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Abstract.  As methods of molecular phylogeny have become more explicit and more biologically

realistic following the pioneering work of Thomas Jukes, they have had to relax their initial

assumption that rates of evolution were equal at all sites.  Distance matrix and likelihood methods

of inferring phylogenies make this assumption; parsimony, when valid, is less limited by it.

Nucleotide sequences, including RNA sequences, can show substantial rate variation; protein

sequences show rates that vary much more widely.  Assuming a prior distribution of rates such as a

gamma distribution or lognormal distribution has deservedly been popular, but for likelihood

methods it leads to computational difficulties.  These can be resolved using Hidden Markov Model

(HMM) methods which approximate the distribution by one with a modest number of discrete

rates.  Generalized Laguerre quadrature can be used to improve the selection of rates and their

probabilities so as to more nearly approach the desired gamma distribution.  A model based on

population genetics is presented predicting how the rates of evolution might vary from locus to

locus.  Challenges for the future include allowing rates at a given site to vary along the tree, as in

the “covarion” model, and allowing them to have correlations that reflect three-dimensional



structure, rather than position in the coding sequence.  Markov Chain Monte Carlo likelihood

methods may be the only practical way to carry out computations for these models.
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The development of phylogeny algorithms was given a great stimulus by the rise of molecular

evolution.  Thomas Jukes played a central role in the growth and self-definition of this field.  His

work with Charles Cantor, setting forth the Jukes-Cantor model of molecular evolution (Jukes and

Cantor  1969) was a very small part of his wider studies on the genetic code and protein evolution,

but it was an essential development, serving as a starting point for later studies.  His influence on

molecular evolution (a field he named) was exerted through his many papers, his editorial work on

this Journal, and his support of molecular evolution studies in Berkeley.  The University of

California at Berkeley became the most influential center for the empirical study of molecular

evolution with the work of Jukes and his friend Allan Wilson.

Theoretical work in Berkeley has been less widely noted.  It started with the Jukes-Cantor distance

and the stochastic model derived from it.  Shortly afterward, Berkeley's famous statistician Jerzy

Neyman became involved, owing to contact with Allan Wilson.  He was the first to describe

maximum likelihood phylogeny methods for molecular sequence data, a development for which I

often mistakenly get the credit. Other Berkeley theoretical work included Sarich and Wilson's

(1973) relative rate test, and Wilson's “winning sites test (Prager and Wilson  1987).



It is easy to forget how many barriers faced the development of probabilistic models in molecular

evolution.  Foremost among these was the skepticism of molecular biologists, who raised the

argument from total realism.  We can now see that it was essential to start with oversimplified

models and gradually make them more realistic.  This was less obvious to the molecular biologists,

who were apt to demand of a model that it take all possible real phenomena into account at the

start.  Tom Jukes once told me that the reason the Jukes-Cantor model was buried in the midst of a

large empirical paper was that this was the only way to get it published.  He felt that if he had

attempted to publish it on its own, it would have been rejected by editors as idle and oversimplified

speculation.

One of the greatest oversimplifications of molecular evolution models has been the assumption that

all sites change at the same expected rate.  This paper will review this assumption and the various

methods that have been put forward to relax it.  Along the way, I will describe an improved method

of calculating likelihoods for Yang's (1995) discrete gamma approximation, and a population-

genetic model for variation of evolutionary rates among loci.  At the end of the paper, the new era

of Markov Chain Monte Carlo methods will make a brief appearance on the horizon.

The constant rate assumption

We start by examining which methods of inferring phylogenies assume constancy of evolutionary

rate.  We will see that distance and likelihood methods, in their simplest forms, do make this

assumption, but that the issue is subtler with parsimony methods.



Distance methods

Jukes and Cantor's (1969) distance is based on the simplest possible stochastic model of molecular

change.  Changes occur at all sites at the same expected rate, independently.  When each nucleotide

changes it has an equal probability of ending up at each of the other three nucleotides.  This

assumption of equal rates at all sites was carried over into Kimura's 2-parameter model (Kimura

1980) and appeared in many later models as well.  Relaxation of this assumption has come from

two sources.  Nei et. al. (1976) used a gamma prior distribution of rates across loci in computing a

genetic distance from gene frequencies.  Olsen (1987) used a lognormal prior on rates across sites

for the Jukes-Cantor DNA distance. He was not able to provide a closed-form formula for his

genetic distance -- a numerical integration was needed. Jin and Nei (1990) used the gamma prior

distribution for the Jukes-Cantor distance, for which a closed-form formula can be derived.

Waddell et. al. (1996) showed how to apply a class of prior distributions to the LogDet distance,

using the inverse of the Laplace transform of the distribution of rates.  This inverse is known for the

gamma distribution but not for the lognormal. For the gamma prior, we can rather easily correct

most other distances.  With the exception of the very general distances such as the Generalized

Time Reversible (Lanave et. al.  1984), LogDet and general 12-parameter distributions, all other

widely-used distances have transition probabilities of the form

∑
=

−+=
3

1

)()0(),,|(Prob
i

rti
xyxy

ieaatryx λ (1)

A gamma prior with mean 1 and squared coefficient of variation C simply causes the e
−λ i rt  to be

replaced by

.)/1( C
i Ct −+ λ



  The two quantities approach each other as C decreases.

Although the replacement may result in not being able to find a closed-form formula for the

distance, this need not be a serious problem.  For models such as the Hasegawa-Kishino-Yano

(1985) model, we do not have a closed-form formula for the maximum likelihood estimate of the

distance.  This does not prevent its rapid estimation by numerical iteration.

An aside about distributions

The reader will notice that we have repeatedly invoked the gamma and lognormal distributions.

This is not because there is any reason to believe that the distribution of rates across sites actually

follows either of these distributions.  They are simply the two best-known distributions on the

interval [0,∞) that have parameters for their mean and variance.  There are other possibilities, such

as the inverse Gaussian.  However I suggest that it may be hard to accumulate evidence favoring

one of these distributions over another. When the coefficient of variation (the ratio of standard

deviation to mean) is small, they all approach narrow normal distributions around the mean rate.

When the coefficient of variation is large, they still look somewhat similar.  Figure 1 shows the

densities of the gamma and lognormal distributions when the coefficient of variation is 2, which

corresponds to the gamma distribution having the parameter 4/1=α .  The tail of the lognormal

falls to zero at the extreme left, while the gamma's tail rises to infinity.  There are some differences

between the two distributions, but it may take a very large amount of data to effectively

discriminate between them.



Correcting maximum likelihood methods

Maximum likelihood methods, as originally formulated for molecular data (Neyman  1971;

Felsenstein  1981a) used models similar to distance matrix methods in that they assumed equal

rates of evolution at all sites.  If there is reason to assume that rates at different sites differ by

known multipliers, this can be readily incorporated into likelihood methods (as it can also be

incorporated into distance matrix methods).  For example, if there is reason to think that first,

second, and third codon positions in a protein-coding region have evolutionary rates that are in

ratios of 0.8 : 1.0 : 2.7, we could use those factors in a maximum likelihood phylogeny program.

In cases where the rates of evolution are not known a priori, one could imagine inferring a separate

rate for each site. This is done in Gary Olsen's program dnarates.  It leads us to have a number

of parameters that rises as we consider larger and larger numbers of sites.  The amount of data per

parameter does not increase as we add sites.  Under situations like this, likelihood methods can fall

into an “infinitely-many-parameters” trap.  They can fail to have desirable statistical properties

such as consistency.

Another approach that avoids this problem is to assume that the rates are drawn from particular

distributions. The distributions have a few parameters, and the number of parameters then does not

increase as the number of sites analyzed increases.  This avoids the infinitely-many-parameters

trap.



We have already seen the gamma and lognormal distributions used for this.  Yang (1993, 1994,

1995) has introduced the use of the gamma distribution in correcting for rate variation among sites

in maximum likelihood phylogenies.  As long as one has only a few species, it is possible for each

site to integrate the likelihoods over the distribution of rates.  Thus if the likelihood of the site for

tree T with rate r is L(T, r), and the density function of the distribution of rates is f(r), the likelihood

for the site will be
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For example for 4 species with an HKY model of DNA substitution and an unrooted tree with 5

branches, the expression for L(T, r) will be of the form
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where there will be 35 = 243 terms, each with a different exponent bi Ti  which is a linear

combination of branch lengths from tree T.    The integration in equation (2) can then be carried out

termwise with no difficulty: it results in the i-th term simply having ii Tbre−  replaced by

C
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The likelihood for the tree is computed by taking the product over all sites of these integrals at each

site (alternatively its logarithm is the sum of the logarithms of the integrals for each site).

For larger numbers of species this becomes impractical, the number of terms blowing up as 3
2n−5

.

Yang (1994, 1995) dealt with this case by approximating the gamma distribution by a discrete

distribution with a fixed number of rates, using a Hidden Markov Model (HMM).  An HMM was



also introduced for evolutionary rates by Felsenstein and Churchill (1996). This approximates the

density f(r) by a histogram of rates, each with an associated probability of occurrence:
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Yang's (1994) method of choosing the rates ri  was to break the desired gamma distribution into n

regions of equal area, and have the ri  be the medians (or else the means) of those regions. Thus if

n = 6 under the median method, the ri  would be the 1/12, 3/12, 5/12, 7/12, 9/12, and 11/12

quantiles of the gamma distribution.  When this quantile method is used, the pi  are simply taken as

equal probabilities.  We shall see below an improvement on this method.

Yang (1995) and Felsenstein and Churchill (1996) allowed for autocorrelation of rates in nearby

sites; this can be done without great difficulty in the Hidden Markov Model framework, with little

increase in computational effort.

Parsimony methods

It may seem a bit strange to be discussing how to correct parsimony methods for unequal rates at

different sites, when they have no explicit model with well-defined rates.  But unequal weighting of

sites has been discussed since very early in the parsimony literature (Farris  1969).  The reason for

weighting some characters less has always been the suspicion that they might be unreliable, mostly

owing to having a higher rate of evolution which then makes homoplasy less surprising in them.

Farris proposed a successive weighting scheme which used a weighting function that depended on



the observed number of changes of state in the character.  Thus if character i had ni  changes, their

weight should each be w(ni ). Farris suggested using these successively, by computing the weights

based on the numbers of changes of the character on one tree, and then using those weights to

search for the next tree.  When the process converges, as it does quickly, one has found a set of

weights and a tree that are consistent with each other.

A more general treatment of this sort of weighting is given by Goloboff (1997).  He uses

nonsuccessive weighting.  For each tree, as it is evaluated, we calculate the ni , and from those the

w(ni ); the parsimony score of that tree is then the sum over characters of the ni w(ni).  This

eliminates the dependence of the score of a tree on which tree was looked at before it.  A particular

case of a nonsuccessive weighting method, threshold parsimony, had already been given by me

(Felsenstein  1981b).

It is not immediately obvious what weighting function to choose. I have given (Felsenstein  1981b)

a likelihood argument leading to the choice of a weighting function.  According to that argument,

changes ought to have weights that depended not only on the rate of evolution of the character. but

also on the length of the branch in which they happen.  The latter is not easily accommodated in a

parsimony method, and this  leads us onward toward likelihood methods.  What is immediately

clear, however, is that the common practice of weighting changes inversely proportional to the rate

of change of that character is not correct.  The correct weights depend on the distribution of rates in

a complicated way. However the same likelihood-based weighting method does make it clear that

in the limit in which all characters change at low rates (though different low rates) unweighted



parsimony is justified.  If the rates differ but are all low, such that for any two characters i and j and

any two branches k and l,

then trees that require reconstructions of changes in which two changes occur in one character will

always be less well supported than trees in which one change occurs in another character. The

unweighted parsimony method will choose the same tree as maximum likelihood in this limiting

case in which the rates of evolution, although different among sites, are all small.  In this limiting

case parsimony is expected to be robust against different evolutionary rates at different sites.

Invariants methods

Another family of phylogeny methods is invariants (or evolutionary parsimony), introduced by

James Cavender (Cavender and Felsenstein  1987) and by James Lake (1987).  Lake's invariants

were intended to work even when evolutionary rates differ from site to site.  For DNA under a

simple model of base change, Lake showed that for a four-species tree of topology ((A,B),(C,D))

the linear combination of expected pattern frequencies (frequencies of outcomes at individual sites)

xxzwxyzzxyzwxyyxxyxy PPPPP −−++ (5)

is zero, no matter what the branch lengths on the tree.  In this computation these patterns include all

those in which x and y are any two bases that are either both purines or both pyrimidines, and z and

w are the other two bases.  This relationship holds for the expected frequencies of the patterns.  It is

true for each site separately, even if the sites have different rates of change (and hence in effect

different branch lengths).  Being a linear combination, it then also holds for all sites combined, so

that we can use the observed pattern frequencies such as nxyxy  summed over all sites.
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The insensitivity of this relationship to variation of evolutionary rates from site to site is

remarkable, but one pays a price for it.  It uses only a few degrees of freedom out of many

potentially available.  Consequently in computer simulations (e.g. Huelsenbeck and Hillis  1993)

Lake's invariants have proven to have very low power; although they work, they may require large

amounts of sequence data to successfully infer the tree topology.  Although they were developed

for four-species cases. they could be extended to deal with larger trees.  There has as yet been no

attempt to develop nonlinear invariants to cope with rate variation.  Being nonlinear, they do not

cope with it automatically.

Laguerre Quadrature

The use of a gamma distribution of rates among sites in likelihood analysis of a tree with more than

a few species leaves us with the issue of how many discrete rates to use to approximate the

distribution. The more rates are used the better the approximation, but the slower the computation,

as the computation time is proportional to the number of rates.

Fortunately the problem is simply one of numerical integration, and falls into the well-known class

of numerical quadrature methods. Taking a numerical quadrature approach to the integration in

equation (2) amounts to choosing rates ri  and probabilities pi  so as to most accurately approximate

the integral.  There are different numerical quadrature methods, depending on which weighting

function f(r) is used.  The gamma density corresponds precisely to a known numerical quadrature

method, Generalized Laguerre Quadrature. This has a parameter α  which corresponds to the shape



parameter of the gamma distribution.  Having chosen a value of α  and a number of points, n, the

rates ri  are the roots of the Generalized Laguerre polynomial of degree n, and the weights pi  are

can be computed as well (cf. Abramowitz and Stegun  1965, chap. 22).

Numerical quadrature methods are often quite accurate with a relatively modest number of points.

Table 1 shows likelihoods achieved for a simulated data set under both methods. The data set had

10 species with 200 sites, simulated by a Jukes-Cantor (1969) model of base change.  The first 100

sites had rate of change 0.2 per unit time, the second 100 had 0.4 per unit time.  The data were

analyzed using DNAML version 3.6 with gamma rate variation, coefficient of variation of rates 1.0

(corresponding to α = 1), and a Jukes-Cantor model.  The effect of using different numbers of

rates is shown. The calculation with the quantile method was done with a modified version of

DNAML written by Lindsey Dubb. Both analyses evaluate the same user-defined tree (it happens

to be the ML tree for 9 rates for DNAML).

The results differ in log-likelihood.  It is not clear whether this is a reason to prefer one or the other

analysis, as they differ owing to the different scheme for choosing rates and probabilities.  However

it is evident that the log-likelihoods vary much less with different numbers of rates if the quadrature

method is used than if the quantile method is used.  The log-likelihood difference between 3 rates

and 9 rates is 0.297 for quadrature, but 6.77 with the quantile method.  The greatest difference

between any two numbers of rates is 0.945 with the quadrature method, and 6.77 with the quantile

method.  Although the matter needs more careful examination, this example seems consistent with

the expectation that the quadrature method will achieve a better approximation to the gamma

distribution for any given number of rates.



The advantage of the quadrature method is that it approximates the gamma distribution by choosing

both rates and probabilities. It is known that Generalized Laguerre Quadrature with n rates will be

an exact method of integration with gamma distributed rates if the function L(T, r) (the likelihood

for the site as a function of rate) is a polynomial of degree 2n-1 or less.   Thus with 9 rates, it will

give exact integration of a polynomial of degree 17 or less. It is able to do this because it is

adjusting 9 rates and 8 probabilities (the ninth probability is determined, as they have to sum to 1).

It is thus able to use a discrete distribution of rates that has its first 17 moments exactly match the

first 17 moments of the gamma distribution.  By contrast, the quantile method has only 9

parameters to adjust.

The two distributions of rates are quite different.  Table 2 shows an example of rates and

probabilities for the quantile method; Table 3 shows them for the quadrature method.  It is quite

noticeable that the quadrature method assigns a rather different distribution of rates.  Some appear

to be too high and too rare to be of use; nevertheless they seem to help the method make a better

approximation of the gamma distribution. of these rates.

One limitation of the quadrature method is that it is not easy to see how to apply it to other

distributions, particularly the lognormal.  The quantile method can be adapted to the lognormal, but

until we know what are the orthogonal polynomials that correspond to a lognormal weighting

function, we will not have a quadrature method for lognormal distributions of rates. This is as far as

we can go with the quadrature approach for now -- Laguerre est fini.



Rates varying across loci

A puzzling issue that arises when multiple loci are analyzed together is how to allow for the

variation of rates of evolution from locus to locus.  Yang (1996) suggests estimating a separate rate

for each locus.  One potential problem with this approach is that as the number of loci rises, the

number of parameters being estimated rises proportionately.  We are then at risk of falling into the

infinitely-many-parameters trap, as we were when different rates were estimated for each site.

One could also assume that locus-wide rates were drawn from a distribution, as we do with sites.  If

both loci and sites within loci are vary in their rates of evolution, the issue arises as to how to

combine these rates.  A natural assumption is the multiply the two rates, so that the locus rate is in

effect a multiplier affecting all sites in the locus.  If both the sites and the loci have rates drawn

from a lognormal distribution, it is a convenient property of this family of distributions that their

product will also be lognormally distributed.  There is no counterpart to this property for gamma

distributions.

However, using the locus rates as a multiplier is an arbitrary procedure.  It is illuminating to

consider a model of rate variation and see what rules emerge from that.

A population-genetic model of rate variation

Imagine a locus with new mutants constantly arising, with the fitness of those new mutants in

heterozygote drawn from a distribution. To be realistic, the distribution should have most mutants



with fitness at or below 1, so that  there is only a small chance of an advantageous mutant.  Of

course, if there are n sites in the gene, there are only 3n single-step base change mutations possible,

which means that a continuous distribution of fitness may not be appropriate.  However we could

imagine that changes in the environment mean that different occurrences of the same base change

might have different fitnesses. One must also be careful in translating this distribution into

distributions of fitnesses of mutants at a single site, and working out the resulting rate of

substitution at the site.

Suppose that the fitness of mutants comes from a normal distribution with mean µ  and variance

σ 2 . We cannot simply translate this distribution into a distribution of rates of evolution, since

natural selection intervenes and decides whether the mutant will or will not substitute.   Kimura

(1957, 1962) gave formulas for the fixation probabilities of mutants whose initial gene frequency is

p and whose selection coefficient is s in a finite diploid population of population size N:
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We are interested in the case where there is only one initial mutant copy, so that p = 1/(2N), in

which case the formula becomes
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To have some idea of how evolutionary rates will differ across sites, we should have some idea

how fitness of various new mutants will differ.  Suppose that we (arbitarily) decide that the fitness

of new mutants at a locus varies according to a lognormal distribution with mean less than 1 and a

small enough variance that only a tiny fraction of the distribution has fitness exceeding 1. We use a

lognormal distribution rather than a normal distribution because the latter would allow some



mutants to have negative fitness. Figure 2 shows a lognormal distribution with mean 0.99997 and

standard deviation 0.00001.  Only a small fraction of new mutants have fitness greater than 1, and

thus positive selection coefficients.

Figure 3 shows the fixation probabilities for mutants of different selection coefficients, calculated

from Kimura's formula for a population with N =106
.  Note that although mutants with negative

selection coefficients are overwhelmingly eliminated, a small fraction of ones that are slightly

deleterious will be able to fix (for a review of this see Ohta  1996).

If we apply this fixation probability to the fitness distribution, we get as the distribution of selection

coefficients of those mutants that succeed in substituting the distribution in Figure 4.  Note the

greatly different vertical scale.  The original distribution was scaled to have area 1.  The survivors

have not been rescaled so that they have area 1 -- they are a small corner of the original

distribution.  The elimination of most of the mutants by natural selection is dramatic.

This still does not get us the distribution of evolutionary rates across sites.  The distribution across

mutations can be obtained by transforming the distribution of selection coefficients into the

distribution of evolutionary rates. If φ(s) is the density function of selection coefficients, (easily

obtained from the density function of fitnesses of the mutants) the density function of evolutionary

rate will be

f (r) = φ(s)
dU

ds
  
 

  
  

(8)

where the derivative is easily obtained from Kimura's formula. More precisely, the evolutionary

rates are the product of the mutation rate and U(s).



An important concern about this calculation is that it gives us only the distribution of rates among

mutants.  There are three possible mutants at each site.  To the extent that these may have different

selection coefficients, we would need to modify this calculation to average rates over the possible

mutants at the site.

How will the rates vary across loci?  We may feel that some loci will be more carefully scrutinized

by natural selection than others.  A naive model of “rounds” of selection, with fitness interpreted as

viability, will lead us to expect that if at one locus each mutant is scrutinized four times as severely

as at another locus, the fitness distribution at the first locus will the distribution of w4 , the

probability of the mutant surviving all four rounds of selection.  It is here that assuming a

lognormal distribution helps.  If w is lognormally distributed, w4  will also be lognormally

distributed.  In fact, since ln (w4 ) = 4ln (w) , the distribution will simply be shifted on the

logarithmic scale.

Figure 5 shows two rate distributions computed from equation (8).  One (the dashed line) has w

raised to the fourth power compared to the other.  The results are reminiscent of gamma

distributions with large coefficients of variation (small values of the α  shape parameter).

This model of rate variation is admittedly crude, and the choices of a lognormal distribution of

fitnesses of mutants is arbitrary. The matter needs more careful development before it can be said

to provide a justification for the use of gamma distributions of rates. To make a full Hidden Markov



Model of variation of evolutionary rates among loci, we would also need to add a distribution of

amounts of evolutionary surveillance (the power 4 in our example) among loci.

Variation between branches

The simplifying assumption that rates should be the same in all branches of the tree also needs to be

relaxed.  Sanderson (1997) did so using a rate-smoothing method which constrained rates in

neighboring branches of the tree to be similar.  Thorne et. al. (1998) have used Markov Chain

Monte Carlo (MCMC) methods to integrate likelihoods over a phylogeny on which branch lengths

can vary among branches, but in the context of an approximate clock.  Bickel and West (1998)

have used a fractal Poisson process, Cutler (2000) a general stationary process, and Huelsenbeck et.

al. (2000) have a compound process approximation.  All of these allow variation of evolutionary

rates from branch to branch.  Huelsenbeck et. al. used MCMC methods to infer the tree.  We can

also allow the rates to vary among sites and among branches of the tree, with which sites have the

highest rates of change varying from one part of the tree to another.  This is the covarion model of

Fitch and Markowitz (1970).  While they adduced evidence for it, use in practice has been greatly

impeded by the difficulty of computing likelihoods under it.  The rise of Markov Chain Monte

Carlo methods, which would randomize over assignments of rates of rates to sites and to branches

of the phylogeny, may have finally created the conditions for the covarion model to be of practical

use.



The future

With Hidden Markov Model and Markov Chain Monte Carlo methods becoming widely used, the

incorporation of rate variation into inference of phylogenies has become common.  MCMC

methods will perhaps allow rates to be correlated, not only along the nucleotide or amino acid

sequence, but also in three-dimensional space in a molecular structure.

It seems evident that the dominant framework in which these developments will occur is maximum

likelihood inference (and/or the related Bayesian approach).  Currently there is much interest in

rapid distance matrix methods for inferring phylogenies with large numbers of species.  However

distance methods have a severe limitation: they cannot cope efficiently with rate variation among

sites.  As we have seen, rate variation can be taken into account in distance methods, but this

happens separately for each pair of species.  Distance methods cannot carry over from one pair of

species to another the information as to which parts of the molecular have the highest rate of

evolution.  We are thus unable to accumulate, from one part of the tree to another, an assessment of

which parts of the molecule have high rates of change.

Likelihood methods can do this, so that they can deal efficiently with the accumulation and

disposition of this evidence.  There is thus a tension between rapid computation and efficient

inference.  If the ability of computers to carry out computations rises faster than an appropriate

power (approximately, the cube) of the number of species in a typical data set, we can expect the

competition to favor the more efficient methods.
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Table 1. Likelihoods achieved for different numbers of rates in a simulated 10-species data set with

200 sites and a true coefficient of variation of 0.333 among sites.  Likelihoods for a Jukes-Cantor

model of base change and coefficient of variation of rates among sites 1 (α = 1).



number ln L

of rates  quadrature method  quantile method

3 -1909.49687 -1934.41557

4 -1908.84881 -1936.97424

5 -1909.08548 -1938.49597

6 -1909.40984 -1939.50557

7 -1909.62518 -1940.22490

8 -1909.73959 -1940.76365

9 -1909.79412 -1941.18232

Table 2. The rates and probabilities chosen by the quantile method for 6 rates and coefficient of

variation of rates among sites 1 (α = 1).



probability rate

1 1/6 0.092

2 1/6 0.305

3 1/6 0.571

4 1/6 0.928

5 1/6 1.469

6 1/6 2.634

Table 3. The rates and probabilities chosen by the quadrature method for 6 rates and coefficient of

variation of rates among sites 1 (α = 1).



probability  rate

1  0.278  0.264

2  0.494  0.898

3  0.203  1.938

4  0.025  3.459

5  0.00076  5.617

6  0.000003  8.823

Figure Captions

Fig. 1. The gamma and lognormal densities with a coefficient of variation of 2 and expectation 1.



Fig. 2. A lognormal distribution of fitnesses of new mutants, with only a small fraction of

advantageous mutants. The horizontal scale is not fitness w but selection coefficient s,

wherew =1+s .

Fig. 3. Fixation probabilities of single mutants with different selection coefficients, computed from

Kimura's formula in equation (7).

Fig. 4. Distribution of selection coefficients of mutants that succeed in substituting, when the

original distribution of mutants is as in Figure 2.

Fig. 5. Distributions of rates of substitution among mutants for two distributions of fitnesses of new

mutants, one with four times as much selection on new mutants as in the other.
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