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Abstract

If we ask how we can construct a within-species counterpart to comparative methods that are
used to correct for effects of phylogeny in between-species comparisons, we find that migration
matrices, not phylogenies, are the relevant structures. Just as the hierarchical pattern of
relatedness between species leads to a set of contrasts that are independent, the spectrum of
the migration matrix leads to contrasts between population. If these contrasts are not used,
migration can cause an artifactual appearance of a correlation between a phenotype and an
environmental variable. The contrasts are derived from the spectral analysis of the migration
matrix, and it is shown how to transform means and covariances between populations into
variables that can be assumed independent, eliminating the artifact.

8.1 Introduction

When a quantitative character is measured in multiple populations of a geographically
differentiated species, it is interesting to compare the values with those of environmental
variables or of other characters. If a correlation is seen, it is tempting to test it statistically,
using the mean values in different populations as independent points. The difficulty with
doing this is that gene flow can cause nearby points to be correlated. If two populations are
neighbors, and one happens to have attained a large value of the character by genetic drift, the
other may have a similar value as a result of the gene flow between them. The similar values
in the two populations should not be taken as evidence of response to a local environmental
variable.

A similar issue arises between species, where individual species in a phylogeny should
not be taken as independent data points. Their shared ancestry plays a role similar to gene
flow. Harvey and Pagel (1991) have reviewed the issues and their proposed solutions for the
between-species case. The most widely-used method to correct for the phylogeny in between-
species analyses has been the contrasts method (Felsenstein, 1985), which uses the phylogeny
to set up between-species contrasts that are independent. These can form the basis for a
statistical analysis that escapes the problem of phylogenetic nonindependence.

Can a similar approach be used in the within-species case? The issues are quite similar.
It is tempting to use molecular sequences to infer a “phylogeny” within the species and then
to form contrasts based on that. This temptation should be resisted. The phylogeny would
reflect the coalescent genealogy of that particular locus; a different locus is expected to show
a different coalescent. If populations have been exchanging migrants for a long time, there is
no reason to assume that there is an underlying treelike genealogy.



In this paper, I will use a simple model of genetic drift, migration and selection to describe
the evolution of a phenotype, and to see whether contrasts can be found which solve the
problem of nonindependence of populations owing to gene flow. Such contrasts are found,
though they bear no close relationship to the contrasts used between species. The methods
are consistent with those used by Hansen et. al. (2000), who correct for autocorrelation
between neighboring populations in an analysis of spatial variation of characters. In effect,
the present analysis generalizes their approach to arbitrary migration matrices. It is less easy
to see how the present analysis relates to the autocorrelation methods used by Edwards and
Kot (1995).

8.2 The model

The model is close to that of Lande (1976). It assumes that a quantitative character evolves on
an infinitely long scale. We follow the mean phenotype x; in each population. The genetics of
the trait is not modelled explicitly; it is assumed that the heritability of the trait is constant.
Natural selection in population i causes the mean phenotype to move a fraction o of the way
towards the local optimum phenotype p;. Gene flow causes the mean phenotypes of different
populations to be averaged, with the migration rate from population j to population ¢ being
m;;. This quantity is then also the weight of x; in the mean phenotype of population ¢ in the
next generation.

Note that the heritability of the character is implicit in the quantity o, which is affected
both by the heritability and by the strength of the optimum selection. The rule used here is
the one which would result from selection with a Gaussian fitness function, constant additive
genetic variance, and constant environmental variance in the character.

Genetic drift causes the mean phenotype in population ¢ to change by a random amount
g;, which is drawn from a normal distribution with mean 0 and variance 5/N;. The N; are
the sizes of the populations, and these do not change. The life cycle consists of migration,
followed by selection, followed by random sampling for genetic drift.

The result of these assumptions is a simple autoregressive moving average process. In
vector notation (boldfaced letters are vectors, boldfaced capital letters are matrices)

xY = op+ (1 —0)Mx) 4 ¢ (1)

This will lead x to be drawn from a multivariate normal distribution. We assume that we
have observed the phenotype in the present generation, and that enough time has elapsed
that the system has reached its equilibrium distribution.

8.3 The expectations of the phenotypes

Taking expectations of all terms in equation (1), we note that all quantities are constant
except for the random variable x, so that

Ex] = op + (1 -0)ME[x] (2)



which is easily solved to give
Ex] = I-(1-0)M)"' op (3)

Thus the phenotypes will reflect the local optimum values p;, but smoothed by the migration
among populations.

8.4 Covariances of means between populations

If we take the equation (1), and subtract from it the expectations (3): we find that if y =
x — E[x],
YO = (1o MyO + e ()

Since the matrix of covariances of populations is given by
C = Elyy"] (5)
we end up with the equation
C=(01-0’MCM" +V, (6)

where V is the covariance matrix of the changes € due to drift, which will be a diagonal matrix
as drift operates independently in different populations. In fact, the variance due to drift will
be inversely proportional to the effective population size, so that if D is a diagonal matrix of
population sizes, whose i-th diagonal element is N,

V=3D" (7)

8.5 Statistical tasks

Let us assume that the biologist has an estimate of either the relative or the absolute rates
of migration between populations. Although much of the evolutionary literature centers on
estimation of overall measures of divergence such as Fisr, coalescent likelihood methods (Bahlo
and Griffiths, 2000; Beerli and Felsenstein, 2001) now permit estimation of the full set of
migration rates using molecular data. These estimates are usually not the migration rates m;
themselves, but are scaled by the effective population sizes so that they are the N;m;;
Suppose that we want to compare the mean phenotypes of the populations, collected at
one time, to environmental variables measured in the populations, to test the hypothesis that
the optimum phenotype is correlated with these environmental variables. Migration among
populations leaves us uncertain whether similarities among populations are due to similarities
of optimum phenotype or similarities due to gene flow. Figure 1 is an example of the problem.
It appears to show a definite trend in phenotype along a chain of 20 populations. Actually, it
is the result of a computer simulation in which the expected mean phenotype is the same in
all populations. The migration structure is a linear stepping-stone chain of populations with
M i1 =m;i—1 = 0.1, 3 =0.01 and ¢ = 0.01. The optimum phenotype is 3 in all populations.



The apparent trend is a fortuitous result of correlation of neighboring populations by gene flow.
This phenomenon has been noted by Kimura and Maruyama (1971), who found that with the
appropriate amount of gene flow the pattern of gene frequencies in an array of populations
“mimics a cline formed by selection”.

To avoid the effects of gene flow and selection being confounded, we need to make
comparisons in which similarity of natural selection does not exactly mimic similarity due
to gene flow. We must correct for the pattern of similarity due to gene flow in order to
see similarities due to natural selection. To the extent that the patterns of similarity of
environments differ from those expected due to gene flow, we can test for the effect of natural
selection.

The joint distribution of phenotypic means of populations will be multivariate normal. It
can therefore be characterized completely by the expectations of the means of the populations
and the covariances among them.

8.6 Spectrum of the migration matrix

The eigenvalues and eigenvectors of the migration matrix will be central to the derivations,
so we will start by obtaining them. Similar Fourier transform methods have been widely used
in analyzing the expected patterns of genetic differentiation when there is a bal;ance between
migration and genetic drift (e.g. Malécot, 1948).

We have assumed that m;; is the fraction of newborns in population 7 that are newly
arrived from population j. N; is the population number of population i. Assume that
migration is conservative, i.e. that there is “detailed balance” between migrants into and out
of each population. This means that the rates of migration between every pair of populations
is set so that

Nimyg = Njmyi, (8)

This has the effect that the numbers of migrants F;; between ¢ and j each generation are equal
in the two directions, so that the matrix F is symmetric.
Recalling that D is the diagonal matrix of the N,

M=D'F 9)
and if we premultiply by D'/? and postmultiply by D~/2 we get
D/?’MD 2 = D'V2FD ' = H. (10)
This matrix H is symmetric since F is symmetric. We can rewrite it as
H=1+ aG. (11)

where G is symmetric. As G is defined using the “fudge-factor” a we can think of it as
indicating relative rates of migration (adjusted for population sizes).
Suppose that the spectral decomposition of the symmetric matrix G is

G = UAU" (12)



Using this, the spectral decomposition of H is
H=U(®+ aA) U" (13)

and since

UT D1/2 _ (D_1/2 U)_l, (14)
using (13) and (10), the spectral decomposition of M is

M = (D'2U) (I + aA) (D7V2U)"L (15)

8.7 The spectrum of the means

We already have the expectations of the mean phenotypes. The transformation (D~/2U)~!
leads to a particularly nice and useful expression. From (15) we can write the spectral
decomposition of I — (1 — )M as:

I-(1-0)M = (DY2U) (I-(1-0)I+aA)) (DV?U)"L. (16)
and its inverse is then
I-1-o)M)' = (D Y2U) (I-(1-0)I+aA))t (DY2U)L (17)
and using (3) that leads to a form for the expectations of the phenotypes:
(D-2U) " Elx] = (I—(1—0)(I+aA))™ (D2U)" op (18)

The upshot of this is that the expectations of x, if they are transformed by being multiplied
by the transformation (D~'/2U)~! (which is the one that diagonalizes M), are simply multiples
of the corresponding transform of the optima p. Thus, in effect, migration damps the spectrum
of p by multiplying its ¢-th element by

g

1—(1—o)(1+aNn)

(19)

(the eigenvalues \; are negative so this actually is a dampening).

8.8 The spectrum of the covariances
If we take the equation (6) and apply the same transformation (D~'/2U)~!, we find that
Cov[(D?U)"'y] = (D7V2U)~' C (D2U) )"
= (1-0)2(D2U0)"' M C M” (D-"?U) YT (20)

4 (D_1/2U)_1 Vv ((D—1/2U)—1)T



Given the spectral decomposition of M from (15), If we define the B as the covariances
of the transformed means
B = Cov[(DY2U)!y] (21)

then we see, using equation (7)
B = (1-021+aA)B (I+aA) + L (22)

Setting up separate equations for each of the b;; and solving them, we can readily show that
the off-diagonal elements are all zero, so that the solution is the diagonal matrix

B=p380-0-0*I+aA)?)! (23)

Thus transforming the phenotype to new values z; by multiplying their values by the
matrix (D7/2U)~! creates a set of values that are independent. They have zero covariances
and the variance of the i-th value is

g
1 = 24
Var[zl] 1 — (1 _ 0_)2(1 + Oé)\z)Q ( )
Knowing the matrix B we could easily undo the transformation and obtain C:
CcC = (DY?2U)B (D7Y2U)T
(25)

= (D?U) (I (1- o)1+ aA))™* (D2U)

However we will use the expectations and variances of the transformed values instead.

8.9 Fitting models to the means

With n populations, with means from each, and an environmental variable or variables such
as temperature 7, we can imagine fitting a model for the optima p :

pi = a+ b (26)

In this case we have variables «, 3, o, a, and b. With n populations we can fit these and have
n — 5 degrees of freedom left over. We can imagine doing likelihood ratio tests of hypotheses
such asb=0or o = 0.

We can also imagine knowing «, which makes for one more degree of freedom.

The likelihood ratio test could be done in either of two equivalent ways. With the
original phenotypic means x we could, for each possible set of parameter values, compute
the expectations E[x] from equation (3) and their covariances C = Cov|[x| from equation (25),
and compute the likelihood from the usual multivariate normal density. The likehood ratio
test of dependence of the phenotypic means on the temperature 7 would be a test of whether
b=0.

Alternatively, we could use the transformation (D~*/2U)~! on the vector = to make the
values in the resulting vector z independent. Then



1. Apply the transform to a vector of 1’s. This will result in a vector with one nonzero
element. Call this vector v.

2. Apply the same transform to the vector 7. Call the resulting vector w.
3. The expectation of z; is o(av; + bw;)/(1 — (1 —0)(1+aN))
4. The variance of z; is 3/(1 — (1 — 0)*(1 + a\;)?)

The z; are independently normally distributed. From the z; and their expectations and
variances we can compute the likelihood as a product of these univariate normal densities.
It might be thought necessary to take the Jacobian of the transformation into account. It
involves only the population sizes NV;. As these do not depend on any of the parameters
being estimated, its absence does not alter their estimated values, and it disappears from the
likelihood ratio calculation.

Doing the test this way has considerable advantages. a and b can be estimated from a
simple regression, and the absence of covariances among the z; simplifies the expressions.

Alternatively, one could imagine exploratory approaches that first transform the mean
phenotypes, then restandardize each value z; to have expected mean 0 and variance 1.
Exploratory statistical methods could then be used to see whether there is any noticeable trend
in these values, and they could be compared to analogous transformations of environmental
variables.

8.10 An example

Figure 2 shows the migration pattern for 5 populations, assumed to be equal in size. Migration
is assumed symmetric in this simple case. The migration matrix is

0.945 0.03 0 0 0.025

0.03 0905 0 0.04 0.025
0 0 0945 0.03 0.025
0 0.04 0.03 0.905 0.025

0.025 0.025 0.025 0.025 0.9

This corresponds to o = 0.1 with the G matrix

—0.55 0.3 0 0 0.25
0.3 —0.95 0 0.4 0.25
G = 0 0 —0.55 0.3 0.25

0 0.4 0.3 —0.95 0.25
025 025 025 025 -1



The spectral analysis of G is:

G UAU
0.223607 —0.223607 0.5 0.67082 0.447214
—0.67082 —0.223607 —0.5  0.223607 0.447214
—0.223607 —0.223607 0.5 —0.67082 0.447214
0.67082 —0.223607 —0.5 —0.223607 0.447214
0 0.894427 0 0 0.447214
—1.45 0 0 0 0
0 —1.25 0 0 0
X 0 0 —0.85 0 0
0 0 0 —045 0
0 0 0 0 0
0.223607 —0.67082 —0.223607 0.67082 0
—0.223607 —0.223607 —0.223607 —0.223607 0.894427
X 0.5 —0.5 0.5 -0.5 0
0.67082  0.223607 —0.67082 —0.223607 0
0.447214  0.447214  0.447214  0.447214 0.447214

With population sizes being equal, the rows of the matrix U7 are the coefficients of the
coordinates of the new transformation. Four of them represent contrasts between populations.
These are shown roughly in Figure 3. They include left versus right, top versus bottom, one
diagonal versus the other, and outside versus inside. The other coordinate is simply an average
value that weights all populations equally.

Figure 4 shows the contrasts for the case of Figure 1, each expressed as a standardized
deviation from its expectation, for the same data set. There is no noticeable departure from
independent normal distribution of the contrast scores. The analysis uses the true optimum
value and true values of 5 and o instead of estimating them, so that it is idealized, but it does
show the disappearance of the effect of migration.

8.11 Future directions

There are many limitations of the present framework, and these represent opportunities for
further development. Among them are

e This analysis does not take into account the sampling variance of the population means,
as it assumes in effect that we observe the population means directly. This can be
remedied, as it has been in between-species comparative methods (e.g. in the Contrast
program in PHYLIP 3.6).

e [t is one-character. We can presumably carry things through in a very similar way with
vectors of characters instead of scalars. However additive genetic covariances would



then need to be explicitly taken into account. In the current scheme the additive genetic
variance is present, but it is assumed constant and hidden in the quantity o.

e [f sampling variance were taken into account, as in point 1, the within-population
covariances would be estimated. The shape of the optimum curve would have an effect
on the expected within-population covariances, and so will admixture effects due to
migration. The quantity ¢ would be replaced by a matrix, which would depend on
additive genetic covariances as well as the shape of the optima.

e Having only one character, we have ignored covariances of characters due to mutation.
Mutation will affect the within-population covariances that are used to predict the effect

of drift.

e We should think about integrating these inferences with quantitative genetic
experiments, so that errors of estimation of the additive genetic covariances and
phenotypic covariances can be considered.

e [s there any hope of combining between- and within-species inferences? Can we do
comparative methods simultaneously within and between species, using both phylogenies
and migration matrices? It is hard to imagine what the model would be. If migration
matrices differ between species, what should we assume about the migration matrix in
the common ancestor of the two species?

All of these challenges need to be addressed; doing so seems worthwhile.

8.12 Conclusion

With molecular sequences and coalescent-based likelihood methods making available good
estimates of migration between populations, these can be used to remove artifactual
correlations between phenotypes and environmental variables, giving us independent variates
when individual population means would be correlated. In effect, we can discover whether
neighboring populations are similar because of gene flow or by having similar environments.
There are many directions in which the work needs to be expanded, but a start can be made.
It is notable that the presence of recombination between loci prevents phylogenetic analysis of
sequences from individual loci from serving as the basis for the corrections. In these analyses,
migration matrices replace phylogenies as the essential structures.
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Figure captions

Figure 1. An example data set simulated with a stepping stone model with migration rates
0.01 between adjacent populations, effective population size of all populations 100, o = 0.01,
and all phenotypic optima equal to 3.

Figure 2. A 5-population pattern of migration whose spectrum is given in the text. The
populations are of equal size and the rates of migration are symmetric in this simple case.

Figure 3. 4 of the 5 new coordinates obtained by spectral analysis of the migration matrix
in the example. The numerical values of the coefficients are indicated by shading; the actual
numerical values are given in the text.

Figure 4. The same data as Figure 1, with the contrast scores computed, each normalized
using its expectation and standard deviation. The contrast scores appear to be independently
normally distributed with mean 0 and variance 1, as expected.
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