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The first molecular sequences available were protein sequences, so it is not

surprising that the first papers on inferring phylogenies from molecular sequences

described methods designed for proteins. Eck and Dayhoff1 described the first

molecular parsimony method, with amino acids as the character states. Fitch

and Margoliash2 initiated distance matrix phylogeny methods with analysis of

cytochrome sequences. Neyman3 presented the first likelihood method for molecular

sequences, using a model of symmetric change among all amino acids.

After a long period in which attention shifted to nucleotide sequences, attention

is again being paid to models in which the amino acid sequences explicitly appear.

This is not only because of the increased availability of protein sequence data, but

because the conservation of amino acid sequence and protein structure allows us to

bring more information to bear on ancient origins of lineages and of genes.

I will here briefly review the work on using protein sequence and structure to



2

infer phylogeny, in the process describing some methods of my own.

Parsimony

Eck and Dayhoff’s paper1 did not describe their algorithms in enough detail to

reproduce them, but it is apparent that the model of amino acid sequence evolution

they used did not take the genetic code into account. It simply considered the amino

acids as 20 states, with any change of state able to result in any of the other 19

amino acids. The realization that more information could be extracted by explicitly

considering the code shortly led to more complex models. Fitch and Farris4 gave

an approximate algorithm to calculate for any set of amino acid sequences, on a

given tree, how many nucleotide substitutions must, at a minimum, have occurred.

As certain amino acid replacements would then require 2 or 3 base substitutions,

this would differentially weight amino acid replacements. Moore5,6 had already
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presented an exact, though more tedious, algorithm to count the minimum number

of nucleotide substitutions needed, and he pointed out the approximate nature of

Fitch and Farris’s method7.

These papers might have settled the matter for the parsimony criterion, except

that they count as equally serious those nucleotide substitutions that do and do

not change the amino acid. For example, we might have a Phenylalanine that is

coded for by a UUU, which ultimately becomes a Glutamine that is coded for by

a CAA. This requires three nuclotide substitutions. It is possible for one of these

to be silent, as we can go from UUU (Phe) → CUU (Leu) → CUA (Leu) → CAA

(Glu). Presumably the second of these changes will not be as improbable as the

others, as it will not have to occur in the face of natural selection against change

in the amino acid, or wait for a change of environment or genetic background that

favors the amino acid replacement.
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In the PROTPARS program of my PHYLIP package of phylogeny programs, I

have introduced (in 1983) a parsimony method that attempts to reflect this. In

the above sequence it counts only two changes, allowing the silent substitutions to

take place without penalty. In effect the method uses the genetic code to designate

which pairs of amino acids are adjacent, and allows change only among adjacent

states. Sankoff8 and Sankoff and Rosseau9 have presented a generalized parsimony

algorithm that allows us to count on a given tree topology how many changes of

state are necessary, where we can use an arbitrary matrix of penalties for changes

from one state to another. The PROTPARS algorithm is equivalent to Sankoff’s

algorithm, being quicker but less general.

The set of possible amino acid states in the PROTPARS algorithm has 23

members, these being the 20 amino acids plus the possibilities of a gap and a stop

codon. Serine is counted not as one amino acid but as two, corresponding to the
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two “islands” of serine codons in the genetic code. These are {UCA, UCG, UCC,

UCU} and {AGU, AGC}, which make serine the only amino acid whose codons

fall into two groups that cannot be reached from each other by a single mutation.

PROTPARS copes with this by regarding them as two amino acid states (ser1 and

ser2) and treats an observation of “serine” as an ambiguity between these two.

Imagine that we know, for a node in the tree, the set of amino acid states that

are possible at this node. If the node is a terminal (tip) species, these are just the

observed amino acid, there being more than one if serine is observed or if any of

asn, gln, or glx are observed. There is also the possibility that the amino acid is

unknown, but known not to be a gap, and the possibility that the amino acid could

be any one including a gap. More complex ambiguities are also possible and can

arise in the process of reconstruction of the states at interior nodes in the tree. Any

of these can be represented by designating the members of the set S0 of possible
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states.

Given the particular version of the genetic code that we are using, we can also

precompute, for each amino acid a, the set N a of amino acid states that are one or

fewer steps away. In PROTPARS, gaps are counted as being 3 steps away from all

the amino acids and from stop codons. Having these precomputed sets allows us to

take the sets S0 at the tips of the tree, and compute for them S1 and S2, the sets of

amino acid states 1 or fewer steps away, and 2 or fewer steps away. In our program,

all states, including gaps, are 3 or fewer steps away, so that we do not need a set

S3. In PROTPARS the three sets S0, S1, and S2 are updated down the tree, and

the number of steps needed for the tree counted, in the following way.

Imagine that there is an internal node in the tree with two descendants, and

whose sets of possible states are the Li and the Ri. We are computing the sets Si

for the internal node. First, L0 and R0 are compared. If they are the same then the
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Li must be identical to the Ri, and the Si are simply set to be the Li, and no steps

are counted. Otherwise, we compute the four sets

T0 = L0 ∩ R0

T1 = (L1 ∩ R0) ∪ (L0 ∩ R1),

T2 = (L2 ∩ R0) ∪ (L1 ∩ R1) ∪ (L0 ∩ R2),

T3 = R0 ∪ (L2 ∩ R1) ∪ (L1 ∩ R2) ∪ L0.

(1)

They are computed one after the other. Their interpetation is straightforward. For

example, T 1 is the set of amino acid states that, if present at the internal node,

requires one step to give rise to L0 and none to give rise to R0, or else one step to

give rise to R0 and none to give rise to L0. Thus it is the set of states which, if

present at the interior node, require one extra step in the subtree that is above that

node. As soon as one of these, say T k, turns out to be nonempty, we know that a

minimum of k more steps will be needed at this node, and that the set S0 for that

node will be T k. T 3 at least must be nonempty, as it contains the union of R0 and
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L0.

Now, having found S0, all we need to do is to compute S1 and S2 for the internal

node. The formulas for doing so are

Sk =
⋃

a∈Sk−1

Na, k = 1, 2 (2)

This of course does not need to be done if L0 = R0, as the sets L1 and L2 (or R1

and R2) can then be used directly.

This method of calculation using sets is equivalent to having a vector of numbers,

one for each amino acid state, which are 0, 1, 2, or 3. The Sankoff algorithm asks

us to specify for each state the number of extra steps that would be required above

that point in the tree if that state existed in that internal node. In our model the

possible values for the number of extra steps are 0, 1, 2, and 3. The sets S i are just

the amino acids which would have the number of extra steps less than or equal to

i. The algorithm is then equivalent to the appropriate application of the Sankoff
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algorithm. It could probably be speeded up further, as most of the time the set S2

is the set of all amino acids, and that could be used as the basis for some further

economies.

Figure 1 shows the sets that would be stored on a small sample tree for one amino

acid position, and the counting of steps. At each node the three sets S0, S1, and

S2 are shown, and at interior nodes the number of steps that are counted are also

shown in circles. There are 4 different amino acids at the tips of the tree. If any

amino acid could change to any other the tree would require only 3 steps, but in my

protein parsimony model it requires 5.

Protein parsimony methods exactly equivalent to PROTPARS are also available

in the programs PAUP and MacClade, using predefined matrices of costs of

subtitution between amino acid states, with the costs being taken into account

by the Sankoff algorithm.
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Distances

Distance-matrix methods calculate for every pair of sequences an estimate of the

branch length separating them, where branch length is the product of time and

rate of evolution. That tree is then chosen that, by some criterion, makes the best

prediction of these pairwise distances. For protein sequences we need to specify a

probabilistic model of evolution. Jukes and Cantor10 were the first to do this for

protein sequences (see also Farris11). This model was highly oversimplified, as it had

equal probabilities of change between all pairs of amino acids. Dayhoff and Eck12and

Dayhoff et. al.13 empirically tabulated probabilities of change between amino acids

over short evolutionary times, producing a table of transition probabilities between

amino acids. This model does not take explicit account of the genetic code, and is

subject to errors from the limited sample size on which it was based. Nevertheless the

genetic code should affect its transition probabilities, and so should the biochemical
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properties of the amino acids. A more recent empirical model of amino acid change

is that of Jones et. al.14. They have also produced models for specific subclasses of

proteins, that may be more useful in those contexts15. Other recent compilations of

scoring matrices for evaluating the similarity of amino acid sequences16 ,17 are not

in the form of transition probability tables. For this reason they cannot be used to

compute the branch length estimates that we require here.

A naive alternative to these empirical matrices is to divide the amino acids into a

number of categories, based on their chemical properties. Suppose that we imagine

mutations occurring in the genetic code table, with the starting points being codons

generated at random from a given base composition. Now imagine single base

substitutions. If these do not change the biochemical class of the amino acid, they

are accepted; if they do, they are only accepted with probability p. We omit the

stop codons from consideration: if either the starting point or the destination of a
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change is a stop codon, the change is not made. This model, once given the amino

acid categories, the base frequencies and the probability p, generates a transition

probability table between all pairs of amino acids.

Version 3.5 of PHYLIP contains a program, PROTDIST, which computes

distances based either on the PAM001 model13 and the transition probability matrix

generated by the categories model. It also can compute distances using the formula

of Kimura18 which bases the distance on the fraction of amino acids shared between

the sequences, without regard to which amino acids they are. The categories model,

as implemented in PROTDIST, can use several different genetic codes (the universal

code and several kinds of mitochondrial code). Three categorizations of the amino

acids are used, one the categories given by George et. al.19 , one from a categorization

in a “baby biochemistry” text, and one the opinion of a colleague. Interestingly, all

three of these turn out to be subdivisions of one linear order of amino acids. We
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have found that a value of p = 0.45 brings the ratio of between- to within-category

change in the category model of George et. al.19 close to that in the Dayhoff model.

In the next release (4.0) of PHYLIP, we hope to expand the range of models by

including the model of Jones et. al.14, and allowing for a Gamma distribution of

evolutionary rates among sites, in the manner of Jin and Nei20 and Nei et. al.21.

Given the evolutionary model, we use maximum likelihood estimation to compute

the distances. In effect we are specifying a two-species tree, with but one branch,

between the pair of species, and estimating that branch length by maximum

likelihood. If we observe nij changes between amino acids i and j, and if the model

we are using has equilibrium frequency f
i
for amino acid i and transition probability

P ij(t) over time t, the expected fraction of sites which will have amino acid i in one

species and j in the other is f
i
P ij(t). The PAM001 matrix gives the conditional

probabilities P ij, but they are not reversible. In order to make a reversible model
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that is as close as possible to PAM001, we have used instead

Qij = (fiPij + fjPji) /2. (3)

This gives us symmetric joint probabilities of observing i and j in two closely related

sequences. Suppose that the M are transition probabilities that would lead to the

joint probabilities Q, and that π is the vector of equilibrium frequencies which is

implied by M. We start out knowing Q but not M or π. It is not hard to show that

the eigenvalues of π′M are the same as the eigenvalues of Q, and the eigenvalues of

M can also be directly derived from those of Q. The eigenvalues and eigenvectors

of M are computed in this way (they are precomputed in the PAM001 case and

computed by the program in the categories cases).

From the eigenvalues and eigenvectors of M we can readily compute the transition

probabilities M ij(t), and their derivatives with respect to t. The likelihood which
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we must maximize is

L =
∏

i

∏

j

(πiMij(t))
nij (4)

The log-likelihood is maximized over values of t by Newton-Raphson iteration,

The resulting distance computation is not fast, but it seems adequate. However,

it makes one assumption that is quite severe. All amino acid positions are assumed

to change at the same rate. This is unrealistic. To some extent we can compensate

for this by correcting the distances by using the approach of Jin and Nei20. However

there is information that is being lost by doing this. We would like to be able to use

the variation in an amino acid position in one part of the data set to infer whether

that position allowed change to occur at a high rate, and thus to help us evaluate

other parts of the same data set. But no distance matrix method can do this, as

they consider only pairs of sequences.
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Likelihood Methods

Neyman3 and Kashyap and Subas22 developed maximum likelihood methods for

inferring phylogenies from protein data. They used the highly-oversimplified Jukes-

Cantor10 model of symmetric change among amino acids, and they could not handle

more than 3 or 4 sequences in the tree in a reasonably exact way. I showed23 how to

make the likelihood computations practical for larger numbers of species. Likelihood

methods for proteins have not been developed further until recently, because of the

computational burden. Where nucleotide sequence likelihood methods use a 4 × 4

transition probability matrix, in protein models these must be either 20 × 20 or

64×64, and thus either 25 or 256 times as much computation. With increased speed

of desktop and laboratory computers, developing a reasonable likelihood method for

protein sequences has become more of a priority.

Adachi and Hasegawa24 and Adachi et. al.25 have developed such a method, using
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the Dayhoff PAM matrix13 as the transition probability matrix among amino acid

states, but without any direct use of the genetic code. Their program, which is

similar to existing DNA likelihood programs but has some effort put into requiring

fewer evaluations of the likelihood, is available in their MOLPHY package from their

ftp site at sunmh.ism.ac.jp.

It is tempting to develop a method that takes the genetic code explicitly into

account. In principle one could have 64 states, one for each codon, and regard the

amino acids as ambiguous observations (for example, alanine would be regarded

as an observation of “either TCA or TCG or TCC or TCT”). The computational

difficulties would be severe. One could also hope to take into account both observed

protein sequence and the underlying DNA sequence, which is often known. Hein26

and Hein and Stovlbaek27 ,28 have made a start on such models.

A more serious limitation of existing protein maximum likelihood models is that
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they assume that all positions change at the same expected rate. This assumption

has been removed from nucleotide sequence likelihood models, using Hidden Markov

Model techniques29 ,30,31,32. Its extension to proteins is straightforward and badly

needed, but does promise to slow down the computer programs severalfold.

Structure, Alignment, and Phylogeny

Beyond any of these complications is the challenge of taking protein structure into

account. Researchers on analysis of RNA sequences have found that there is a

synergism between inferences of phylogeny, alignment, and structure. It is just

beginning to become widely recognized that the same will be true with proteins,

the advantages being probably greater. Structure-based Hidden Markov Models

(HMMs) have been used to improve sequence alignment of proteins, although

without taking phylogeny into account33,34. Three-dimensional protein structures
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can be used to infer phylogenies35. Structural context affects not only amino acid

composition, but the substitution process itself36. When residues interact, there

may result patterns of compensating substitutions. This has begun to be examined

for proteins37.

In RNAs, phylogenies and inferences of structure are increasingly important to

each other. Patterns of compensating substitutions are strong, and have recently led

to mathematical models of this substitution process38 ,39. One can imagine a unified

process of inference for proteins and protein-coding regions that simultaneously

infers phylogeny, alignment, secondary structure, and three-dimensional structure.

The computational problems will be severe but many of the components needed are

already being worked on.

Having coordinated our inferences of structure and evolutionary history, we will

then be free to dream about function as well.
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Figure Captions

Fig. 1. A small tree with the calculation of the sets S0, S1, and S2 shown at each

node, for a site where the tips have amino acid states alanine, leucine, asparagine,

and trypthophane, respectively. The sets are shown as sets of one-letter amino acid

representations. S and s are the two codon “islands” of serine, and “*” representd

stop codons. The number of steps counted at each fork is shown in a circle.
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(all)
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(all)
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(all but N)

(all)

(all)

(all)

(all)
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