny, and will suggest d unified approach to the estimation of‘phylogeny.
It should be borne in.mind that I am not discussing whether ph&logeny ought

to be used as the basis for classification.

Classical Phylogenetic Methods

Classical phylogenetic methods are sbmewhat i1l defined. Three works
which may be taken as basic souﬁces forAthevexplanation‘of these methods are
Mayr, Linsley, éﬁd Usinger (1953), Simpson (l§6l), and Hennig (1966). Other
. major texts of tdxonomy suéh.as thé books of Sokal and Sneath (1963), Davis
and Heywood (l963), gndklﬁiaééﬁeldé? (1967)‘dq‘not adopt‘a_phylogenetic:approach

/lk.  ‘; { : ‘ i’J; 1 o
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to taxonomy andltﬁus cannot be cited in fhis context. I will attempt to state
'somevof the basic characteristics of classical phylogenetic methods as defined
 in these works, insofar as they define a single, coherent method.
The first characterisﬁic is that groups are formed on the baéis of‘the

‘ phenetic similarity of the organisms. Mayr et al. (1953) say, "One of the

first steps in a phylogenetic study is usually the tabulation of the characters:

‘shared by the groups concerned." Simpson (1961) says,

The observation and interpretation of characters in common do nevertheless

play a large and essential role in evolutionary taxonomy, as they must in
fost systems of classification. They have other roles as well, but much
of their importance is that they are one, and on the whole the chief, of
the several criteria for judging propinquity of descent . .
Hennig (1966) also bases his method on similarity of phenotype, but with spe-
cific restrictions on when this similarity is to be considered phylogenetically
significant. This will be discussed iater.

Phenotypic similarities are used only if it is felt that they result
- from common ancestry. There has been a great deal of discussion in taxonomy as
4o whether this practice is logically circular or not. If it were the claim
of taxonomistsvto be detecting homology by use of knowledge of the phylogény,
the féérs of circularity would be Jjustified. But in fact taxonomists deter-
mine probable homoldgy by degree of detailed similarity of the phenotypes of
~the characters involved. Simpson (1961) says,
Homology does always involve characters in common, but if has also been
sufficiently shown that the mere existence of characters in common or the
possibility of abstracting an archetype or, its modern synonym, & morpho~
type is not a sufficient criterion of homology. . . . As far as characters
in common are concerned, two criteria are fairly obvious: minuteness of
resemblance and multiplicity of similarities.
This is based on the judgment of thé pfobability that the similarities in-
volved could arise twice independently.

Intricate adaptive complexes are unlikely to arigse twice in exactly the
same way, hence to be convergent in two occurrences, and the probabllity
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of homology is greater the more complicated the adaptation and the cioser
the identity. On the other hand, similar adaptation with differences in
characters not requisite for the adaptation as such ig a strong indication
of convergent homoplasy and opposed to homology [Simpson, 19611].
Another characteristic of classical phylogenetic methods is that ‘they
~make use of information about which states of a character are primitive and
which are derived. When two or more organisms share a derived state of a char;
acter, Hennig (1966) calls this "synapomorphy," the derived states being re-
ferred téras "spomorphous.”" He bases his entire method on synspomorphy: "It
is evident that the presence of corresponding characters in two or more species
" is a basis for assuming that these species form a monophyletic'group‘only if -
. the charécters are apomorphous, if their correspondence rests on apomorphy."
However, he makes it clear that monophyletic groups are fo be recognized not

simply on the basis of sharing dérived states, but on the basis of sharing

_steps in the "transformation series" of characters. For example, let specles

A, B, and C have a given character in states a, a', and a'", where a is the most

~primitive and gﬁ the most dérived state, a' being intermediate. Hennig con- '
siders that this character indicates that EAahd C are a monophyletic group, |
gince evén though they are not morphologically similar, they share in thelr
" ancestry the step from a to gf; |

The other authors do not make.it cléar-exactly how information on
primitive and derived states is to be'usgd. Mayr et al. (1953) speék of using
this information to determine the ages of groups:‘ "When the primitive groups
have been located and the primitive characters recognized, a rough approxima-
tion of the.reiative ages of the groups concerned is poésible." Simpson (1961)
discusses at some length the recognifioﬁ of primitive states, but does not make
it clear how this information is to be used in reconstructing tﬁe phylogeny.
Hennig's is by far the vbest-definea' system.

None of the works cited makes it clear what should be done in cases of
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incongruity. In any phylogeny,'if two monophyletic groups overlap at all, one
must ‘be contained in the other. When groups are‘given which do not satisfy
this condition, we have incongruity, in that it is impossible for all of the
groups to be monophyletic. Hennig (1966) is the only author who faces the.
problem at all. He sﬁggests that apparent incongruities may resglt from mig-
interpretation of the direction of change in some of the characters involved,
from parallel evolution, or from incorrect evaluation of homology. If further
examination of the organisms involved does not clearvup the problem, he gives
no concrete recommendation, saying only that ”The common occurrence of paral-
lelism and homoiologies, if not of pronounced convergences, indicates the neces-
sity for phylogenetic systematics to take into account as many characters as
possible in deciding kinship relations." A natural extension of Hennig's
"method would involve discarding those incéngruous groups which share the fewest -
characters in common, or if‘there ié no clear way to do this, discarding all
incongruous groupé.

In cases of incongruity; the authors cited do not treat all characters
as‘of equal significance.  Simpson (1961) says "Experience with particular
groupé always leads to empirically based judgment that some kinds of characters‘
are more labile thanlothers, and'every specialist in classification‘acquires a
1feel' for the less labile or 'more reliable' characters in his group." Mayr
et al. (1953) says "Taxonomic characters which are conservative (i.e., which
evolve slowly) are most useful in the recognition of higher categories, thoge
which change most rapidly, of the lower categories . . . "

'Combining the principles‘stated above,‘we c;n outline a rough method,

bearing greatest similarity to Hennig's methods, which should be a good approx-
'imafibn to classical phylogenéﬁie methods.‘ The steps are as follows:

1. Examine a number of characters in all of the organisms under study.
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2, Fliminate those similarities likely to result from convergent evo-
lution by using detailed resemblance as é criterion for probable homology.

3. For each character, decide which states are primitive and which
derived. |

4. Form all groups which share steps in the evolution of one or more
characters; Computer programs to accomplish this step have been developed b&
Sharrock (1968).

‘ 5. If there is any incongruenée (if any two groups overlap without
eitﬁer being’éontained in the other), regolve fhe incongruence by discarding
those incongruent groups which share the least nﬁmber of evolutionary‘steps in
common. If the steps are to be considered as of different "weight," discard
those groups sharing steps of least aggregate weight.

This procedure will result in a series of hierarchically nested sets of
organisms, which are presumed to be monobhyletic'sets. From them an’e§olution-
"ary tree can be drawn, although a time dimension is not specified and some
?arts of the tree may not have structure defined; The procedure is open to the
objection that some of fhe information required, such as specification of prim—‘
itive and derived states and.of weights of evolutionary steps, may not often bé
available.

A more fundamental bbjection is that the procedure is not as well-defined
as it appears to be. It is comparatively easy to construct data whiéh_cqntains
incongrulties which can only be resolved by following arbitrary rules with‘no
bilological justification. _For examble, suppose that we havé five gpecies,

' A, B, C, D, and E. Let group ABCD share five eﬁolutionary steps. ‘Let group
| BDE share four steps, and group BCDE share three. ABCD is ifcongruent with
the latter two groups. If wé'wish to discard groups, we'can either discard
‘one well-demafcated group or twd less well-demarcated ones. It ié not

t
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immediately evident how this cholce is to be made. One possible rule would be
to discard all of the groups,'so as to avoid arbitrary decisions. This has
the disadvantage of discarding structure in‘the phylogeny produced. It is my 
experience that real data usually contains enough "noise" so that followiné
this procedure one would discérd all of the tentative strucﬁure of the phy-
logeny. |

The Methods of Cain and Harrison,
Wagner, and Throckmorton

A number of attempts have been made to produce well-defined and bio-

logically well-juétified procedures for inferring phylogenies. Each has dif-

ficulties which I will attempt to point out.

One of the first attempts was that of Cain and Harrison (1960). They

recommend that enigmatic characters, in which it is not clear whether the

" basis of variation is genetic or environmental, be eliminated. All but one

character in any group of characters which are functionally or ecologically

- necessarily related should be eliminated. For each pair of species a "dis-

tance" is then computed by summing the absolute values of the differences be-

tween the values of the characters in the two species, i.e., the distance be-

tween species A and épecies B would be % z lXi(A) - Xi(B) ! where Xi(A) is

. the value of character i1 in species A. It is assumed that all characters are Ny

measured on quantitative scales, even if they are basically discrete charac-
ters. There are objections which can be raised to this measure of distance,

which Cain and Harrison call the "mean character difference." It averages to-

~ gether numbers which have different units, and is highly sensitive to the units

of measurement which the 1nvestigator happens to have chosen. But other meas-
ures of distance can be constructed whlch are not open to these obJectlons and

their substitution for the mean character_d;fferenge is quite feasible. In
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calculating the mean character difference, Cain and Harrison recommend that
‘for each pair of species, those characters whose similarity is thought to be
due to'convergence be dropped from the comparison.

They then recommend that standard phenetic grouping methods be used to
make "patristic groups." Some of these phenetic methods are described by Sokal
and Sneath (1963). The procedure is roughly as follows. Consider the speciés
to 5e one-species "groups." Find the palr of groups which has the smélle;t
disténce, and combine them into a single new group, eliminating the original
tﬁo. Find the distance from this new group to each of the other groups.- This
can be done in a number of ways. Three of the most common are calculating the
distance between two groups as (1) the minimun species distance between them,
(2) the maximum species distance between them, and (3) the average species dis-
tance between them. We now repeat the procedure‘and continue until all of the -

: briginal species have been merged into one group. The method yields a hierarchy
“~ of non-overlapping groups.. Cain and Harrison are not clear as to whether they ‘
:want,a hierarchy of groups or a series of disjoint, non-overlapping groups as

thelr patrlstlc groups.'

After the patristic groups are formed, they say that whatever cladlstlc
’considerations (i.e., relating tq the form of the evolutionary tree) are avall-
table‘should be used to "régroup" the forms‘tq obtain the probable phylogeny.
While Cain and Harrison give a number of examplés of such conéiderations, théy
make no stateménts oflsufficient generality‘to establish a well-defined phylo-
V~genétic.method. Impoftant steps are ill—define&, and others are ill-justified,
- 80 that their methods can at best serve'as.a framework within which an inves-
 tigator can construct his own method. | |

The prbcéduré out1inéi by-Wagneru(l959) has many of the same sorts of

problems. It is best described'simply‘by‘quoting‘hié descfiption:

- ”“\/‘7
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To work out a phylogenetic problem three broad phases are involved:
(a) systematic or comparative analysis of the plants in question to find
and understand their contrasting characters; (b) determination of ground
plans to find the character states common to all or most of the plants
in order to deduce the most probable ancestral or primitive states; and
(c) phylogenetic synthesis to assemble the taxa according to their respec-
tive deviations from the basic ground plan and from each other. The de~-

" tailed steps are as follows: (1) to compare and study all the variable
characters among the taxa; (2) to determine the generalized or primitive
conditions on the principle that characters found in most or all of a num-
ber of related taxa are inherited essentially unchanged from the common
ancestor, using data also from related taxonomic groups of the same level.
(If no obvious trend can be determined in a given character that character
may be used only for grouping purposes.) (3) to assign for each character

_the value O for the generalized or primitive condition, and 1 for the spe-
cialized or secondary condition (the intermediate states being assigned
the value 0.5); (h) to list in tabular form the taxa and for each give the
divergence values for the ground plan, both for individual characters and
in total; and’ (5) to determine the mutual character groupings between taxa

"and then arrange them in sequence according to these groupings on a con=
centric chart or graph, the radii and branchings to be determined by the
mutual character complexes, and the distances by the divergence indices.
So that the facts may be made readily visual, the secondary or advanced

' gtates of each character should be expressed by letters (intermediate con-

“ditions, lower case; fully developed changes, upper case). Taxa are con-

' nected to each other by their ensembles of common features, which are
plotted as the points of separation, i.e., as the most probable common an-
‘cegtors. . Such a method as this (although certainly suﬁject to improvement
and refinement) helps to solve problems. We can find correlations that
have been overlooked. We are forced to use all available data and other
‘workers can repeat our results with the same information. My method also
shows at a glance the character groupings of the most probable common an-
cestors and thus outlines the pathways of phylogeny.

This is not really well-defined. In the critical step 5, it is not at all

clear what is meant by "determine" and "arrange." From his description, it is

- possible tb'interpret the method as a system for the display of a phylogeny
‘arrived at by unspecified methods. However, other authors such as Farris (1967)
fhave interpreted the methoa as intended to produce phylogenies, and the next to
’last gsentence of the above quotation seems to imply that the method is"intendéd
to do this. | |

A third method is that of Throckmorten (19_62, 1965). The firsﬁ step.

'is the construction of "primary groups" by phenetic clustering methods, these

i
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groups being assumed to be monophyletic. Difficulties may be encountered when
clearly-demarcated primary groups do not exist. Using the primary groups as
units, we noext construct a separate phylogeny of the group for each character,
coneistent with what is nown about the direction of evolutionary change in
the character. Such a phylogeny can be constfucted whether or not the-direc-
. tion of change of the character is known, although it will be better constructed
if direction is known. It is posenple to some extent.to infer the direction of
change (Throckmorton, personal communication) but this complication will not be
'discussed here. The amount of variation within the primary groups can be used
to make inferences about the gene pools of the ancestral populatlons. For ex-
,ample, if eharacter state Ais primitive and character state B is derlved and
if we have three primary groups, one pure 4, one pure B, and one containing
"some species with A and some with B, we can guess that the latter two groups‘
- had a ‘common ancestor whose gene pool was segregafing fon bthe genes producing';
A and those producing B. From this ancestor‘tﬁo descendant species were pro- "
duoed, one with only B genes in ite gene pool, and one heterozygous for the A
genes and the B genes. |
| .The phylogenies for the individual characters are now combined to pro-

~duce an over-all phyiogeny for the group. This step‘is not well-defined. In
Throckmorton's 1965 paper, the example given for fhis step has little incon-
. grulty, so that serious‘difficulties do not arise. However, if each character
indicates a different phylogeny, it'iéonot clear how to combine the phylog-
.enles. For example, if two-flfths of the characters indicate a phylogeny of
one type, and three-fifths 1nd1cate a phylogeny of another type; should one
~ accept the second phylogeny or some compromise between the two? In the exam-
ples worked in the 1962 paper; Thfockmorton tends to solve the problem by indi-

cating only that Structure in the evolutionary tree which he feels is reasonably

§
,
S
N
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- clearly indicated. For the reasons given above in the discussion of incon-

gruence in classical methods, I feel that this procedure is not preferable.

The Method of Camin and Sokal

The first well-defined phylogenetic method to be.suggested was the
- method of Camin and Sokal (1965). They assumed that the characters are coded

into discrete states, and that for each character the sequence in which the

states arise in evolution is specified, from primitive to most derivéd. Since -

these sequences have a tréeulike form (in that more than one derived state can

arise independently from the same primitive state), they will be referred to '

_as character‘state trees. They also assume that there is no polymorphism in

~ the ancestry of a group, so that each ancestor had exactly one state in each

character. Finally, they assume that each state arises in evolution only from

“‘the state immediatelylpreceding it.bﬁ the character state tree. This rules
':out reversal of evolution, although indepen@ent origin of the‘saﬁe state in.
several different parts of an evolutionary tfee'are not ruled out.

Camin and Sokal's‘method is simplyAtd1find that evolutionary tree which
requires the smallest'number of‘evolutionary steps o explain’the evblutibn of -
" the group subject to the above agsumptions. Fig. 1 illustrates the method for

"‘calculating the minimum number'of evolutionary stepé needed for a particular
o eronf evolutionary tree; The bulk of Camin and Sokal‘é paper is devoted to
broposing two methods for approximating to thé golution in cases where there

are too many alternative forms of tree for examination of each one to be feas-

ible. Doolittle and Blombick (196L) have also used this criterion in studies

of amino acid sequences of a peptide of fibrinogen in five artiodactyls. .
They try-to find the phylogeny whichfrequires the smallest'number of amino

" acid residue changes in evolution.



Fig. l.--Exa.ﬁlple of the method for calculating the num‘ber of evolu=-
tionary steps, given & phylogenetic. tree. R : :

Ny
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Camin and Sokal refer to their method as "reconstructing cladistics
by the principle.of evolutionary parsimony." Parsimony implies an essentially
aesthetic judgment of the economy of hypothesislnecessary’to explain observa-
tions. It is not clear that this can be equated with the criterion used by
Camin and Sokal. It would seem that use of the term parsimon& loads the dice
in favor of any method to which it is applied. Camin and Sokal's method is

better described as a minimum evolutionary steps method.

The Criticisms of Rogers, Flemlng, and Estabrook

| Rogers, Fleming, and Estabrook (1967) have made a number of crltlclsms
1of the method of Camin and Sokal. They point out that in any particular set
of data, the evolutionary tree A"most parsimonious” for one set of characters
is not necessarily the same as thé tree'mbst parsimonious for another set, so
~ that it cannot be maintained that the methdd will always produce the correct
phylogeny. However; it is not clear that Camin and Sokal made such & strong
claim. Rogers, Fieming, and BEstabrook also point out that the most parsimoni-
ous phylogeny may require the existence of hypotheticalborganisms which have
combinations of character states which are not wiable. The criterion of min--
imum evblutionary‘steps~thus contains an assﬁmption of independence of differf
ent characters | |
_ Thelr other two cr1t1c1sms are fundamental The first is that the

probability of occurrence of the most parsimonious tree may be very small.‘
They giveAtﬂe example that the probability that exactly fifty heads occur in
one hundfed tosses of a fair coin is only abbut 0.08. But this cfiticism
| misses the mafk by viewing the sitqaﬁion:prospectively rather than retrospec-
tively. It is pointless to érgue that the observed data have a low g‘priori’
- probability;of oceurring, once it is‘kﬁown‘that:théy'hgve in fact occurred.
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They seem to be misreading the principle of "parsimony" as the statement that
evolution will most likely happen in such a way that the minimum number of |
evolutionary steps will occur (and hence that most likely no evolutionary
change at all will occur). This can be seen‘in the way that they pose the
coin-tossing example: "As a matter of historical fact, é "fair' coin has
been tossed 100 times. Devise a scheme for guessing how many heads turned
up." This question is simrly irrelevant to the problem of inferring phy-

logeny. A better parallel to the type of problem encounteied in guessing

"phylogeny‘would be the »following: A coin tossed 100 times gives 50 heads.

Devise a scheme for guessing the probability of heads. We guess 50 per cent,

since in that case the observed results deviate least from their expectation.
If the probability of heads is 50 per cent, there is an 8 per cent chance of
getting 50 heads in 100 toses, while when the probability of heads is (say)

70 per cent, there is only a 1.3 per cent chance of getting 50 heads in 100

.~ tosses. Thus, even though the chance of getting 50 heads is low a priori in

all cases, an a posteriori view shows that we are more likely to get SO‘heéds

if the " probability of heads is 50 per cent than if it is 70 per cent. This

' is the method of maximum likelihood, of which more below.

The princible of "parsimony" or of minimum evolutién states that
given that the observed data have occurred, it is most likely that they oc-
curred according to whichever phylogeny wduld require the smallest amount Qf
"evolution." .Though this statement may be on shakier ground than the state-
ment that the minimum.possible number of evolutionary steps will occur, it
is certainly more useful in selectingva phylogeny.&

The remaining criticism of Rogers, Fleming, and Estabrook is that

"the most likely step at aﬁy given point in time may not be a step whose re-

sult is a most parsimonious tree for the objects that were eventually evolved."
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This criticism is not substantially different from the preceding'one, and

will not be discussed in detail:. It evolves the same a priori point of view.

The Maximum Likelihood Approaéh

Despite the weakness of their major criticism, Rogers, Fleming, and
Estabrook take an important step in discussing "parsimony" in tefms of prob-
ability. This changes the terms of discussion from the ill-defined concebts
of "parsimony" and amount of evolution to the more clearly defined concept of
probability. Substituting probability for "parsimony! leads to the state-

ment that the most likely phylogeny is the one on which the observed data

- have the highest probability of arising. This is identical with the statis-

tical method of maximum likelihood, provided that we view phylogeny as the

" paremeter being éstimated.

The use of a conceptual framework involving probabilities was fore-

shadowed by a comment of Camin and Sokal (1965) that "the method as described

’above assumes équal‘probability of all evolutionary steps after the charac-

ters have been coded." They attribute this insight to E. C. Minkoff. In

fact, the method of maximum likelihood had already been used by Edwards and

Cavalli-Sforza (1964). They worked on the frequencies of alleles in blood

group polymorphisms in human populations, attempting to derive a phylogeny.

~ The first step of their analysis is to transform the allele freduencies onto

a set of rectangular co-ordinates. The transformation was chosen so that the
process of random genetic drift with multiple alleles would be transformed

into a process of Brownian motion in many dimensions. Given an evolutionary

.tree, each fork of which has associated with it a time and a set of sllelic

co-ordinates, it is possible to calculate for each segment of the tree the

probability that the stated‘amount_ofichahge would Qccur‘during the stated
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time interval. They calculate the likelihood of the whole tree as the product
of the likelihoods of its segments, since Brownian motion during successive
time intervals is independent. They have developed methods by which a good
guess can be made at the maximum likelihood tree without examining all pos-
' sible forms of tree. The phylogenies obtained in this way agree surprisingly‘
well with standard interpretations of the evolutionary origin of human popu-
lations (Cavalli-Sforza and Edwards, 1965). It is interesting to note that
before developing their maximum likelihood method, Edwards and Cavalli-Sforza
used a "method of minimum evolution." The results from this method were not
identical to those from the maximum likelihood meﬁhod, élthough they were very |
similar. |

The remainder of this thesis will expand on the method of maximum
likelihood as applied to the estimation of phylogeny, and apply it to various
types of data which are commonly encountered. Hopefully, application of a
statistical inference approéch to the problem will ultimately lead to fhe
| elaboration of phylogenétic methods which afe‘well—defined,‘biologica;ly well-
justified, and of considerable power. It cannot be‘c}aimed'thaﬁ we are any-

where near this goal at present.



GENERAL PRINCIPLES

Types of Evolutionary Trees

The’terms "evolutionary tree" and "phyldgeny" have been used above
‘without definition. When used in the literature, these terms have no precise
meaning, denoting a variety of related but distiﬁct concepts. In this sec-
tion, I will define four types of evolutionary tree. | |

A representation of the total evolutionary history of a group would -
‘include a pedigree showing every individual that ever existed. For each indi- .
vidual the genotype, phenotype at each moment, and trajectory in time and
space would be given.' Present phylogénetic studies work far below this level
of precigion. No attempt is made to infer thé phenotypes of past individﬂals,
other than those observed as fossils. At best, an attempt is made to infer
the phenotype parameters éf past populations, and to draw a pedigfee Qf popu-=
lations. Since speciation is represented on such pedigrees és an all-or-
_none, instantaneous process, the pedigrees usually have the shape of a branch-
ing tree. While suéh a representation of evolution is obviously crude and |
oversimplified in the extreme, it is probably the best that can be attempted
with the data available. | -

' Four types of evolutionary tree are depicted in‘Figure 2. Type I
gives the most complete description of the'evolution of the group in gquestion.
There is a’finite number (in this case four) of populations at the tips of
branches. At time‘To there is only one populétion ancestral to these tip pop~-

| ulations. . Every population éncestral to the populations at the tips of the

17



Fig. 2.--Four types of evolutionary trees.
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branches and descended from the population at time T, is represented. Each

population is described in terms of a series of phenotypic parameters (in

“this case, two). With a sufficiently large number of phenotype parameters,

this type of tree can convey an almost compiete record of the evolutionary

history of a group.

The tree of type II is derived from the tree of type I bybomitting
information about all populations except those at the tips of branches, the
ancestral population at time T , and the "latest common ancestor" popula-
tiong at the forks of the tree. These populations have thelr times and

phenotype parameters s?ecified,_as well as their ancestor-descendant rela-

" tionships, symbolized in the figure by thin lines comnecting them. Further
removal of information results in a tree of type iII, in which the times

and ancestor-descendant relationships of the populations are given, but not

phenotype parameters. The horizontal dimenéion of the diagram is formally
meaningless, serving only to separate the populations. Fihally, omitting

the times of occurrence of the latest common ancestors brings us to a tree

- of type IV, in which only the order of branching is shown.

It is possible to make rigorous definitions of mathematical‘enti-
ties similar to thé trees described here, but there seems to be no point in
doing so in this thesis. It is also possible to define other kinds of
trees.‘ One further type of tree which often occurs in the literature is
the typé vwhich would result if information on the phenotype parameters,lbut
not the times, of the latest common aﬁcestors wefe given. In the litera-
ture of phylogenetic taxonomy, the names used for differént tybes of~trees
are extremely inconsistent. It would be desiiable to have a standardized
nomenclature foﬁ erlutionafy tree55 In its absence, I will refer to the

types of trees by ﬁheir numbers,‘i
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The Application of Bayesian Inference
and Maximum Likelihood

' The construction of a phylogeny is tne process of making inferences
about the evolutionary history of a group of organisms. It is very similar
to processes of statistical estimation. In doing phylogenetic inference, we
are given information'about the phenotypes of a group of organisms and assum§4
tions about the evolutionary processes responsible for the diversity of the
. group. We are required to choose among a set of possible evolntionary trees
for the group. In a typical problem of statistical estimation, we might be
given a series of numbers and the assumption that they were drawn at random
from a Normal distribution with unknown mean and variance. We are required
4o choose values of the mean and variance from the set of pos31ble values.

The central theme of this thesis 1s the feasibility and usefulness.of
congidering phylogeny as'a problem in statistical inference. A statistical
’approach is no more free from arbitrary assumptions than are classical methods.
.But 1t does have the advantage of making clear the extent and manner of depend—
ence of.the specific procedures followed in making the inference on the biolog-
‘Aicalvmodel assumed. The possibility of examining this dependence comes from .
the fact that once a'general method of estimation is chosen, for every biologe
.ical model of evolution which we assume, we can generate an estimation pro-
cedure for inference of the evolutionary tfee. We can even attempt to find
biological models whose statistical estimation procedure is the same as a
--¢lagsical phylogenetic method although-success is not guaranteed.

\ Even if statistical 1nference methods are not adopted, a statistical
vocabulary should be used in phylogenetlc studies. Many of the classical
methods are stated in langnage which implies that with their use the evolu-

tionary tree can be infallibly deduced. Elsewhere in thersame works, the
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authors often clearly indicate that they are wgll aware of the uncertain and
tentative nature of the results obtained by use of these methods. If only
forvself—consistency, phylogenetic methods should be described in terms of
probability and likelihood. A misleading aura of infallibility can scarcely
be desirable.

It is not ﬁy intention to review philosophies of statistical estima~
tion. A vériety of approaches existé, each yielding estimators with partic-
ular desirable properties. The variables being estimated in a phylogenetic
problenm include not only continuous variables such as times of branching of -
 fthe tree, but also discrete ones such as the topological shape of the tree.

. Many of the existing approaches to estimation cannot be used for this reason,
since properties such as»lack of bias, minimum mean square error, and éffi—
ciency are meaningless when applied to the discrete variables. I will make

use of the relatéd Bayesian inference and maximum likelihood methods, becausé

they are almost always applicable, have a simple interpretation, and have
various desirab;e properties in those situations in which the properties are
meaningful.

| ‘_Bayesian inference makes use of Bayes' Theorem. Suppose that we have
a geries of eﬁents .Al; Apsy « - ; s Ao corresponding to forms of the evolu-.
tionary tree, one of which must be correct. Suppose that we have a priori
probabilities P(Ai) that evolution occurs according to hypothesis i. Suppose
that we have é series of possible configurations or outcomes of the obsered
data; Bl’

occurs, given that hypothesis Ai‘about‘the tree is correct, and this prob-

By, « v o Bm. We are given the probability that data outcome Bj

ability is denoted by.P(leAi). By the standard definition of conditional
probability we have P(AiBJ.) = P(Ai)P(Bj IAi), where P(AiBJ.) is the probability

- that evolution occurs according'to}hypbthesis i and the data outcome is Bj'
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We want to find the probability that, given that dat; outcome Bj occurs, the
evolutionary tree was of type A;. This probability is written P(Ai]Bj) and
is equal to P(AiBj) /P(BJ.) by the definition of conditional probability. We’
hqve not been given P(Bj), butvit is equal to P(AlBj) + P(AQBJ) + .. . F
P(AnBj) so that we can write
b P(Ai)P(Bj}Ai) W

(P2
aﬁ . P(A ) E( B, lAk)

‘which is Bayes' Theorem, found in any text of probability.
If we are given a priori probabilities P(Ai) of the hypotheses, and
conditional probabilities P(Eﬁmi) of the data given the hypotheses, we can

use Bayés' Theorem to find a posteriori probabilities of the hypotheses gilven

that data of type Jj has actually been observed. If we want to choose one of

the hypotheses as our estimate, it is natural to choose the one with the high-

est a posteriori probability. Since all the expressions for P(AilBj) which
~ have the same 33 have the same denominator in equation (1), this emounts to
choosing the A, which has the maximum value of P(Ai)P(B.lAi); which is

P(A B. ) If the a priori probabilities P(A, ) are known to be or assumed to
be equal, this will be equivalent to choos1ng that value of A which glves
the maximum value of P(leAi>' This procedure is often followed when the
‘a priori probabilities are unknown. P(leAi) is called the likelihood of .
hypothesis Ai given data Bj’ and the procgdure is known as the method of

maximum 1ikelihood.

Bayes' Theorem is often written in the odds form:

P(A, IB) P(A, ) (leAi)
P(Ale ) P(A ) P(BJ. 2,)
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Thus, given the data oﬁtcome Bj’ the odds favoring Ai over Ak‘are the product

of the'g priori odds and the likelihood ratio of Ai versus Ak.‘ Obvious;y only

the Ai with the greatest value of P(AJBJ) will have this ratio greater than
unity for all A, .

Bayesian and maximum likelihood methods have a number of desirable
properties. It is easily shéwn that a Bayesian method is the méthod of estima-
tion which has the highest probability of being correct, as follows: Givén
data outcome Bj we must decide which of the Aivto estimate. If»wé choose Ak,
our probability of being correct is P(AkIBj). To minimize the over-all prob-
ability‘of error, we musf minimize the probability of error for each j. This
ﬂ~ can be'done by.cpoosing the k which gives the highest value of P(Alej). But

this is exactly the procedure we follow when we use a Bayesian method to .get

o

 point estimate of the evolutionary tree (i.e., to guess a single tree). This

~property is less meaningful when we haﬁe a continuum of possible trees, each
with a probability of zero. It should also be noted that the proper£y of |
~having minimum probability of error does not apply to maximum‘likelihood
methods. In them we choose the A; with the highest value of»P(BJ. |A_i)‘, which
is not the same as choosing the A, with the pighest value of P(Ai)P(BJ. lAi), ’
especially if the aipriori probabilities differ substantially. It is easy to
construct cases in which P(Ai) is zero, but P(leAi) is larger than any other

13(13j IAk). In these cases, maximum likelihood methods will choose tree A,,

. while Bayesian methods will not.

Both Bayesian and maximum likelihood methods hafe the property of o
"being consistent. This means that as more and more indepéndent charécters'
are used to make‘the estimate, the probability that the wrong tree will Be
chosen will approach zero,,Sb‘ihat’with sufficiently many independent char-

 acters we can reach an arbitrarily high level of accuracy. In such a
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situation Bl’ R Bm represent the outcomes of a gingle character. The
data outcome‘can be represented by an n-tuple,(nl, e e s nm), where n'j is
the number of charactefs in which the outcome is Bj' Bayes'Theorem can be

stated in odds form:

A . P[Ail(nl, o e s s nm)] ) P(Ai)P[(nl, ; e e nm)lAi]
Ri/jx = BLA, [(n, - - -5 )]  PAJPE, « « - 5 o) [A]

'Kendall and Stuart (1961, vol. 2, p. 40) have présented a general (although

not elementary) proof that as one increases N =>nl + h2 + o e et nm,<the~

probability that the likelihood ratio

By, - e ) (AT
P[(nl, « e ey nm)lAk]

is greater than unity approaches one. This proves that the maximum likeli-
hood method is congistent. Since a Bayesian method with correct values of
the P(Aj) has a smaller probability of error than the corresponding maximum

likelihood method, Bayesian inference is also consistent. It can even be

shown for simple cases that even when the wrong values of the P(Aj) are used,

provided that P(Ai) > 0 for the true value Ai’ the estimation is consistent..

It should be kept in mind that the proofs of comsistency depend on

the different characters behaving as if they were identical, i.e., P(leAi)v

‘must be the same for all characters. This requirement is not met in most real

data, so that, strictly speaking, we cannot be sure that consistency holds in

]

any real case.

In addition to point estimation, we can do interval estimation, in

which the estimate is & set of trees rather than a single tree. A simple

procedure which suggests itself in the case of Bayesian inference is to
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construct the set, given a data outcome Bj’ by first placing in it the Ai'
which has the largest value of P(Ai[Bj), then the next largest, and s§ on
until a predetermined amount a of probability has accumulated. The resulting
set will contain the correct tree a of the time.' We cannot, however, calllé
the confidence level of the set, since confidence intervals are constructed

differently. I will not deal further with the question of interval estima-

tion. The validity of all estimation procedures is dependent on the validity .

of the models of evolution on which they are based. Since the models which
are usable at present are so crude that they can only be termed gross, it is
likely that one deludes oneself by making statements that a given set has a

95 per cent chance of containing the correct evolutionary tree. It might be

bettef to stick to point estimation, and simply hope that the true evolution-

ary tree looks somewhat like the estimated one.

 Probgbility Models of Evolution

In all of the abbve procedures and considerations, the probabilities
.P(Ai) and P<Bj|Ai) play a crucial part. The values of these probabilities
are determined by the model of evolution which is assumed. It should be re-
memberea that P(leAi) is’the probability that the data outcome will be Bj"

given that the true tree is Ai' The interpretation of this quantity as a

‘ - probability need not imply'that the mechanism of evolution is random Or prob-

abilistic in any way. If:the entire process is deterministic, and 1f we know
the mechanisms,‘P(leAi) will be either O or 1, depending on whether evolu-
"' tion according to tree Aikresults in data of type Bj' In this case, since

, Bayesian'inference maximizes P(Ai)P(Bj[Ai), the estimate will be the tree
ﬁhich gives rise to data of tyﬁe Bj and which has the highest a priori prob-

ability P(A;). Maximum likelihood estimation, since it is equivalent to
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Bayesian inferenée with the P(Ai) equal, will not choose among those Ai which
have P(leAi) equai to one, if several such exist.
Thus the use of probabilities does not necessarily imply acceptance
of a probabilistic model of evolution, which may be unacceptable to many bi-

ologists. Since we are dealing with events which are essentially unidue (it

“being impossible to run repeated trials of the evolution of the vertebrates)

we must think of the probabilities as measuring our own uncertainty as to what
happened in evolution, rather than describing any natural random process.

Even when evolution is completely deterministic, we can have apparent random-
ness arising from uncertainty about the initial conditions pf the group before
the relevant portion of its evolutlon. And it should not be overlooked that

randomness in the data can arise from processes of sampling, either human or

“patural (as with fossilization), which give rise to the particular data under

consideration.

8o far, I have assumed that the P(leAi) are avallable. Someﬂimes,
however, we may be.uncertain as to details of the models of evolution itself.
Thus, we may have three p0331ble models, Mi, M2, and M3 If we have a priori
probabilities of the models, reflecting our 1nten51t1es of bellef in them, we

can write
P(BzJAi) = P(Ml)P(BJ. lags M) + P(ME)P(BJ. A 5M,) + P(M3)P(Bj|Ai,M3)-

where P(B A, ,Mk) is the probability that the data outcome is BJ given that
the model is Mk and the true tree is A . Once P(B |A ) is calculated, the
estimation can proceed in a normal manner. We may also wish to make an esti-
mate of the model of evolution as well as of the evolutionary tree. In.this

case we are estimating the ?airv(Ai,Mk) where Ai is the tree and Mk is the
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' model. Bayesian inference chooses that palr which maximizes

P(Ag5B5M ) = P(M)P(A, (1) P(By |41 ).

In many cases, P(Ai[Mk) P(Ai) when the a priori probability of the form of
evolutionary tree is independent of the model. If either or both of the

a _priori probabilities P(Mk) and'P(Aile) is not known, we canbassume that
all of the alternatives are equiprobable a riori, in which case we are carry-
ing out either maximum likelihood estimation or a mixture of Bayesian infer-
ence and maximum likelihood estimation.

When we estimate both the tree and the model, we inevitably lose ac-
4curacy in each one individually. The more parameters are being estimated ét
‘oncé, the élbserlthe data will appear to fit the model. For éxgmple, if we
leave the model of evolution completely unspecified, and pick an evolutionary
tree at random, say Al, we can always invent a completely artificial and con-
trived model of evolution under which P(leAl) = 1 while P(BjiAi) = 0 for all
other Ai' Under this model, the'precision of the éstimatibn of A appears to
be total, when in fact it is nil, for we could as’easily have chosen any other
tree Ai. In general, accuracy of estimation of the evolutionary tree requires
that we estimate as iittle as ﬁossible of the details of the model of evolu-
tion from the same data. If we do not have a priori probabilities for the
~ models Mi’ but are not‘particularly interested in estimating anything but the
tree, the best that we can do is to treat the a priori probabilities of the
models as equal.-tThis is equivalent to doing maximum likelihood estimation of
the model and then discarding the resulting estimate. The fact that we»ignore
information about M does not make the information about A more accurate. It
 is importantkto be able to récognizé this type of "silent estimation" so as to

be able to assess its efféctkon the accuracy of the tree estimation.
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Models for Generating the Form of Trees

Wﬁen we esbimate trees of type I or type II (see Fig. 2), it at first‘
seems that the nature of these types of trees forces us to assume a determinis-
tic model of evolution. Both of these types of trees specify the phenotypes
of the ancestor species at the forks of the tree and the phenotypes of the
species at the tips of the branches. The specifications of the tree then in-
clude the data. Thus the probability of the data outcome given the tree must

‘be either 0 or 1 if there is no sampling error in the data. The probabilis-
tic modei of evolution enters into determining the a priori probability of a
tree. |

.It is useful in discussing this type of problem to separate conceptu~-

ally the evolutibn of the form of the tree from the evolution of the pheno-

types of the organisms on it. Let T represent the information about the times

. of occurrence of the tree root, the latest common ancestors, and the branch
tips. Let Q represent the information on the phenotypes of the populations
represented by the tree. In Bayesian inference of a tree of type I or Ii; we

maximize over all (T, Q) the quantity
P(8,,7,Q) = B(B,|Q)R(Q|D)R(T).

The difference between estimation of type I trees and type II trees consists
‘of whether or not Q contains specifications for the phenotypes of po?ulations
not at the root, at forks, or at branch tips. The quantity P(BJIQ) is either
0 or 1, depending on whether Q includes the data configuration Bj in its |
specifiéation of the phenotypes at the‘branch tips. In cases with sampling
error, where Bj«consists of'sample parameters.and‘Q qf population parameters,
this is nbﬁ true, in trees Qf‘type‘III and IV, Q consists only of information

1.
)



30
about the branch tips, and since no aspect of Q is contained in the specifica-

tions for the tree, the maximization is of the quantity
P(BJ.,T)' = P(BJ.I’I‘)P(T)

over all possible values of the parameters comprising T. We usually have a |
~ model specifying P(Q|T), but we do not often have a model specifying ?(T).
When we have such a model, we can do Bayesian inferehce, but when we‘do not,
we are forced to assume the P(Ti) all equal, so that we are doing a mixture of
Bayesian inference and maximum likelihood. In the case of trees of type I off
- II, we are in effect finding that tree of all those which could leéd to data
of type Bj wﬂich has the highesc probability a priori. B
' Discussion in any detall offthe model of change of the phenotypes

must be deferred tc‘later sections, but it is appropriate at this point to‘
discuss models of evolution of the tree form, as given by the parameters com-
prising T. In reality it is impossible to separate the processes of phenc?
typic change from those of speciation. If the characters under consideration
are ones which contribute to or reflect the species icolation, change in the
_characters would be expected to be corfelated with speciation. However, for
~a first approximaticn it will be assumed that the processes are independent.
' ’Models incorporating the depehdence would be desirable, but appear difficult
~to stcte at present. As was noted earlier, it is already a crude apprcxima—

tion to consider speciation as an all-or-none, instantaneous process. One

simple model for the branching of evolutionary trees is the Yule process
(Cavalli-Sforza and Edwards, 1967), a classical model in probability theory
(see, for examplc, Feller, 1957). In such a process during a time interval
ofvlength dat, eacﬁ line has an indepcndent probability s dt of splitting (for

very small values of g&). It is possible to derive expxessions for the
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probabilities of generation of different trees, but the matter is fraught
with difficulties. The paper of Cavalli-Sforza and Edwards contains some
coumments on the problem. Since there will be no need for the probabilities
here, they will not be derived.

In estimation of trees of types I, II, and III, we are required to
estimate the times of splitting of the ancestral lines. If.we are willing
to accept a particular model of generation of the tree, we can use it to

obtain P(T) and do Bayesian inference. Type IV trees present a more severe

-+ problem. If we have a model of tree generation, we can work out the proba-

bility of a particular'topological form of tree by summing the probabilities
‘of the trees of type III consiétént with the particular type IV tree over

all possible positions in time of the fork points.' If we do not have.a model
of tree generation, we must 4o maximum likelihood estimation, as mentioned
~“above. Since the‘positions in time of the fork points will affect the proba-
~ bilities of phenofypic change P(QIT),_when we estimate tree form by meci mom
~likelihood we mﬁst‘estimate these times. If we are té end up with a tree of
type IV, we must.discafd these times. This is an example of "silent estimé#

tion,"

which was mentioned above.

The models of tree form generation should, of course, take extinction
into account. The Yule process does not. It is easy enough to state simple
- models involving extinction, but it is quite another matter to derive usable
' expreésions for the probabilities of different tree forms. This is the usual..
éuandary. In addition to extinetion, a mdderately realistic model of tree
form generstion would take inﬁo account the sampling of species for inclusion
in the study. If the tree is generated by a Yule process, and the species to

" be included in a particular study are sampled from the tree in some randomn

manner, the tree form of the selected species'WOuld berdépendent not only on
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the process which generated them, tut also on the type of sampliné used. If
we cannot say that the species in a given study were sampled in some random
or ﬁnbiased" way from the relevant gréup, we may be forced to use a maximum
llkellhOOd approach even when we have gome idea of the process generatlng the
tree for the larger group. . Similar difficulties arise when we use taxa hlgher_
than the species as our basic units. We can use "generic characters and
'assume that they charactefized a single species ancestral to the genus, bub
- it 1s llkely that we will become ensnared in problems of regtimating the times
of occurrence of these ancestral species, which will in effect be the tlp |

species on the tree.

The Treatment of Fossils

If we look at problems of estimation of tree form and fork times in
the above framework, we may be led to some clarification of the role of
fossil evidence in inferring evolutionary trees. It is commonly held to be of
| crucial importaﬁce. Sokal and Sneath (1963) say that ". . . since we have
.only an infinitesimal portion of phylogenetic hiétory in the fossil record,
it is almost impbssible to establish natural taxa on a phylogenetic basis.”
Hennig (1966) feels that it is quite possible to obtain phylogenies without
' fossils.‘ However, he assigns spegial significance to thém in assigning times '
of origin to groups: ". . . fossils with relatively apomorphous characters
can be very important‘. . . because they not only ?rove the existence of the
. groups to Which they belong but also may prove the simultaneous existence of
other groups with strongly ple51omorphous characters."” Both classical
methods, which often use f0531ls to infer phylogeny, and Hennlg s methods,
Which use fossils to assign tlmes to the origin of groups, contain the assump-

tion that the fossils represgnt‘the ancestors of the modern groups which they
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resemble. Hemnnig (1966) makes the assumption explicit by saying "all this is
true, of course, only if convergence or retrogressive development can be ex-
cluded." )

The straightforward treatment of fogsils is to treat them as addi-
tional species in the analysis, accordihg them no special treatment aside
from taking into account their time of occurrence. This does not bias us in ,
any way from discovering convergence in fossils, as other treatments ﬁight.

If we look at the alternative interpretations in Fig. 3, we can see that wé

- might favor interpretation 1 over interpretation 2 because it requires less

drastic change in any phyletic line, and hence is presﬁmably more likely.
Interpretation 1 is favored over interpretation 3 becéuse it requires only
two speéiation events rather than four, and wé may consider speclation imr‘
probable relative to phenotypic change. If for some reason we felt that spe=
ciation was far more probable than phenotypic change,‘we would prefer interf
pretation 4 to interpretation 1.

‘Classical methods which assign ancestral positions to fossil organ-

o _isms implicitly assume that speciation'is improbable compared with pheno-

" typic change of the order of magnitude observed. This sort of judgment is

involved, for example, when Australopithecus and Homo erectus are treated as

‘ancestors of Homo sapiens, rather than as organisms sharing common ancestors

with sapiens but not ancestral to it. The interpretation of fossils as an-

cestors does not depend on special treatment of fossils in the analysis; pro-

vided the proper assumptions are made about the probability of speclation.
.The arbitrary nature of according special treatment to fossils can be seen

" if we consider a series of hypothetical organismg, one collected in 19675

one collected in 1867 and stored since then, one fossilized in 1967 B.C.,

- and one fossilized in l,OO0,000'B.C.; Which should be given special treatment?



Fig. 3.~-Alternative interpretations of a hypothetical‘example in

which'both fossil and recent organisms are included.
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A statistical v1ewpoint gives no support to any special treatment, provided

“that the time at which the organisms existed is taken into account.

Dependence of Characters

A statistical approach can also be of value in considering the effect
of dependence of characters in taxonomic practice. There are gseveral levels
: at which characters may be dependent on one another. Characters in the same
. individual may be phygiologidally or genetically interdependent.  This affects ’

the probability of simultaneous evolutionary chénge in the characters. Sup-
"pose, for éxample, that a character U has probability p of changing from

state Ul to sta‘be"U2 in a particular portion of an evolutionary tree. Suppose
- that character V aiso has probability p of changing from state Vl to state V2
in the same portion of the tree, for the simple reason that U and V measure
the same property of the organisms in different ways. Then the probability
that both changes oééur togethei in the samé portion of the evolutionary tree
” is not p2 bu£ p.' If characters which are correlated in this way are treated
as if independent, there will result misevaluation of the probabilities of
evolutionary trees. Any genetic or physiologicai correlation must be built
into the probability model. ‘Alternatively,'if we are forced to assume inde-
vpendence of charécters, we can recode the data to take the known dependences
into account. This provides a Justification of fhe procedure of Cain and
Harrison (1960), who.urge that of any group of necessarily corfelatéd charac-
ters, all but one be discarded. Of course, if the dependence cah be built
into the model, there will Be no loss of informatién, so that this ié to be
preferred to discarding characters. ‘

There can also be non~independence of characters between individuals

_of the same species. ‘Examples of this are polymorphiém and sexual dimorphism.
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In a simple one-gene polymorphism with three phenotypes, the occurrence of
the heterozygous phenotype is obviously depéndent on the occurrence of both
homozygous;phenotypes. If we have three gspecies, in one of which we have
four speCimens, two of type AA and two of type aa, in another of which we
have two specimens of type Aa, and iﬁ the third of which we have ten speci-
mens of type aa, it is clear that the first species is more similar to the
second than eithef is to the last. This might superficially seen paradox-
*‘ ical, since in the first and third we have specimens with the same phénotyfe,
whiie in the first and seéond we do not. The resolution of the paradox‘is,‘
of course, that our basic units in studies of higher categories are‘populaf
tions rather than individuals. The allele frequencies are the characters of
the,population in cases of polymorphism (or the morph frequéﬁcies if the
genetic basis of the polymorphism is unknown).

Hennig (1966) has pointed out that, as we do not often know the genetic
basis‘of variability or the position of species boundaries, detection of poly~-

", . . can be regarded

morphism and resblution of intraspecific differences
" as a systematic problem of the 'lowest taxonomig units,' which we considered
to be the individuals."v Two approaches to this problem are’possible. The
more general and infernally consistent approach is to make these judgmentsipart"
of the ph&logenetic estimation procedure. Specimens would be aggregated into
species by the procedure in order to reduce the number of speciation events
which 1t would be necessary to assume, at the cost of assuming that the
species were polymorphic. ‘The alternative method would be to make decisions
about species boundaries prior to using statistical inference. The judgments

as to which differences are specific and which polymorphic are then built into

the probability model. If these jﬁdgmentsraré corréct, the inclusion of this

t
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" information in the model will improve the resolving power of the phylogenetic.
inference above the species level. If there is no model giving probabilities
of speciation events, the first of these two approaches cannot be carried out.
The second also allows use of gestalt information not formally coded in the
data. |

Sexual dimorphism has many\of the same problems as polymorphism. In |
v particular, if we have a series of.males and females Which differ, we must
~decide. whether the difference is sexual dimorphism or species difference.  The
possible approaches are the same as given above. Sexual dimorphism is a type

of character depehdénce. Although it may superficially appear to be equiva-

lent to polymorphism,Ait is quite different in that it does not demand mainte-

: nance in the:population of any genetic heterogeneity other than for the genes
determining sex.i If it is represented as polymorphism, the probabilities‘of
- evoluﬁionary change will be misleading, so that this approach is quite unsat-
isfactory. On the other hand, we cannot code a sexually dimorphic charaCtér
. as ﬁwo sepérate characteré unless the probability model of evolution takes
into aCQOunt the dependence of the two characters. If fhe male form of a
character changes, this may well be correlated with a change in the female |
form. We get into the same sorts of problems discussed above with regard to
the probability of simultaneous change in the two characters. If the prob-
ability model assumes independence of evolution in different characters,‘we
must code a sexually dimorphis character as a siﬁgle character, the "stateﬁ
of which consisﬁs of the states of the male and female forms. Change in
either or both will result in a new "state" of the compound character.

The third level of dependence is dependence of characters in differ- -
ent séecies._ Under this heading can be placed effects due to compétition;

predation, parasitism, and mimicry. In effects of this type, the change of
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! charecter in one species will have an influence on the probability of
change of a character in another species. The models presently in use in
numerical phylogenetic methods do not take these phenomena into account.
Since members of a closely related group of species do not often prey upon,
paraéitize, or mimic each other, these three ﬁhenomena can often be treated
as if they wefe environmental effects. However, closely related species
often compete with each other. The characters chosen in taxonomic studies
frequently reflect feeding and locomotof activities and size,‘aspects of the
- organism likely to be strongly influenced by competition.‘ Treating the evolue
>tion of different lines as‘independent implicitly assumes the‘absenee of com~
“petition This is a major difficulty with present.models~which will not be
i‘_tackled in this thesis because of the complex1ty of the problem.
Dependence can result from two characters belng affected by the same
"“Iselecfion pressure. For example, if a particular adaptation can be made by
' .altering either character X or character Y, then the probability of change in
- character Y (which refleets the selection pressure on it) will depend on
whether or not character X has already been changed. This emphasizes an im-
‘portant point, namely that characters are to be considered indebendent only
ef‘ if they affect the fitness of the organism independently, the fitness effect
“ Qf one not depending on the state of another. It is not sufficient that the
genetic and physiological bases of the observed characters be independent.
Another way in which selection pressure can cause dependence is by a
selection pressure affecting the same cheracter.in different species.. For
example, a series of cold years over a w1de geographic area might make it
probable that several phyletlc lines would simultaneously become adapted to
cold. If the probability of a cold wave‘ln a‘pertlcular time interval is p,

the probabilities that zero, qné,.or.two organisms in two lines become adapted
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to cold would be (1-p), O, and p. If the occurrence of the cold wave is in-
dependent with respect to the two orgenisms, e.g., if they are widely sep-

arated geographically, the probabilities would be»(l—p)e, 2p(1l-p), and pg.

An evolutionary tree requiring that both lines become adapted to cold at the-

same time would be more heavily discounted by the second model than by the
first. This effect will occur only if the selection pressure varies in time.

If it is constant, it will not cause dependence. Thus, if p is either O or

1, the two sets of probabilities given above are the same, being respectively

1, 0, 0 and 0, O, 1. In'the characters used by Cavalli-Sforza and Edwards
: (1967), they are able to show that selection variable in time but constant
. over space (and hence over phyletic lines existing at a given‘time) will not
affect their estimation procedure. TUnless ﬁe have fossils availéble; it may
k_be impossible to detect directional changés affecting all of the organisﬁs
-~ under study equally. We are more interested in the forces which tend to dif-
ferentiate organisms than in those which cause parallel evolution wheﬁ we set
out to esﬁimate phylogeny.

In éll of the above cases, it is easier to point‘out the dangers of
~ dependence of characters than to remedy them. The ideal solution is to con-
sidef the entire phehotype of the organism as a single character with a coﬁr
: plex.of states. The dgpendence of different characters in the same popula-
‘tion is then reflected in the probabilities of changé of this character. Al-
though this is imp:actical in real cases, the éombination of dependent char-
aéters with each other caﬁ often be carried out to a smaller extent. - For éx-
ample;‘if we have recorded the lengthvand width of the skull of a mammal, and
if shape stays approximately cbnstant in evolution while size changes, both |
dimensions will. change in a correlated way. But if we recode the data as

gize and length/width ratio, these characters will be independent. This type

e



L1

of recoding should be attempted whenever possible. Even when it is feasible,

it will only correct for dependence within a species, and not for the effects

of competition or of variation of the selection pressures.

Change in the Environment

T have mentioned above three reasons why a deterministic process of
evolution could give a probability model of evolution which was not determin-
istié: statistical sampling error in the data, uncertainty about the initial

state of the evolutlon process, and uncertainty about the model of evolution.

An addltlonal gsource is uncertainty about the state of the env1ronment, whlch h

|

. can also be thought of as a type of uncertainty about the model of evolution.
"If the response to a change in the environment is strictly deterministic, so
that all of the randomness in the model reflects randomness of the environ-
~ment, then the phenotypic differentiation of the group will reflect this ran-
domness. Thislsuggests use of the state of the enviromment as part of the |
phenotype of an organism. One aspect of the enviromment which is correlated
with many other is geographical location. When we include as part of a

 species’ phenotype its distribution, we are in effect coding environment into

the phenotype. As long as we can formulate a model for the change of the en-

vironment, there would seem to be no particular dbjectiqn to this sort of
procedure.
An example of the duality between environmental randomness and random

response to the ehvironment‘is provided by Cavalli-Sforza and Edwards (1967) .
fﬂfhéy consider a model of "éelective drift" in which the selection coefficients
in the‘équation for change of gene freqﬁencieS‘are assumed to be drawn at
randon from a statistiéal distribution. The randomness involved could be en-
,‘vironmental randomness or could‘resﬁlt from variability in the determination

of a phenotype, which might then be selected deterministically.
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Adaptive and Conservative Characters

_ The classical controversy over whether adaptive or non-adaptive char-

acters should be used to establish phylogeny is rendered obsolete by a sta-

tisticél approach. Any character for which a probability model can be con~
structed can be used, regardless of whether the basis of the probability is -

selection in a variable enviromment or genetic drift. Sokal and Sneath (1963)

 and Simpson (1961) point out that truly non-adaptive characters are rare if
‘not non-gxistent, rendering the controversy scmewhat moot if the definitions

" are interpreted rigidly. However, it seems likely that the intent of the

taxonomists was to exclude characters whose similarity in different species

reflected similarity of environment rather than phylogenetic history. A sta-

‘tistical inference approach de-emphasizes these characters. If a character

is very labile, it is not improbable that it will show a great amount of con-
vergent and parallel evolution. Evolutionary trees will not be made improb- |

able by the fact that they require convergence or parallelism of these char-

" acters, so that they will be of little importance in establishing the form of

the trees.

A similar statement applies tovthe common contention that "conserva-

tive" characters should be used in inferring relationship. The same thought

" underlies the rule, and a statistical inference approach automatically takes

care of the problem for the same reason.

Welghting of Characters

Both of these concepts are related to the concept of "weighting" of

" characters, since both criteria effectively de-weight‘certain characters by

rejection. The presence of weighting in classical phylogenetic methods dis-

tinguishes them from both phenetic methods (Davis and Heywood, 1963; Sokal
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and Sneath, 1963) and numerical phylogenetic methods, as outlined in Chapter
I (see especially Cain and Harrison, 1960; Camin and Sokal, 1965). It would
geem that weighting appears in a statistical inference approach. For example,
if origin of state Xl of character X from its primitive state XO is much less
probabie than origin of state Yi of characﬁer Y ffom its primiﬁive state Yo,
a tree requiring two origins of Xl and one of’Yl will be less likely than a
tree requiring two origins"of state Yl and one of state‘Xl. Thus more compro-
mises in tree foim will be ﬁade to avoid convergencé-in X than in Y, so that
‘4-transition from %o to Xl is in effect more heavily weighted than tranéition
from'Yo to Yl. Noticé that weight attaches not to whole characters but to
gspecific evolutionary eventé within the characters. The even@s which are
heavily weighted ére those which are least probable a priori. Their oécur-

. rence more than once will make é tree much less probable. A change can be

assigned a high weight by lowering its assumed probability. '

Similarity to Present Phylogenetic Practice

It should not be thought that adoption of a statistical inference ap-
proach would invalidate‘present phylogenetic practice, although it would cér—-
tainly cause somé changes. As is apparent above, a statistical inference ap-
proach provides support for such practices as weighting characters. It is at
- least possible that taxonomists have been applying maximum likelihood or
Bayesian methbds‘in pracﬁice, with models of evolution derived from their ex-
perience. This éould easily lead to estimétion of much higher power‘than'can
presently be achieved numerically. This point is made by Rogers, Fleming,
and Estabrook (1967) with regard to "pérsimony," but. I feel that it is more
likely that present taxonomic practice resembles Bayesian inference, espe~-

~cially in view of the prevelence of weighting of characters.
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Tt is not recessary that an explicitly statistical approach will

yield better results than a classical one, given the crudity of the models.

 of evolution used in statistical approaches at present. The advantage of

a statistical approach lies in its ability to consider all data faifly, and
in its well-defined nature which would tend to promote grester clarity of

thought in discussions of phylogenetic methods. ' e



DISCRETE CHARACTERS

The Basic Model

A discrete character is one whose phenotypes are distinct. For con-

| ~ venience we can number the phenotypes 1, 2, 3, . . + X, where k is the number

- of phenotypes. In theory, the state of the character in a population could = .

1’ 72 k
“types. But since we rarely know the genetic basis for the phenotypes, we

be characterized by giving the frequencies f,, f,, . . . , f, of the k pheno- -

cannot often meke reasonable models for the change of these frequencies. It
is also usually true that we have such small samples of each species that we

cannot make decent estimates of their frequencies, although we may have an

- idea which phenotypes are present. In such cases, it seems reasonable to de-

“scribe a populatiop simply by listing the phenotypes it contains. If there
are k phenotypes, there areb2k-l such lists possible: (1), (2), (3), . - . ,
()), (1,2), (1,3)s « o « » (K=1,K), « « o 5 (1,2,3, « « « , k). Such a list

"déscribes the state of a character in a population. If polymorphism does not.

~occur, we need only the first k lists: (1), (@), + + + 5 (k). In the deriva~

tions which follow the possibility of polymorphism will be assumed. ‘

Assume that the probability that a given chénge in the state of a
.character occurs in a given length of time depends only on the state of the
chaiacter at the beginning of fhe interval and the~lengthlof the time‘inter-
| yal.‘ This means that the prdbability of.any particular change cannot dépend

ion the relative erQuencies of the phenotypes comprising the gtaté. Real

( evolutionary events consist of shifts in the frequencies of~phenotypes,

b5
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caused by selection, migration, and genetic drift, as well as the origin of
new phenotypes by mutation and recombination. In our .crude approximation to
these processes, we have lost sight of all changes except thOSe resulting in

less or addition of a phenotype. In mathematical terms, the above aseumption

states that each character undergoes an independent Markov process, in contin-
uous time. ‘ |

One additional assumption will be made which has no particuiar biolog-
ical justificatien, but which simplifies the mathematics. Let the probability
that there is no change in character k-during a shert'time interval.of length’
gt bel - w dt, 1rrespect1ve of the state of the character All states of the
‘character are then equally likely to be superseded by new ones. We now calcu- -
late the probability of a type II tree. Since the i specifications of the tree
1nclude the daba, this probability will be the 2 Erlorl prdbablllty of- the |
tree, rather than its likelihood. . The length in time of segment i of the tree
will be given by u,, as in Fig. 4. The total length of all segments is U = Zu, .
By the assumptions above, evolution in aifferent eharacters iS’independent.
Once the states of a character at the beginnings of two segments are given,
evolution in the £wo segments is independent. ‘If we can calculate the prob-
ability of the evolﬁtionary events occurring in each segment of the tree, the
- probability of the tree will be the product of the segment probabilities.
‘Consider character i in segment i. Let the etates of the character at the
beginning and end of the segment be a and.g,.these along with'ui being part
of the specifications of the tree. Since Wj is the probability of change per
unit of time, and sinee ui is the leﬁgth of the segment, the expected number
-of charaeter state changes in theesegment.will be Wjui. The actual number of
changes of state will be diétributed according to a Poisson distribution with
paremeter Wjui' :Then the e priofiiprobability that‘there will be k changes of

+

‘state is



- Fig. L.--Notation of times of brariching on a tree of type II.
Further explanation in text. o
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Figure 4
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k
e (wjui) / k! . (1)

for any integral value of k.’ Denote by Pab(k) the probability that after k
changes of state, the state is b, given that the initial state was a. Then
the probability that after a length of time u, the state is b, given that it

. was initially a is

T P (k changes occur in time u.) P (x)
Xk i’ “ab
- which is
o . k (k)
b e 91 (wou,) P b / ki
k=0 g8 |

Multiplying this for all values of i and j, we get for the probability of the

" tree:

-'W'jui k (k) N o .
P = ? g (i e (Wjui) P / k! )i o , (2)

This expression is what I earlier referred to as P(QiT). It contains no’term

“for the a priori probability of the form of the tree.
Given‘the specifications for the tree, expressed by the values of the
Uy and the values of a and b (which are different for each character and each
vsegment), and given the probability model of evolution, expressed by the Wj
and the values of Pab(k)’ we can calculaﬁe the probability of the tree by
,application‘of this formula. This formula is often laborious to use, espe-
| cially when it must be calculated for many different trees in order to find

the Bayesian'estimate of the phylogeny. This is especially true when we are

NS
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estimating trees of types III or IV. To each tree of type III, for example,
there corresponds a large number of trees of type II, with different states
of the character at the forks of the trees. The probability éf a tree of

type III is the sum of the probabilities of all of theée trees of type II.
This*can be seen by congidering the symbol Q, which represents the character
- gtates of all of the forks and brancﬁ tips of.a tree of type II, to be com-
posed of two’parts: the states of the tiﬁs (D) and the states of the forks'v
(F). We have an equation which allows us to caiculate (F, D|T). For a

tree of type III, we need to calculate P(D|T), which is

= P(F, D|T)
r

8o that we can calculate it by summing over alli possible configurations F of
the states of the:forkipoints. For treés df type IV, consider the tree
o paramétefs represented by T to consist of parametérs of the  shape of the

‘ tree; S, and parameters of ﬁhe fork{ﬁoints, t. We must calculate P(Dls),

which is

and if the procesées generating the‘form of the tree are independent of those

changing the states of the ‘characters:
P(D|s). = £ T EB(D, F|t, s) P(t]s),
t F '
so that if we know P(t]s) or assume it to be equal for all values of the

parameters t, we can calculate P(D|s) once we know P(D, F|T) for all values

~ of F. The estimation of trees of type I will not be discussed here, since
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complications arise, due to the fact that under almost any reasohable model
of evolution any individual tree has probability zero, forcing us to deal

with probability densities rather than probabilities.

"Parsimony" Methods and Bayesian Inference

Under certain assumptions, Bayesian methods are the same as "3 o
evolution" or "parsimony“ methods. First, let us find conditions under which
the summation over Xk in equationh(Q) effectively consists of a single term. -~
This will be thé case if there is only one k for each i and j such that Pab(k)
is not zero, which is the same as saying that there is only one way to get
from state a to state b, and that this way involves exéctly k steps. 1If wé‘
‘assume that each character state can arise from only one other state, this
condition is satisfied., The example in Fig. 1 haé this property. ' If for a
given character the value of WiU (and hence of all‘wjui)‘is very small, we
can ignore all but one term in the summation in equation (2).~ For if there
' , are two values of k for which Pab(k) is nonzero, the term with the larger k
will contain a higher power of wjui, and will effectively vanish compared to
the lower term.

| Suppose that either one of these two conditions holds. Call the
~value of k in segment i for character j, nié.'HEquation (2) becomes

L
3 ab [ n4t -

Let W = Z.wj and.let.vir# ui/U, so that I v, = 1 and»ui = van Then

—WU nij (nij)
P=e.  m (wU) Pop

n, . '
v, lJ/ﬂ..I .
i o9 RE T
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Taking natural iogarithms

n, .)

' ngy 13
log P==- WU +3 log ((ij) P )

+% n,,logv., -5 log (n,.!).
Ty BV - T g (n; ) | (3)
Let us assume that considering different evolutionary trees causes much
larger change in the second term of (3) than in the other terms, so that log P
is essentially determined by

n..)

oo Pig o (P
T log ((ij) Pob ). R - (W)

This might result from a small value of the ij or from large variation in

(n,.) '

Pon 7 as a and b are altered. The summation in‘(H)'can be considered as

inversely related to the "amount of evolution." Its value depends on thé

: n 5 and the a ané the E,:as well as on U, butgnot on the‘vi. Thus it .,

. measures the type and number of evolutionary events, being insensitive to the .

finer‘detailslof their‘relationship to the lengths of the tree segments.
Suppose éhat the only allowable chéractér state éhanées are those in~ 

volving the gain orAloss of one phenotype. Suppose furfher that the proba-

bility of a gain in pwjdt in a time interval of length dt, and that the prob-

kability of a loss is qwjdt. Then if-the change from a toih musﬁ’invqlve at

least‘nG gains and n losses of phenotypes,

vhere m is the number of different orderings of the gains-and losses which

are allowable, e.g., GGGLLL, GGLGLL, etc. Then
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?j log ((WJ-U) Py °.)

o + .
?' n, log (pwJ.U) % n log (qu.U)_ +Z logm
J : ij -

The last term can be more'qr less ignored in comparison with the first two if
~wJ.U is small. If an»evolutibhary tree requireslnG gains and n losses in seg-

. ment i for character j, we have

log P ;’;} n, log (pij) tZ oo loé‘(qij) . ‘ (5)
ij ' ij

: Thus each gain is assigned weight —log'(pij) and each loss is‘assigned weight
“-log (quU), and the probability of a tree is inversely related to its‘weight.
What all of the above boils down to is that if‘any change in a character is
o priori improbable over the time scale of the evolution of the group, we get
"a sufficient advantage from reducing the postulated number of changes that we
can'ignore the distriﬁution of the changes among segménts of the tree.

It may be objected that‘when working on recent groups, we usually
have ﬁo idea of the time scale of evolution or of the rates of change of
characters, so thatlwe cannot say whether ij is smgll or large. If we at-

. tempt meximum likelihood estimation of U from equation (3), the estimate‘is
6 =4N/W, where N = Znij, so that wja will be ij/w, where W = ij. If.wj is
small compaféd to other w's, then wjﬁ will be gmall. In other words, if we
" have two sefsvof;characters, with change being less probable in one set thani
in anpther, and if our datas are such as to require‘about as many changes in
one set as in the pther, any tree in which there are less changes in £he less‘

" labile characters at the expense of more changes in the more labile ones will

N
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have a higher probability, since the observed numbers of changes will then
correspond more closely to their expectations.

Generally speaking, the above derivations give support'to the use of

pars1mony methods only when we have advance knowledge of both the time
scale of the evolution of the group (U) and the rates of change of the char-
acters (as reflected by the values of wJ and P ( )) and these 1ndicate that
any change at all in the characters is unlikely. In this case, the less :
changes of'character state must‘be assumed, the closer the,number of changes
becomes to its expectation.

Use -of "parsimony" approaches does, however, have the advantage of
making estimation of type III and type IV trees simplef Each added character'
state change drastically lowers the probability. ‘I have demonstrated that
the probability of’type III'and type IV trees can be calculated by sﬁmming
probabilities of type II trees. If one particular type II tree has the
smallest number of character state changes, appropriately weighted, then only
(:the type III and IV trees compatible with it havera reasonable prdbability, |
since the contribution that the "parsimonious" type II tree makes is so great
compared to the contributions of the other type II'trees to the other type
III and IV probabilities.

It is relatively easy to develop'algorithms to estimate type IV trees
using parsimony models. 'The'core of‘any such algorithm is a'procedure‘which,

given specifications for a tree of type IV, and given a set of data and in~- -

formation on the model of change in:each character, calculates the probability '

of the tree, using equation (5). Obviously the optimum procedure would be
simply to look at all possible trees and to pick the one with the highest
‘value of log P (or, equivalently, the lowest total weight of character state

changes). As we(shall see below, the numbers of such trees are astronomical
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for even moderat; numbers of species. In order to make the procedure prac-
tical we.must examine only a small fraction of the total set of trees. A
reasonable procedure is to make an initial guess at the best tree by some
approximate procedure, then to try small alterations in the form of the tree,
retaining those which improve the probability of the tree. Wﬁen no further
small alterations will improve the tree, we accept it as the estimate. This
is by no means guaranteed to givé the beét'tree. Several trials, using dif-
ferent initial guesses at the tree, are neceséary to make the probability of’
‘obtaining the beét tree moderately high. Of the.resulté of tﬁese éeveral
trials, the one with the highest probability should be used as the.final
estimate.
The proéedure of Camin and Sokal (1965) .is of this type.k They dif-
fer in the methods for making the initial.guess. It is important that this
guess bé a good'éne, so that there is a high prdbabilitybof'arriving at the
most "parsimonious" tree by'fhe small alterations. The following proceduré
haé been found to work fairly well. Let us confine intérest to bifurcating
trees, -in which there are no forks’giving rise to more than_two branches.
The procedure is illustrated in Fig. 5. We sfart by assigning a number to
each species, in?arbitrary order. Next combine species 1l and 2 into a two-
~gpecies tree. Now we want to add species 3 ﬁo ﬁhis tree. There are three
places from which it’ could arise: below species 1, below species 2, or on
the trunk of the tree. vTry the species in each of thése positions, and for
~each one compute the'prdbability of the resulting three-species tree. Accept
the position which has the highest probability. Adding the species has
created two new segments of the tfee. Tﬁere are then five positions at which
species I can be added.‘ Tryiall five, calculafing_the prdbabilities of the J,\J/J

resulting trees and choosing the position giving the highest probability.



v Fig. 5.--The method of construction of the initial guess to a tree of
type IV. Further explanation in text.

i
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Continue in like manner, until all n species have been added. The resulting
tree serves as the initial guess for the rearrangement routine. By renumber-
ing the different species and carrying out the process, we get different
initial guesseé. |

‘It can be shown that each bifurcating tree of type IV can be con- -
structed by exactly one such process of stepwise addition of species. Since
there are three positions to which the third species could be added, five to
which the fourth species could bé added, seven for the fifth species, and so
on, the total number of trees of type IV is (1) (3)(5)(T) - .. (2n-3). This
lformula was derived by Cavalli-Sforza and Edwards (1967; also Edwards and |
Cavalli-Sforza, 1964). For n = lO‘the nuwber is 34,459,425, and for n = 20

it is more than 8 x lO21

. However, the above procedure for constructing the
initial guéss examines only 3 + 5+ 7 + 9+ . o + (2n-3) trees. For n = 10
and n = 20 this is 80 and 360, respectively. Only a tiny fraction of all pos-

" sible trees is examined.



CONTINUOUS CHARACTERS

Transformation of the Characters to"Independence

When the characters recordéd for a group of species are measurements
on continuous scaies, a different ﬁethodology applies. Assume that we have
specimens. Suppoéelthat thevvaiue of character i in a given individual is
vy .Assume that each character is determined additively by p genes. If-zJ
takes on the value O, 1/2, or 1 according to whether locus‘g has genotype
‘J a(j)a(j), A(j)a(j),'or A(J)A(j), we cén write the i-th phenotype of the

individual as:

y, = La,.z, +m, o (1)

where m, is the ?henotype when all loci are homozygous for the a allele;.
The expeétation of zj is, of course, the frequency qj of the A(j) allele in.
the population in question. The variance of zj.between individuals is
expected to be 2qj(l—qj). If the loci have random association of alleles
(i.e., no "linkage disequilibriﬁm”) we have Cov (Zk’ z&) = 0 for all k and
é in which k % L. Over a large range of gene frequencies qj, 2qj(l—qj) will
be near 1/2. For example, when q(j = 1/2 it is 1/2, while for qs = 0.3 it is
0.42. Thus, approximately, Var (zi) = 1/2. Then the variance—covériance
matrix of the z, is V (z) = (1/2) I, where I is the identity matrix.

We can write (1) in matrix notation as Y = A Z + M, where Y is the

vector of yi's, A is the matrix of aij's, Z is the vector of zi‘s, and M is

59

p variables observed in n species, each species being represented by several
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the vector of m, . It is easily shown that the variance-covarilance matrix.of'
the Y is

v (¥) = av(z)A® = (1/2) & A" .

(A1l capital letters are matrices or vectors unless otherwise noted.) We can‘,

observe the variance-covariance matrix of Y, but not the matrix A. v(Y) will
be positive definite, since it is a variance-covariance matrix. Every such
matrix can Be written in the form V(Y) = UL Ut, where U is orthogonal and L
is diagonal. Siﬁce the components of L are all positive, we can také their
.squaré roots, obtaining the matrix‘Ll/E, and the reciprocals of theif square

1/2 (12 4t

~ roots to get L- . Let us take B = . If we apply the linear trans-

formation B to ¥, we get X = B Y, where X has the variance-covariance matrix

'v‘(x) B V() BY

1]

- (L’l/a i) v ot (v e

since UtU“ = T..Thus, knowing V(Y), which can be estimated from the within- '

specieS'covarianées; we can apply a linear transformation’tho obtain a vector
X whoée entries are independent within populations. This 1s a standard pro-

cedure in multivariate statistical anélysis, forming part of the process of

canonical analysis (see Seal, 1964). Thus any set of data can be transformed

into one in whiéh there is no within-species covariance of characters. The

new variables X are still linear combinations‘of'the underlying variables Z,

i.e., X = (BA) Z. The transformation BA has the property that (BA)(BA)t‘= 2I.
The gene frequencieé q, can be treated approximately as if they were

vundergoing a random walk or Brownian motion with variance bper generation
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.-qi(l-qi)/EN = 1/8N, where N is the effective population size, assumed the
same for all species. Then if Q(t) is the vector of gene freduencies at

time t, approximately

1

E (Q(t+s) - Q(s)) = 0

(t/BN) I.

fl

v (Q(t+s) - Q(s))
Theldistribution,of Q beiné approximately multivariate normal:
Qs +5) - Q(s) ~ 1 (0, (6/8W)I).
If time is measured in #nits of LN generations;
Qs + ) - Q(s) ~ w0, (/2) 1),

Consider the mean phenotype vectors X(t+s) and X(s). We have Q = E(z) so

X = (BA) Q and
| (e + 5) - K(6) = () (a(s49) - 4(e))
so X(t+s) - X(s), is ndfmally distributed with mean O ana variance
(@) (/2) 3",

so0 that f(t+s)_- X(s) ~7NP(O, tI). Henceforth, I leave the bar of f the X(t).
. Thus the mean phenotypes Ei can be treéted ag if they were performing inde-
pendent Br0wnian‘motion'processes'with variance l/hN‘per generation (or 1 per

LN-generation unit).

. Estimation of Trees

Turning to the questidn of estimation of type II trees, we are in the

same situation as'Cavalli—Sforza dnd Edwards (1967). There is no need to
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repeat their definitive analysis here, except to note that it is applicable.
If one is estimating trees of type IL, one has specified the vectors X<k)(ti)
at each of the forks of the tree, so that the probability dénsity of the whole
tree is

P = Zr <2W)np/2(i t )np/2 exp (-;Z* (xj(i)(ti) - Xj(k)(tk))e
; 17 , |
ey cedan @ e )L e @

where‘g is‘the fork'ancestral to 1. This is readily computed for any tree.
Cavalli—Sforza and Edwards point out some difficulties which arise in estima-
tion of the timgs of branching, ti. They maintain that,‘because of the
existence of singularities‘in the likelihood surface,.methods other than max-
imum likelihood must be used to guess that ti. It should be mentioned ét this
1point that althoﬁgh Cavalii-Sforza and Edwards refef to thelr procedure as
~makimum—likélihobd estimation, it is actually Bayesian inference. As pointgd
iout iﬁ thevGenerél Principles section, the specifications for a tree of type
II contain the data, hence the likelihood is either O or 1, and we must max-".
imize the prior probability over all trees with likelihood 1. |

It should‘be evident that when Cavalli-Sforza and Edwards uée estima-
tion brocedurés to obtain a tree of type II and then présent the results as a
tree of type III‘(Cavalli-Sforza and Edwards; 1965) or type IV (Edwards and
Cavalli-Sforza, 1964), there is some loss of power in the estimation. If'they
 ‘did not éttempt to estimate fork phenotypes X(ti) they would‘presumably ggt a.
better type III tree. It is obViously of interest to find ways to compute the
| pfobabilities of type III trees. Suppose that we have the tree pictured in

‘Fig. 6. Let i' be the number of the fork below'point'i (s0 that if i = 1,



Fig. 6.--Notation of times of branching and mean phenotypes on é tree
of type II with continuous characters. Further explanation in text.
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i' = 6, etc.). Now notice that for character J

L L6y, (6 (D), (o (D (9

J J o J J J J

(Xj(9) N Xj(10)) . Xj(10)

) . (x @)y (6)) , (o (6) (M, o (1) Ly (9

2 J - J I J J.

(9 (10) (10)
(770 =y )

()L (3. xj“’”>v+'<xj‘7)'- e

etc.

: : Y sy . 1 - i .
© By the model of evolution x.(l) - xj(1 ) and xj(k) - xj(k ) are independent
‘(if i'# k);‘since théy‘measufevBrownian motion oft different particles of in

. , 3 K3 ‘ ! . .
- different time. intervals. ‘Let‘ai = x(l)‘— x<1 ) for a given character. Then

it
ot
o
ct
-

E(ai) f 0, and if u,

]

Var (a,)

t, - t;, and Cov (ai, aj) = 0if i f .

The Variables a, are normally distributed. Then'the.xj(l)’ Beiﬁg sums of
normal variables, are normally distributed. However, ﬁhey are not independ-

ent. For example,

" Cov (xj<l); xj(B)) = va,(al #ag + oy + a9‘+ xj(lo),

a_ +a, +a_ + %;10)>

378 T %

Since‘Covv(ai, aj) = .0 and xj(lo) is a constant:
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il

Cov (xj(l), Xj(3)) Var (37) + Var (a9)

it
ot
]
ct
+
‘Ci.
[
ct
1
d.

In general, if the lines leading to i and i“originate.at to and split.from
each other at t, .,
. 1d

Cov (xk(i) -lxk(ﬁ)) = tij

Given a type III tree, we can calculate t.. for every i and j. Let T be a
metrix whose elements are the tij; Then the vector X has’ E(X) 0 and

V(X) =T, so that the pfobability density:of-the tree is

1
(em )/ aet (1)

P = exp (- X0 T7h ) .

_‘leen ‘the vector X and the values of T, this can be computed for any tree.

However, 1t,requ1res a matrix inversion and the evaluatlon of a determlnant

Computation of P More Rapidly

A way of computlng P which enables a great amount of time to be saved
is ﬁo transform the shape of the tree, all transformatlons holding P constant,
~until T becomes a dlagonal matrix. | The variables xJ(i) will be transformed to
the varlables uJ( i) such that the uJ( i) are 1ndependent and each has unit

variance. Con51der the tree in Fig. 7(a) On every such tree we can flnd at
least two branch tips whlch are adjacent. In Tthis case we can choose tips 1
.and 2. Consider the transformatlon whlch replaces X, (l)‘and xs(g) by

. J<l) J( ) and a varlable of the form ¢ XJ(l) + (l - é) xJ(B). The value .of

c whlch w1ll be used w1ll be determlned later. We have for k % 1, # 2,

o



Fig. 7.--Illustration of the method for rapid calculation of the
‘probability.of ‘a type III tree with continuous characters. Further explana-

 tion in text.
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0, D - @) 2 or (5,0, L ()

- cov (x, . .
J J d

(&) L@y g
J

- Cov (x,
(2,

1)

J

so that Xj(

Var (Xj(l) ~‘xj<2)) = Var'(xj(l)) + Var (xj(2))

-2 Cov‘(xj(l)/‘xj(z)) =t + ty, - tg

Our new variate will be

-
J

S B A e M2

" which will have expectation O and variance 1. If it is to be independent'of

e xj(l) + (1 -¢) xj(g) we must have

 Cov (x

@ @) @), . @)
X ) T X + (1 -'¢) X, ) =0

J
so that

c.ti‘— c tg +‘(1 - c)vt6 -%(1 -‘c)ftéb= 0

whereby c = (t, - t6)/(tl - t5k+ ty - t6).

Write v, for t —.f and vk for t, - t,. The variance of ¢ x, (l),+ (l c) x
R 17 76° 2" T2 6 J

“will be

Var (c xj(l) + {1 - c) xj(z)); 2

= (v22tlAf vlete + 2v)v t6)/(v + Vo ) #6_+ VlVZ/(vl + v2)

- xj(g) is independent of xj(3) o e sy xj(n). It has variance'

@)
J

‘ N
c” b + (1 - ¢) t, +‘2c(l -c) tg



70

and its covariance with every other xj(k) will be

Cov (c Xj(;> + (1 - ¢c) xj(e), xj(k>)

¢ Cov (xj(l), xj(k?)‘+ (1 - c)'Cov (xj(g), X (k))

(1),

i

X,

Cov (x,
J J

(k)) = Cov (Xj(Z)’ Xj<k))'

Thus if we make the transformation

1 1 | 2
. uj( ? - (Xj( ) xj(2))/<vl + v2)l/

énd: . ij<l’2) = (v, xj(l) * vy Xj(2>>/(vl *v,)

uj(l> will be independent of the other variables, with expectation 0 and
variance 1, while xj(l’g) will be -distributed as if it were the phenotype of

a branch tip which is situated béyond poih£ 6, at time

{

tg t Vv v2/(vl + v2).

‘Then we have altered the tree in Fig. 7(a) to that in Fig. T(b). Once this is

doﬁe, we can choose two adjacent tips in the new tree and repeat the process

(in this case with xj(3) and xj<u)){ The procedure is continued until p - 1

variables u.(l), u.(g), 5 u.(n_l)
J Jd - J ,

a residual variable (which we can call xj*) which will be expected to have

have been computed. There will remain

‘expectation x(o> and a variance given by the value of t assignéd to it by the
above process, say t'. Then we compute uj(p) = (xj* - xj<o))/t*. The prob-

ability density of the transformed variables is now easily computed to be

P ='—(—2—'7—r_:)£5£’7§ exp (f 1/2 z (uj<i>)2) dul(l) . e dun_l(p>.

1]
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(0)

If we do not know the value of Xj , its maximum likelihood estimate is
obviously xJ so thet uj(p) will be O.

Thus, given a set of values of the xj(l) and knowing the ti, we can

~ compute a set of uj<l) and evaluate P. But since the ti enter into the compu-

tation of the uj<l) in fairly complicated ways, it is not easy to.see how to

compute the Bayeslan estimates of the ti, given a shape of tree and the xj(l).

- Note that the transformation from x‘s'to u's must be done once for each char-

acter ( for each value of j). There is an easier way of takiﬁg all of the
chafacters into account. Note that the characters xj are transformed.from
the original set of.data yj. It can be shown tﬁat Mahalanobis‘ Distance be-
tween species iand k is

Dﬂf==§&$¥” UV@)Yl%&yék)si(x(i)_x(kne.

I will not gi#e the proof here, but it can be shown that if we follow the
algorithm below, P will be calculated properly:
(a) Calculate all Dik? from the original data. ‘
. . . . . 2 . 2 .
(b) Remove two adjacent tips, calculating U, = D. ./ (v, +v,).
! 12 /8 T T2
(c) Create a new "species" (1,2), calculating its Mahalanobis dis-

tances with the remaining species as

, 2 -2 y 2
Diy,2),5 ° Dy 5 v/ (vy fg) + Doy v/ (vy + vy)

- e 2
" Pre vy v/ (v + vp)

and its time of occurrence as 't(l 2)" tg Vs (vlv+ v2).
bs ; ,

' 2 2 2
(a) Cpntinug untilﬁg - 1 yalues,,Ul ,‘Ué s e e Ub_l hav§ béen
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calculated. Then calculate the probability of the tree as

P = (Zﬁ)np/zi exp (- Ui2/2)~

1

These procedures enable calculation of P for any hypothesized tree. It seems
likely that they can be used to estimate trees of type ILI without any great
difficulties. It is not clear without further examination whether the singu-

larities which plagued Cavalli-Sforza and Edwards (1967) will appear here.

’Models of Evolution involving Natural Selection

So far the model of evolution‘has been‘assumed to be one of random
genetilc drift. It is also possible to justify the»same estimation proceduresv
by models involving selectioh. Cavelli-Sforza and Edwards (1967) have pre-
sented a model of “seiective‘driftf in which the Brownian motion of the X is
due to fluctuations of selective value. Their Xj are, of course, allele |
fréquencies. In the above case the Xj are phenotypes rather than allele fre-
- quencies. Howgver, a similar model can be proposed.  Let xj(t +1) - xj(t)

represent ihe_change in Xj in one éeneration. Then, approximately,
Ej(t + 1) - Ej(t) = s(t) n? (Var- (Xj(t))l/z

where h2 ig the fraction‘of within-population variance' of XJ_Whichvis additive
genetic variance, and s(t) is a sgelection coefficient which is the.change in
mean fitness pér standard deviation of change in xj.‘,If s(t) is a random
variable drawn from a normal distribution, and E(s(t)) = 0, with no autocorre-
lation between successive values of s, then Xj<t + W) - xj(w) is'also normally
'distribdted with variance propértional to £ and‘to the variance of s. The
Qariables Xj will perform indepeﬁdent_Browhian motions in time and the process

will have fhe samé properties as the random genetic drift model, except that
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time must be scaled in units of 2/(h2 Var (&)) generations instead of units.
of 4N generations, with h2 and Var (s) assumed to be the same for all char-
actérs. A cruder model can also be set up in which it is assumed that the
changes in XJ are duevto gene substitutions, that the effect of a subsﬁitu—

tion is equally likely to increase or decrease Xj’ and that the size of this

- change is proportional to the standard deviation of x(j within a population

(which mlght be the case if all of the xJ were controlled by the same number:
of loci). The behavior of this model would be the same as that of the other
two, except that the time scale is again different. The difficulty with the
last two models 1s that selection must act 1ndependently on the XJ rather

than on the observed characters yJ , Or on some underlylng variables correlated

- with the X, - It mighi be possible to construct more realistlc models under

which the Xj would perform independent Brownlan motion. The situation cer-

tainly bears examination.

Pretransformation of the Variables

A bagic assumption throughout this section has been that the genes
controlling the variation of the characters affect them additively. This

leads to some dlfflculty when the characters are measurements of lengths,

afeas, or volumes in an individual. ALl of these have a lower limit of O.

In addition, all are affected by the size of the organism. If S is tho size
of an organism, linear measuremehis are expected to be proportional to S,
areas t0 S2, and volumes to S3. This will lead to correlationbof the char-
acters. FPFurthermore, the correlation cannot be removed by linear transforma-
tions such as the ono whioh produces the Xj from the‘yi. Howéver, if we btake
the logarithms of the original measurements and use them as the characters,

the situation is greatly simplified. The characters ‘can now range from



Th
- o to + 0, as is proper for normally-distributed variables, and size

enters additively instead of multiplicatively. If a measurement w has an

allometric equation w =
Under these circumstances the transformed variables xi will include one
variable which measures size, and the others, being independent of it, will

_be "shape" variables. Thus it is desirable to take logarithms of measure-

ments before including them in this type of analysis.

a Sb, where S is size, then log w = log a - b log S.

e



SUMMARY

Classical methods for the construction of phylogenies are reviewed
briefly and found to be eifhervill-defined or ill-justified. it is suggested.
that the inference of phylogenies be viewed as a problem in statistical in-
ference, with the model of evolution which is assumed supplying the probabil-
ities of the data given the phylogenies. Four types of phylogenetic trees
are defined, and some of the general difficulties encountered in estimating
different types of trees by the methods of Bayesian inference and maximum
likelihood are discussed. The use of data from fossil organisms and the
weighting of characters in phylogenetic inference are discussed from this
point of view.

A model of evolution of characters which have discrete stafes is
stated, and a general expression for the likelihood of a phylogenetic tree
4ié derived.v The formula is then used to examine when Bayesian methods will
give results identical with methods of "minimum evolution." The models and
results of Cavalli-Sforza and Edwards are extended, and methods for rapid

calculétion of the likelihood of an evolutionary tree are developed.

[
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