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ABSTRACT

Single nucleotide polymorphism (SNP) data can be used for parameter

estimation via maximum likelihood methods as long as the way in which the

SNPs were determined is known, so that an appropriate likelihood formula can be

constructed. We present such likelihoods for several sampling methods. As a test

of these approaches, we consider use of SNPs to estimate the parameter Θ = 4Neµ

(the scaled product of effective population size and per-site mutation rate), which is

related to the branch lengths of the reconstructed genealogy. With infinite amounts

of data, ML models using SNP data are expected to produce consistent estimates

of Θ. With finite amounts of data the estimates are accurate when Θ is high,

but tend to be biased upwards when Θ is low. If recombination is present and

not allowed for in the analysis, the results are additionally biased upwards, but

this effect can be removed by incorporating recombination into the analysis. SNPs

defined as sites which are polymorphic in the actual sample under consideration

(sample SNPs) are somewhat more accurate for estimation of Θ than SNPs defined

by their polymorphism in a panel chosen from the same population (panel SNPs).

Misrepresenting panel SNPs as sample SNPs leads to large errors in the maximum

likelihood estimate of Θ. Researchers collecting SNPs should collect and preserve

information about the method of ascertainment so that the data can be accurately

analyzed.

INTRODUCTION

Modern population genetics methods require large samples of population level

genetic information in order to answer questions about population size, migration,

selection, and other factors. Many researchers have recently begun collecting single
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nucleotide polymorphism (SNP) data in the hopes of addressing these questions,

as well as for their applications in gene mapping (for an overview, see Syvanen et

al. 1999). This paper examines methods for analyzing SNP data in a maximum

likelihood (ML) framework.

Appropriate analysis of SNPs depends on knowing how they were collected.

Critical pieces of information include:

(1) Were candidate sites chosen from completely linked, partially linked, or

unlinked regions of the genome?

(2) Were sites defined as SNPs based on their polymorphism in the sample at

hand, a panel drawn from the same population, or a panel drawn from a different

population?

As one possible measure of the usefulness of SNP data, we will consider the

estimation of the parameter Θ = 4Neµ, four times the product of the effective

population size and the neutral mutation rate. We will look at the simple case of

a single random-mating diploid population of constant effective population size Ne.

At each site, selectively neutral mutations occur with probability µ per generation.

This parameter will be estimated using the Metropolis-Hastings method of

Kuhner et al. (1995) which samples among possible coalescent trees describing the

relationship among the sampled sequences according, in part, to their likelihood

under a given model of sequence evolution. The information about Θ is specifically

found in the branch lengths of the sampled trees: therefore, estimation of Θ

indirectly tests the ability of a SNP likelihood model to accurately estimate branch

lengths.

We test the effect of both unacknowledged and acknowledged recombination

on the accuracy of these estimates, since SNP data will often come from a context

where recombination is possible.

4



The use of SNP data to estimate parameters not closely related to branch

length, such as tree topology and map order, will be considered in a future paper.

It seems likely that SNP data will be more powerful for such parameters than they

are for branch lengths; however, the pitfalls found here will probably be found in

those areas as well.

METHODS

Likelihood framework for SNPs: The estimation of phylogenies by

maximum likelihood from DNA sequences (Felsenstein 1981) computes, for each site,

the probability of that site on a given phylogeny: this we call the site likelihood.

The likelihood of the entire data set on the given phylogeny is the product of the

site likelihoods.

To analyze SNPs using this approach, several aspects of the way the SNPs

were collected must be taken into consideration: this is analogous to considering

ascertainment of individuals in a case/control disease study.

In the first section we will consider the question of whether the SNPs were

gathered from a single completely linked region, from various unlinked locations, or

from a linked region with some internal recombination. In the following section we

will consider the question of whether the SNPs were defined based on polymorphism

in the sample or in a panel. These sections define a toolkit from which SNP

corrections for many specific cases can be constructed. Table 1 gives an overview of

the issues and the appropriate means of analysis for each set of conditions.

Linkage considerations: At one extreme, candidate sites could be drawn

from a single, non-recombining stretch of DNA and evaluated to find SNPs. In this

case all of the SNPs, as well as the unobserved sites around them, would have the

same underlying coalescent genealogy. We will call this case “fully linked SNPs.” At
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the other extreme, candidate sites could be chosen at random from a recombining

genome in such a way that successive draws represent completely independent

coalescent genealogies (“unlinked SNPs”). Between these extremes, successive

candidates will represent correlated, but not always identical, coalescent genealogies:

this is the case for long sequences taken from a genome with recombination, and we

will call it “partially linked SNPs.”

An additional consideration is whether any information at all is available on the

number of sites not selected as SNPs. Some methods of data collection–for example,

using anonymous probes to detect SNPs– will not give us any information on how

many “unobserved” sites were in the region of interest. Other methods–for example,

choosing SNPs from a region of known length–will allow us to determine this. As

will be shown, if this information is available it allows us to use alternative methods

of constructing the likelihood, and in the case of recombination it allows analysis of

otherwise intractable data.

We will first consider the case where information is available only on the SNPs

themselves. Here, we modify the usual DNA likelihood model by conditioning on

the site being a SNP (by whatever criteria are in use), an event with probability

P (SNP|G). The difference between analysis of linked and unlinked SNPs lies in

the choice of genealogies to consider. This approach will be referred to as the

“conditional likelihood” method. It is closely related to work done by Ewens et al.

(1981) on parameter estimation using RFLPS.

The conditional probability of observing fully linked SNPs depends on the

distribution of SNP and non-SNP sites across a single shared genealogy, since in

the absence of recombination all sites must derive from the same genealogy. This

probability can then be computed as the sum, over all possible genealogies, of the

probability of observing a particular site configuration (necessarily a SNP), divided
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by the probability that a given site is a SNP. The product is over all SNP sites.

(The derivation of this equation is given in more detail in the Appendix.)

L(Θ) =
∑

G

P (G|Θ)
∏

s

P (Ds|G)

P (SNPs|G)
(1)

The conditional probability of observing unlinked SNPs, in contrast, depends

on the distribution of SNP and non-SNP sites across all possible genealogies. The

observed SNPs will tend to come from underlying genealogies which are longer than

average (shorter genealogies are less likely to have undergone a mutation yielding

a SNP). It would be incorrect to consider them only in the context of their longer-

than-average genealogies; to correctly assess Θ we must consider the context of the

entire distribution of genealogies. Thus, two summations over all genealogies are

needed, one assessing probability of the observed site pattern given that the site is a

SNP, and one assessing the overall probability of obtaining a SNP. (The derivation

is given in the Appendix.)

L(Θ) =
∏

s

∑
G P (G|Θ)P (Ds|G)∑

G P (G|Θ)P (SNPs|G)
(2)

The direct calculation of these likelihoods is not possible because of the

summations over all genealogies, but they can be approximated by importance

sampling methods such as the Metropolis-Hastings sampler (cf. Kuhner et al.

1995, Beerli and Felsenstein 1999; for an alternative approach to this type of

importance sampling, see the method of Griffiths and Tavaré 1993.) Equation (1)

can be implemented as a single sampler, assessing both numerator and denominator

on the same set of genealogies. One straightforward way to implement (2) as a

Metropolis-Hastings sampler would be to make two independent sampler runs, one
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sampling from the numerator, one from the denominator. There may be a more

economical approach where a single sample of genealogies is adequate to estimate

both numerator and denominator.

The case of partial linkage, where successive sites have correlated genealogies,

is more difficult. It may in fact be impossible to solve without information about

the number and location of unobserved sites. The difficulty is that the unobserved

sites are drawn from a distribution which is correlated with, but not identical to, the

distribution of the observed SNPs. Without knowing this distribution, we cannot

construct an appropriate correction.

A more complete analysis can be made if we have additional information: the

number u of sites not selected as SNPs (“unobserved sites”), and the probability φ

that a potential SNP site will actually be detected as such. If φ is less than one, the

unobserved sites will be a mixture of SNPs which were missed during sampling and

non-SNPs. For example, if the region is broken into fragments of equal length, and

10% of the fragments are exhaustively searched for SNPs while the rest are ignored,

φ will equal 0.1. In contrast, if SNPs are found by exhaustive sequencing of the

entire region, φ will equal 1.

We will call this the “reconstituted DNA” method because it essentially tries to

reconstruct the original DNA sequence. For fully linked data the reconstituted DNA

method can be expressed as follows (where the subscript s refers to the observed

SNPs, and u to the unobserved sites):

L(Θ) =
∑

G

[
P (G|Θ)

(∏
s

φP (Ds|G)

)(∏
u

[1 − φP (SNP|G)]

)]
(3)

which can be reduced to:
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L(Θ) =
∑

G

[P (G|Θ)

(∏
s

φP (Ds|G)

)
(1 − φP (SNP|G))u] (4)

For unlinked SNPs:

L(Θ) =
∏

s

[∑
G

P (G|Θ)φP (Ds|G)

]∏
u

[∑
G

P (G|Θ)(1 − φP (SNP|G))

]
(5)

For partially linked SNPs the summation becomes more complex. In the

presence of recombination each site has an individual site tree, but successive sites

may have distinct, although correlated, site trees. The data set as a whole is

represented by a recombinant genealogy which is a collection of these site trees.

Let Gi stand for the site tree (contained in the full recombinant genealogy G) for

site i. The sum over G for partially linked sequences is over all possible recombinant

genealogies, that is, all possible combinations of one or more (up to the number of

sites) site trees Gi. The term δo is 1 if the site is observed and 0 if it is unobserved.

Note that with partially linked SNPs it is not enough to know the total number

of unobserved sites: we must know the number of unobserved sites between each

successive pair of SNPs, so that we can accurately take into account the probability

of recombination between SNPs.

L(Θ) =
∑

G

P (G|Θ, r)
∏

i

[δoφP (Di|Gi) + (1 − δo)(1 − φP (SNP|Gi))] (6)

The reconstituted-DNA method, relying on information about the unobserved

sites, allows us to analyze partially-linked SNPs which are intractable under
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the conditional-likelihood method. This approach can be incorporated into a

recombination-aware Metropolis-Hastings sampler (Kuhner et al. submitted). The

resulting search among genealogies considers both the site trees which actually

yielded SNPs and other site trees, interspersed among them, which did not.

A specialized case worth considering is the one in which short chunks of DNA

from well separated locations are searched for SNPs. If the chunks are short and

recombination is infrequent, it may be reasonable to treat such chunks as fully

linked internally and completely unlinked with one another. They can then be

analyzed under the reconstituted-DNA model using a combination of equation 4

(within chunks) and the logic for combining multiple unlinked loci in an MCMC

sampler described in Kuhner et al. 1995, as long as the length of each chunk is

known.

The conditional-likelihood approach could also be used if the number of SNPs

sampled from one chunk were independent of the density of SNPs in that chunk

(for example, if the researcher examined each chunk until 5 SNPs were found and

then stopped). However, in the more usual case where all SNPs in the chunk are

reported, straightforward application of the conditional-likelihood approach leads

to a bias. Chunks with a deep genealogy produce many SNPs, and the likelihood

curves from such chunks are therefore well defined. Chunks with a shallow genealogy

produce few SNPs and a relatively flat likelihood curve. The deeper genealogies will

thus dominate the combined estimate, leading to an overestimate of Θ. It may be

possible to overcome this effect with an appropriate conditioning on the number of

SNPs in each chunk, but the reconstituted-DNA approach seems simpler–in effect

it does the necessary conditioning automatically.

Methods of defining a SNP: The next question of interest is how a candidate

site is determined to be a SNP once it is drawn. There are at least three possibilities.
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The site might be classified as a SNP because it is polymorphic in the actual sample

under consideration (“sample SNPs”); because it is polymorphic in a panel drawn

from the same population (“panel SNPs”); or because it is polymorphic in a panel

from a different, though presumably related, population (“different-population panel

SNPs”).

We consider a site to be polymorphic if at least one nucleotide difference is seen.

More restricted definitions, such as “a site is polymorphic if the frequency of the

most common allele is less than 0.95,” can in principle be handled by modifications

of these approaches.

The terms we need to consider are the sitewise data likelihoods P (D&SNP|G)

(the probability that a site of a given configuration D will be obtained as a SNP)

and P (SNP|G) (the probability that a site will be a SNP). It will be useful to define

I as an invariant site, Ip as a site which is invariant in the panel, and Is as a site

which is invariant in the sample.

Sample SNPs: Here the data contain only polymorphic sites by definition,

and the data likelihood P (D&SNP|G) reduces to P (D|G) since the conditional

probability that the observed site is polymorphic is 1. This likelihood can be

calculated as a standard DNA likelihood (Felsenstein 1981) on the site’s genealogy.

The term P (SNP|G) can most readily be calculated as 1 − P (Is|G), where Is is

the sum of the probabilities that the site has all A’s, all C’s, all G’s, or all T’s on

the given genealogy. An analogous correction was used by Felsenstein (1992) for

restriction fragment length polymorphism data.

Panel SNPs: Here the genealogy G must be widened to include relationships

not only among the sampled individuals, but among the panel individuals and

between panel and sample individuals. We assume that as long as a site is found to

vary in the panel, it will be included in our calculation even if it proves not to vary
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in the sample, since this will generally not be known until after the data is collected.

The method can readily be modified to cover the case where sites that prove to be

invariant in the sampled individuals are discarded, but this should be avoided if at

all possible, as it loses information unnecessarily.

We will call the data for a given site in the actual sample Ds and the data

for that site in the panel Dp. If Dp is known, we should merge panel and sample

together, transforming the data into sample SNPs. Often, however, all we will know

is that Dp was not invariant. The term P (D&SNP|G) can then be written as the

probability of observing Ds given that the site is variable in the panel, which is

equal to the probability of Ds minus the probability of cases in which the panel

was invariant: P (Ds|G)−P (Ds&Ip|G). This is somewhat cumbersome to bookkeep

in a Metropolis-Hastings context, but presents no theoretical difficulties. It will,

however, slow such an analysis by increasing the size of the search space, since G

must now include the possible genealogy of the panel as well as the sample.

Different-population panel SNPs: This case is more demanding, as the

genealogy G which relates sample and panel must take into account the relationship

between the two populations. If this relationship is basically that of two static

populations undergoing migration, an appropriate method would be to use the logic

of Migrate (Beerli and Felsenstein 1999) to construct a Metropolis-Hastings sampler

across multi-population genealogies with migration. These migration genealogies

could then be used in the same types of equations as for same-population sample

SNPs. Such an analysis would be much more effective if Dp were known, but

would have some power even if it were unknown, since tests of Migrate have

shown that it has some ability to infer parameters from a subpopulation for which

no data are given (P. Beerli, unpublished). We are in the process of developing

such a sampler. Migrate can analyze multiple sub-populations, and so that in
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theory a complex relationship between panel and sample subpopulations could be

accomodated, although a large amount of data might be required. The closer the

relationships among the subpopulations, the more informative such data will be.

If the relationship between the two populations is common descent from an

ancestral population, a Metropolis-Hastings sampler incorporating this relationship

could also be constructed. There is currently no practical experience to tell us how

much power would be available to such a sampler, though unless the separation of

the populations is recent relative to the age of the mutations causing the SNPs,

many of the SNP sites defined on the panel may be uninformative on the sample.

It is clear that if the approach used to define the SNPs is not known, there is

not enough information available to construct a full likelihood method.

Consistency of estimation with SNPs:

In this section we investigate whether SNP data can be used to make a

consistent ML reconstruction of the tree, since if the coalescent tree can be

reconstructed consistently, a consistent estimate of Θ will naturally follow.

Maximum likelihood phylogeny reconstruction from DNA data can be shown

to be consistent when a correct model of sequence evolution is used (Chang 1996).

Consistency means that the estimate converges to the correct solution (both topology

and branch lengths) as the amount of data becomes infinite. Since the SNP

likelihood model is derived from the full DNA model, it may also be consistent,

but we must consider whether loss of information about the non-SNP sites causes

inconsistency.

It is immediately apparent that the conditional-likelihood approach will fail in

some cases where DNA (or reconstituted DNA) estimation would succeed. Consider

unlinked sites from two individuals and a Jukes-Cantor model (Jukes and Cantor

1969) of sequence evolution. The full DNA model can consistently estimate the
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branch length separating the two individuals, but to do so it relies on comparing the

frequency of invariant sites (sites of pattern xx) with the frequency of variable sites

(pattern xy). To make SNP data we discard all sites of pattern xx leaving ourselves

with no information: the remaining xy sites are expected with probability 1 for any

non-zero value of the branch length. (If the branch length were zero we would have

come back empty-handed from our search for SNPs.)

However, with three or more individuals sufficient information is available with

SNP data even if the number of unobserved sites is not known. For unlinked SNPs,

three individuals allow the possibility of site classes xxy and xyz (for unlinked SNPs

possibilities such as xyx are equivalent to xxy). Using the Jukes-Cantor model

we can derive (by taking the expectation of the multinomial sampling probability

over the distribution of allele frequencies in a symmetrical four-allele model, as in

Watterson (1977)) an expression for the proportion of xxy sites as a function of Θ:

Pxxy

Pxxy + Pxyz

=
3 + 3Θ

3 + 5Θ

This function is monotonically decreasing in Θ and thus any value of the ratio

corresponds to a unique estimate of Θ. We believe, although it is difficult to show

analytically, that the same is true for linked SNPs where the actual genealogy is being

estimated. Since the genealogy has multiple parameters, more information is needed,

but more is available since classes xxy, xyx and yxx can now be distinguished.

It should be noted that if the model of DNA evolution used to derive the site-

class expectations is not identical to the one which governed the actual generation

of the data, there is no guarantee that the maximum likelihood estimate will be

consistent. (This is not a flaw in likelihood analysis: no method can be expected to

be consistent if it is based on an incorrect model.) However, as long as three or more

sequences are sampled, properly conditioned maximum likelihood analysis of SNPs
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should be consistent under the same conditions as maximum likelihood analysis of

the underlying DNA data.

Bias of estimation with SNPs: It would be natural to ask whether

estimation of Θ using finite amounts of SNP data is biased: that is, what is the

expectation of the estimate with finite data? Surprisingly enough, however, the

mean bias is infinite for both SNP data and full DNA data. For both SNPs and full

DNA data there exist possible data configurations for which the estimate of Θ is

infinite. Thus the expectation is a mean over terms some of which are infinite, and

the mean bias must be infinite.

At first this seems very alarming. However, the cases which give an infinite

estimate are extremely unlikely with reasonably sized data sets (more than 5-10

sites), and for the vast majority of data sets a good estimate is produced. This

suggests that if we want practical guidance as to whether the method is working

well in a particular case, simulations are still relevant, even though we expect that

if enough simulations were performed the mean estimate would be infinite.

Even in the absence of infinitely large estimates, we expect an upward tendency

in the results of estimations using SNPs. In the tree of three tips, all of the

information is in the ratio of xxy to xyz sites. Sites of the xyz class are rare

for reasonable values of Θ (cases where they are not rare are unlikely to come up

in biological practice, since they would represent DNA so divergent that homology

and alignment would become problematic). Since they are rare, their frequency

will be poorly estimated by small data sets. The relationship between fxyz and the

estimate of Θ is non-linear, with upwards deviations in fxyz producing a much larger

effect than downwards ones. If we estimate f(xyz) with error that is symmetrically

distributed around the true value, we expect an upwards tendency in our results.

The full DNA model is not as vulnerable to this effect because it is not solely
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dependent on f(xyz) for its information: the proportion of sites which are xxx is

also informative, and since they are common, much more information is available.

In the simulation section, we provide some empirical exploration of the amount

of SNP data needed to get an accurate estimate.

Computer simulations: Random coalescent trees for a given value of Θ,

and recombining-coalescent trees for given values of Θ and r, were made using a

program provided by Richard Hudson (personal communication). DNA data were

simulated on these trees using a modification of the program treedna (Felsenstein,

unpublished) which uses the Kimura 2-parameter model (Kimura 1980). We set the

transition/transversion ratio to 2.0 representing a moderate transition bias, such as

might be expected from the nuclear DNA of mammals.

To create sample SNP data we simulated trees containing the desired number

of tips (sequences), and recorded all polymorphic sites generated. To create panel

SNP data we simulated trees containing a number of tips equal to the sum of panel

and sample sizes, and then chose the panel out of these tips at random. The panel

was used to determine which sites to sample, and these sites were then sampled

from the remaining tips, even if they were not polymorphic among those tips.

Data from the panel individuals were then discarded. This method is appropriate

because a coalescent tree generated for a given number of individuals is statistically

indistinguishable from one generated for the entire population and then subsampled

to give that number of individuals.

The parameter φ (the chance that, if a site were eligible to be a SNP, it would

be detected as one) was set to 1.

Estimates of Θ were made using the program Recombine from the LAMARC

package (http://evolution.genetics.washington.edu/lamarc.html). Recombine is an

extension of Coalesce (Kuhner et al. 1995). For analysis of completely linked SNPs
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we fixed the value of the recombination parameter r (equal to ρ/µ where ρ is the

recombination rate per site per generation and µ is the mutation rate per site per

generation) at zero; for analysis of partially linked SNPs we tested the program

both with and without co-estimation of r. Like Coalesce, Recombine samples over

a variety of trees in proportion to how well they fit the data, and uses these trees to

make an overall estimate of its parameters. In this case, the distribution of branch

lengths among the sampled trees is used to make a maximum likelihood estimate of

Θ and, optionally, r.

The program runs a series of Markov chains that sample these coalescent trees.

From the sample of trees in each chain, a new estimate of the parameters is made:

this estimate in turn provides a starting point for the next chain. Finally, a longer

chain is run to produce the final estimate. In this study, for each estimation we ran

10 short chains of 500 trees each and 1 long chain of 10,000 trees, sampling every

20th tree. The program was provided with the correct nucleotide frequencies and

transition/transversion ratio for the DNA model used.

Some data sets did not contain any variable sites. Rather than attempting to

make an estimate of Θ in these cases, we assigned the obvious estimate of zero. (The

Recombine program would move towards an estimate of zero, but would encounter

problems such as arithmetic underflow before actually arriving there.)

To test whether the presence of some recombination in the sequences disrupts

the estimate, we created sequences with various levels of recombination, and

analyzed them with and without co-estimating recombination.

RESULTS

We did not explore the case of unlinked SNPs. The Metropolis-Hastings

sampler is overkill on such data, since single unlinked sites do not provide enough
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information for any kind of tree estimate. An analytic solution may be possible if

the mutational model is not too complex.

As expected, representing SNPs as DNA leads to drastic overestimation of Θ

(Table 2A and 2B, line 1).

For fully linked SNPs, when Θ was quite high (0.1) both sample SNPs and panel

SNPs gave estimates close to the truth and had similar standard deviations (Table

2A lines 2 and 4). The standard deviations were about twice as high as observed

in Kuhner et al. (1998) using the full DNA model for a similar case (although that

case involved estimation of growth rate as well as Θ). Use of reconstituted DNA led

to standard deviations nearly as good as those from the full DNA model (Table 2A

lines 3 and 5).

When panel SNPs were misrepresented as sample SNPs, the estimates were

approximately tenfold too low (Table 2A line 6). In this high-Θ case, both sample

and panel SNPs can be successful at recovering Θ, but only if the method of

ascertainment is correctly specified. Why is incorrect specification so disastrous?

Mislabelling panel SNPs as sample SNPs forces us to discard sites which are found

to be invariant in the sample, reducing the amount of available data, but this is not

the main reason for the poor results: if it were, results with 1000 bp of DNA and

mislabelled SNPs (yielding an average of 180 analyzable sites) should be superior to

results with 500 bp of DNA and panel SNPs (yielding an average of 118 analyzable

sites). In fact they were much inferior. The fundamental problem is that panel

SNPs are depleted for variable sites arising from mutations in tipwards branches,

since such sites will not be shared between panel and sample members: analysing

them as sample SNPs ignores this depletion, leading to misinterpretation of the

data.

Use of reconstituted DNA reduced the size of this error, leading to estimates
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which were about 60% of the true value (Table 2A line 7).

For our lower value of Θ (0.01), which is still quite high by biological standards,

the results (Table 2B) were less encouraging. Even with correct labelling, sample

SNPs overestimated Θ by a factor of about 2, and panel SNPs by a factor of about 3.

The standard deviations were approximately 10 times higher than would have been

obtained with use of the full DNA model (compare with Table 1 of Kuhner et al.

1995). Reconstituted DNA improved the sample-SNP estimates, as did increasing

the number of base pairs: with 1000 bp of reconstituted DNA the estimate was

nearly correct.

The results with mislabelled data at the lower Θ were again drastically too low,

and again, reconstituted DNA appeared to improve the situation but not to produce

a correct estimate. The high result for the case with 500 bp and R-Mislabelled

SNPs is the mean of many results lower than the truth and a single extremely high

estimate, and probably does not indicate a repeatable upwards tendency.

Table 3 shows the result of ignoring recombination when it is present. The

higher the recombination parameter r, the more severe the upwards bias in Θ.

Between-site nconsistencies that are introduced by recombination must, in a no-

recombination model, be interpreted as multiple mutations, inflating the estimate.

Table 4 shows that when recombination is explicitly modelled, only a slight

upward bias in Θ remains. It is especially striking that allowing for recombination

improves the estimate of Θ (compare Table 3 and Table 4) even when there is clearly

insufficient information to allow a good estimate of the recombination parameter r

itself. (Our experience of the Recombine program is that it cannot make accurate

estimates of r on such short sequences.)

DISCUSSION
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When Θ is relatively low, estimates based on SNP data will be inaccurate

because site patterns other than the most common one will be very infrequent,

and thus their frequency will be poorly estimated. In such cases, a method which

assumes an infinite-sites model and estimates a per-locus rather than per-site 4Neµ,

such as the methods of Watterson (1975), Griffiths and Tavaré (1993) or Nielsen

(personal communication) may be preferable. Sampling greater numbers of SNPs

will slowly improve this situation, but for low values of Θ extremely large numbers

of SNPs will be required.

However, when Θ is relatively high accurate estimates are possible, though at

some loss of efficiency compared to use of the full DNA model. In cases where SNP

data is less expensive to collect than full DNA data this trade-off may be worthwhile.

Somewhat surprisingly, a panel of ten individuals appears sufficient, in the high-Θ

case, to give results nearly as good as those obtained by choosing SNPs from the

sample itself.

Intuitively one might expect that considering only the “informative” variable

sites from a piece of DNA would preserve most of its information value. While this

may be true for estimation of tree topology, it is not true for estimation of Θ or other

parameters that are based on branch lengths. Much of the lost information can be

recovered by the reconstituted-DNA approach, though this will be subject to errors

if the estimate of φ is incorrect or the SNPs are for some reason not characteristic

of the sequence in which they are embedded.

If there is any chance that recombination is present, a model which allows for

recombination will produce more accurate estimates of Θ than one which denies it;

the gain due to better matching of model to reality appears to easily offset the cost

of estimating an additional parameter.

Of the two models we present, conditional-likelihood and reconstituted-DNA,
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the conditional-likelihood method is simpler and requires less additional information,

but it appears less accurate and cannot be extended to cases in which there is some

recombination. The reconstituted-DNA approach appears preferable whenever a

reasonable guess can be made about the frequency of SNPs in the unobserved sites.

An important additional question is whether SNPs will be fully informative for

gene mapping by coalescent-based methods. On theoretical grounds we believe that

an accurate SNP likelihood model will be important in obtaining good gene-mapping

results: while use of an inaccurate model may produce a mapping curve with the

same peaks, it will distort the heights of the peaks and thus lose information about

the reliability of the map. The distortion arises because in the absence of accurate

branch lengths, the program will incorrectly weigh the competing alternatives of

recombination and multiple mutations. We plan to test this by simulation as

mapping algorithms become available.

Information about the makeup of the panel is crucial if an accurate likelihood

estimate is to be made from panel SNPs. The panel is not just preliminary work:

it is a key part of the final data set and must be treated as such. In some cases

incorrectly specifying the means by which SNPs were determined can change the

results by more than tenfold. Anyone considering publishing a set of SNP probes

for general use should, at a minimum, include the source and number of individuals

sampled and the criteria for deciding which sites were considered to be SNPs: ideally,

full haplotypes of the entire panel should be made available. If the SNPs are to be

used in a population other than the one from which they were sampled, details of the

population structure, including subpopulation membership of each panel individual,

are also important.

Finally, the more divergent the population on which SNPs are defined is from

the population under study, the more analytic power is likely to be lost; and the
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more complex the procedure by which SNPs are defined, the more difficult and time-

consuming the analysis is likely to be. Ad-hoc rules for accepting or rejecting a site

as a SNP may be attractive in the laboratory, but they will hamper analysis of the

resulting data.
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APPENDIX

We present here the derivation of equations 1 and 2.

I. Fully linked SNPs (equation 1).

L(Θ) = Prob(D|Θ) =
∑

G

P (G|Θ)P (D|G)

We condition on the fact that only SNPs are observed:

=
∑

G

P (G|Θ)
∏

s

P (Ds|G, SNP)

=
∑

G

P (G|Θ)
∏

s

P (Ds&SNP|G)

P (SNP|G)

and for the case of SNPs ascertained from the sample, P (Ds&SNP|G) is simply

P (Ds|G):

=
∑

G

P (G|Θ)
∏

s

P (Ds|G)

P (SNP|G)

II. Unlinked SNPs (equation 2).

L(Θ) = Prob(D|Θ) =
∏

s

[∑
G

P (G, Ds|SNP, Θ)

]
In this case we cannot assume that the genealogy G which generated the SNP

is the same genealogy which would have generated putative non-SNP sites, so we

need two independent summations:

=
∏

s

[ ∑
G P (G, Ds, SNP|Θ)∑

G P (G|Θ)P (SNP|G)

]
and for the case of SNPs ascertained from the sample, P (Ds&SNP|G) is simply

P (Ds|G):
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=
∏

s

[ ∑
G P (G|Θ)P (Ds|G)∑

G P (G|Θ)P (SNP|G)

]
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Table 1: Roadmap of SNP Analyses

A: SNP Data Categorized by Region of Origin

Region is Conditional Likelihood Method Reconstituted DNA Method

Fully Linked yes, equation 1 yes, equations 3-4

Partially Linked no yes, equation 6

Linked Chunks may be possible yes, equations 3-4

Unlinked yes, equation 2 yes, equation 5

B: SNP Data Categorized by Reference Population

SNPs Defined By Analysis Method

Sample Regular MCMC on sample

Same-population panel MCMC with panel incorporated into sample

Different-population panel MCMC with migration or divergence (hypothetical)

Unknown panel no method known

Equations referenced are in the current paper. “MCMC” – Markov Chain

Monte Carlo sampler.
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Table 2: Θ estimates based on SNPs

A: Θ = 0.1

500 bp 1000 bp

Data type mean SNPs Θ̂ SD mean SNPs Θ̂ SD
SNPs as DNA 120.6 0.5316 0.0753 239.7 0.5348 0.0839
Sample SNPs 119.3 0.1076 0.0500 228.7 0.1021 0.0459
R-Sample SNPs 117.7 0.1023 0.0356 224.7 0.0947 0.0341
Panel SNPs 118.3 0.0963 0.0488 245.9 0.1052 0.0377
R-Panel SNPs 120.4 0.1076 0.0295 235.8 0.1053 0.0280
Mislabelled SNPs 88.2 0.0125 0.0361 180.1 0.0108 0.0315
R-Mislabelled SNPs 90.9 0.0699 0.0359 181.9 0.0674 0.0338

B: Θ = 0.01

500 bp 1000 bp

Data type mean SNPs Θ̂ SD mean SNPs Θ̂ SD
SNPs as DNA 14.4 0.4734 0.0833 26.2 0.4895 0.0748
Sample SNPs 14.1 0.0263 0.0513 28.7 0.0246 0.0303
R-Sample SNPs 14.4 0.0216 0.0783 26.1 0.0114 0.0038
Panel SNPs 14.3 0.0370 0.0449 27.2 0.0341 0.0379
R-Panel SNPs 13.2 0.0133 0.0051 27.9 0.0163 0.0259
Mislabelled SNPs 10.4 0.0009 0.0050 19.2 0.0010 0.0051
R-Mislabelled SNPs 10.3 0.0131 0.0420 21.8 0.0072 0.0030

Each entry gives the mean and standard deviation of 100 replicates. For sample

SNPs, 10 sequences were used, and all sites polymorphic within those sequences

were taken as the data set (the mean number of SNP sites generated is given as “#

SNPs”). Panel SNPs were defined based on a panel of 10 sequences, and ascertained

on a sample of 10 sequences drawn from the same population. Mislabelled SNPs were

ascertained as panel SNPs but analyzed as sampled SNPs. SD, standard deviation.

The prefix R indicates the reconstituted-DNA approach.
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Table 3: Estimates of Θ in the presence of unacknowledged recombination

r mean SNPs Θ̂ SD

0.0 120.6 0.1073 0.0427

0.0002 120.9 0.1099 0.0513

0.001 116.5 0.1107 0.0509

0.002 116.3 0.1334 0.0650

0.01 116.9 0.1423 0.0863

0.02 118.5 0.1609 0.0856

1.0 118.1 0.3478 0.0857

Each entry gives the mean and standard deviation of 100 replicates. The

parameter r is the ratio of per-site recombination rate to per-site mutation rate.

Data consisted of 10 sequences of length 500 bp; SNPs were defined based on the

sample and analyzed with the conditional-likelihood approach.
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Table 4: Estimates of Θ and r

True Θ = 0.01

r # SNPs Θ̂ SD r̂ SD

0.00 12.9 0.0091 0.0044 0.1740 0.4030

0.02 13.3 0.0097 0.0044 0.2118 0.4932

0.04 14.6 0.0103 0.0045 0.2078 0.3717

0.08 14.5 0.0106 0.0053 0.2992 0.5310

True Θ = 0.1

r # SNPs Θ̂ SD r̂ SD

0.00 116.9 0.0995 0.0358 0.0060 0.0196

0.02 116.5 0.1026 0.0379 0.0375 0.0385

0.04 120.0 0.1111 0.0424 0.0642 0.0440

0.08 120.7 0.1190 0.0466 0.0748 0.0412

Each entry gives the mean and standard deviation of 100 replicates. Data

consisted of 10 sequences of length 500 bp; SNPs were defined based on the sample

and analyzed with the reconstituted-DNA approach.
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