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TREES OF GENES IN POPULATIONS

Joseph Felsenstein

Abstract

Trees of ancestry of copies of genes form in populations, as a result of the ran-
domness of birth, death, and Mendelian reproduction. Considering them allows
us to think about evolution within and between populations, to make the connec-
tion between phylogenies and population genetic analyses. These trees, known
as coalescents, are essential to developing methods for making inferences about
populations. This chapter reviews coalescents and the inference methods based
on them. The review concentrates on the population processes, and also briefly
treats the inference methods, concentrating on those that attempt a likelihood
or Bayesian treatment.

1.1 Introduction

Molecular evolution represents phylogenies as branching diagrams composed of
thin lines. At the tip we often find one molecular sequence, sometimes described
as “the yeast sequence” or “the mouse sequence”. It is as if we were viewing the
evolutionary tree from a great distance, so that each branch appears thin. If each
of these thin lines truly contained only one copy of this gene’s sequence, we would
have a species that consisted only of a single individual, and a haploid one at that.
But the lines are not lineages of single copies. Coming closer to them, we find
that in reality the lines are thick – they are whole species, consisting of multiple
populations, each of many individuals. To understand what molecular evolution
looks like when we consider whole populations, we have to consider population-
genetic phenomena in addition to the usual models of molecular evolution. The
two fields of molecular evolution and population genetics (or evolutionary genet-
ics) have grown up largely separately. However, they are connected, and with
the availability of large population samples of sequences, their connections are
increasing. We are well into a Great Encounter – the mathematics and statis-
tics of population processes are becoming more and more important to molecular
evolution, and multispecies comparisons are becoming more and more important
to evolutionary genetics.
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To explain how population-genetic models relate to molecular evolution be-
tween species, we have to start within species and model the ancestry of a popula-
tion sample of n copies of a gene drawn from a single random-mating population.
This ancestry is itself a tree, but not one whose forks are speciations. Instead
they are simply events in which one parent copy gives rise to two or more off-
spring copies, a routine occurrence. The resulting trees have come to be called
coalescents. They are sometimes called “gene trees”, but this is ambiguous ter-
minology, as that same phrase is also used for trees of descent of genetic loci by
gene duplication, an entirely different phenomenon.

The most standard model of theoretical population genetics is the Wright-
Fisher model. In it, each of the 2N copies of a gene in a diploid population of
constant sizeN in effect chooses its parent copy from among the 2N parent copies
available. These choices are independent. Thus for two copies in a population,
there is a chance 1/(2N) that they came from the same copy in the previous
generation. If they do not, the process occurs again when we go back one more
generation. In effect, we toss a coin for each generation back, with the probability
of Heads equal to 1/(2N). The time to the first Heads is drawn from a geometric
distribution with that probability of Heads. This much was known to Sewall
Wright and R. A. Fisher in the early 1930s.

In 1982, the eminent probabilist J.F.C. Kingman, who has had a lifelong
interest in population genetics, asked what the process of ancestry would look like
if we traced back from a sample of n copies in a large population of N individuals.
He defined an excellent approximation which he called the n-coalescent [29, 30].
In it, one goes back in continuous time rather than in discrete generations. The
ancestry of the n copies remains distinct for a time Tn generations, where Tn is
drawn from an exponential distribution:

Tn ∼ Exp [4N/(n(n− 1))] . (1.1)

At that time two lineages chosen at random join, so that there are now n − 1
lineages. The process then starts again, going back farther in time, but with the
value of n decremented, as an independent draw from the same distribution with
that smaller value of n. This continues until there are only two lineages, whose
common ancestor is drawn by this process with n = 2.

Note that in the Wright-Fisher model the ancestry of copies of a gene can be
discussed without considering whether or not the copies have the same or differ-
ent DNA sequences. For the moment, there is assumed to be no natural selection.
The copies reproduce in ways that do not depend on their DNA sequences.

This is an approximation to the genealogy implied by the Wright-Fisher
model. It allows only two lineages at a time to combine, while in the discrete-
generations Wright-Fisher model, more than two lineages can combine simulta-
neously since a single individual can have multiple offspring. Kingman derives
his model by taking a series of discrete-generations Wright-Fisher models, with
the kth of these having N = k and a new time scale in which one unit of time
is k generations. He shows that the limit of the genealogical processes of these
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models is one in which the (rescaled) time back to coalescence when there are n
copies is distributed as

τ ∼ Exp [4/(n(n− 1))] , (1.2)

and he also shows that, in the limit, all coalescences are of only two copies.
Returning to the original time scale, the limiting process approximates the ge-
nealogy specified by equation (1.1).

This sort of limit is well-known in theoretical population genetics – it is the
one used to approximate gene frequency change by a diffusion process [12]. In
effect, Kingman’s n-coalescent is a diffusion approximation. Although diffusion
processes approximate discrete changes of gene frequencies by a continuous dif-
fusion process, they are extraordinarily accurate. One way that we can check
this in the coalescent process case is to calculate whether coalescence will in-
volve more than two lineages in the Wright-Fisher model. In the Wright-Fisher
model, if we have n lineages and go back one generation, the probability that two
copies coalesce while the others all do not will be

(
n
2

)
times the probability that

copies 1 and 2 coalesce and others do not, by the exchangeability of the process.
As each copy chooses its ancestor independently, we need the probability that
copy 2 chooses the same ancestor as copy 1, copy 3 chooses a different ancestor,
copy 4 chooses an ancestor different from those two, copy 5 chooses an ancestor
different from those three, and so on, so that the total probability of pairwise
coalescence is

(
n

2

)
1

2N

(
1− 1

2N

)(
1− 2

2N

)(
1− 3

2N

)
. . .

(
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)
. (1.3)

The probability that some of the copies coalesce is found by subtracting from
1 the probability that none coalesce, to get, by a straightforward argument:

1−
(

1− 1

2N

)(
1− 2

2N

)(
1− 3

2N

)
. . .

(
1− n− 1

2N

)
. (1.4)

To first order, both of these expressions are equal, as both are

n(n− 1)/(4N) + O(1/N2) (1.5)

which indicates that as N increases they become close, so that the probability
that a coalescence involves more than two lineages becomes negligible. Taking
the ratio of the expressions in equations (1.3) and (1.4), we can compute the
fraction of coalescences that are coalescences of two lineages when there are 10
lineages for increasing values of N and get some sense of this (Fig. 1.1).

The fraction of two-way coalescences becomes high as the population size
passes 100, which is the square of the number of lineages. We can also examine,
for N = 10, 000, the fraction of two-way coalescences with different numbers of
lineages (Fig. 1.2).
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Fig. 1.1. The fraction of coalescences that are of two lineages, when there are
10 lineages, for different population sizes N .

These patterns can be summarized by saying that most coalescences will be
two-way if n2 < N . However it is not obvious that having a modest fraction
of three- or four-way coalescences will invalidate inference methods that assume
the coalescent, so the coalescent may be a good approximation even when this
condition is violated.

The coalescent process predicts that the genealogy of copies in a population
is a random branching tree. The coalescence times are individually exponentially
distributed. The sum of their expectations is

n∑

k=2

4N

k(k − 1)
= 4N

n∑

k=2

(
1

k − 1
− 1

k

)
= 4N

(
1− 1

n

)
. (1.6)

We might expect that the total time for coalescence of the ancestors of a sample
from a population is proportional to the sample size (or even to its square), but
this calculation shows that it is actually almost independent of sample size.

One simple modification of this result is to use Sewall Wright’s Ne in place of
N . This quantity, the “effective population size” corrects for a variety of ways in
which the mating system departs from a simple Wright-Fisher model. Formulas
are available to calculate the appropriate corrections for separate sexes, unequal
numbers of the two sexes, monogamy, overlapping generations, and variation of
fertility from parent to parent. I will use N here, but the reader should keep in
mind that Ne will usually be needed instead.
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Fig. 1.2. The fraction of coalescences that are of two lineages, for different
numbers of lineages, when population size N = 10, 000.

1.2 Effects of evolutionary forces on coalescent trees

1.2.1 Population growth

The above theory is for a single population of constant size. When population
sizes grow or shrink, the rate of coalescence changes. For example, if the pop-
ulation size is N for the most recent 500 generations, but before that is N/10
for 100 generations, and before that again N , the effect of this bottleneck on
the coalescent is straightforward. Going back 500 generations, we have the usual
coalescent process with rate (for k lineages) of k(k − 1)/(4N). If we get back to
the most recent end of the bottleneck period and have at that time ` lineages,
the rate of coalescence back beyond that is 10 `(` − 1)/(4N). If when the far-
thest end of the bottleneck is reached we have m lineages, the rate beyond that
point is m(m − 1)/(4N). Thus there will tend to be a burst of coalescence at
the time of population bottlenecks, though there may not be many coalescent
events in those bottlenecks unless the length of the bottleneck in generations
approaches the population size at that time. A bottleneck of population size of
1000 individuals may not have much effect if it lasts for only 10 generations.

It was noticed by Kingman [29] that there is a simple way to treat population
growth if we can integrate the reciprocal of the population size. It makes use of
the fact that a smaller population causes proportionately more coalescence per
unit time. For example, if the population size N grows exponentially at rate g,
the population size t generations ago was N(t) = N(0) exp(−gt). The rate of
coalescence of k lineages t units of time ago would then be k(k − 1)/(4N(t)) =
exp(gt) k(k − 1)/(4N(0)). A coalescent process that has such time-dependent
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rates can be defined and simulated. A simpler way is to note that coalescence
occurs exp(gt) times faster t units of time ago, because the population is that
factor smaller then. It is as if the clock were running exp(gt) times as fast. We
can change the time scale going backwards, to one that accumulates exp(gt) as
much time t units of time ago. It has this fictional time be

τ =

∫ t

0

egu du =
(
egt − 1

)
/g. (1.7)

On this fictional time scale, the coalescent process will have rates independent of
time. The coalescent with an exponentially growing population is then simply the
ordinary coalescent with population size N(0), if we observe it on the fictional
time scale τ . One can draw a random outcome of the coalescent process with
exponential population growth by sampling the ordinary coalescent, considering
the times of coalescence to be values of τ , and then computing the corresponding
values of the actual time t by solving for t in equation (1.7) to get

t =
1

g
ln(1 + g τ). (1.8)

The effect of a positive growth rate g is to compress times in the past relative
to the present. As Slatkin and Hudson [47] noted, the trees become closer to
a “star tree” in which all lineages simultaneously radiate from a single node.
If the growth rate is negative, the times at the base of the tree are stretched
(sometimes infinitely so).

1.2.2 Migration

When we have more than one population, a coalescent tree forms in each popu-
lation, but lineages also move between populations. Going backwards in time, if
mij is the probability that a lineage in population i came from population j in
the preceding generation, there is an event with probabilitymij dt in the previous
small interval of time of length dt. For example, if there were 3 populations of size
N1, N2, and N3, and if currently they contain respectively k1, k2, and k3 lineages,
the events that can occur during a small interval of length dt, going backwards
in time, include coalescences within each of the three populations and migra-
tions. The former happen with rates k1(k1 − 1)/(4N1), k2(k2 − 1)/(4N2), and
k3(k3−1)/(4N3) per unit time. In population 1 there is a total rate k1m12+k1m13

of migrations, and similarly for the other two populations. The total rate of events
for p populations is then

p∑

i=1

ki(ki − 1)

4Ni

+

p∑

i=1

p∑

j = 1
j 6= i

kimij . (1.9)

To draw a genealogy from the coalescent with migration, we proceed back-
wards in intervals. We draw the length of the interval from an exponential dis-
tribution whose mean is the reciprocal of the quantity in 1.9. We then decide
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population 1 population 2 population 3

Fig. 1.3. A simulated coalescent with migration among adjacent populations
with three populations of equal sizes and 4Nm = 1 in each, going backwards
from samples of 4, 3, and 3 lineages.

whether the event is a coalescence or a migration, by drawing these in proportion
to their total rates of occurrence, and then we decide in which population each
event is and which lineage or lineages it involves.

Figure 1.3 shows a randomly sampled coalescent from three populations of
equal size N , who have symmetric migration with 4Nmij = 1.

The coalescent process for migration was first investigated by Takahata [50]
and (somewhat implicitly) by Hudson and Kaplan [27] and by Kaplan, Darden,
and Hudson [28].

1.2.3 Coalescents with recombination

So far we have assumed that each copy of a gene is descended from a single copy
in the preceding generation. This is true if there is no genetic recombination
within the gene. If there is recombination possible, the copy could be descended
from both copies in the parent. At any one site in the DNA sequence, the gene
is descended from only one copy, and the coalescent at that site is the normal
one. But when the sites are taken together, the genealogy is not a tree. When we
approximate the genealogy of the sequence by a coalescent, recall that in effect
we consider cases with large population size N , and small rates of such forces
as migration. To obtain a coalescent approximation to a recombining genealogy,
we also take the recombination rate per site per generation, r, to be small. This
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means that we will assume that there cannot be more than one recombination
event in a sequence in one generation.

To model recombination, we assume that when a recombination event occurs
in a sequence which has L sites, it does so at one of the L − 1 intervals be-
tween sites, chosen at random. The sequence before the point of recombination
comes from one of the two parental copies, and the sequence after the point
of recombination comes from the other parental copy. The two copies that are
in the parent are themselves drawn at random from the population, so they go
back in time along independent lineages that can coalesce with others, or even
with each other. In tracking the ancestry of a population sample, we will want
to have each lineage accompanied by a set S of sites. In the sample, the sets
S are all {1, 2, . . . , L}. As the lineages go back in time, they have the usual
probabilities of coalescing and migrating. There are also recombination events
occurring stochastically at rate 4Nr per interval between adjacent sites. When a
recombination event occurs, if it occurs just after site ` it divides the set of sites
into two subsets, {1, . . . , `} and {` + 1, . . . , L}. The set of sites “active” in the
two parent haplotypes are then changed to S ∩{1, . . . , `} and S ∩{`+1, . . . , L}.
When two lineages coalesce, the set of active sites is the union of the two sets of
active sites, though the set of intervals available for recombination is from the
leftmost site in that union to the rightmost site.

We can represent the genealogy by a graph called the ancestral recombination
graph [24,20]. Figure 1.4 shows an ancestral recombination graph with three tips,
four coalescences (the shaded circles) and two recombination events (the white
circles). Next to each line is the list of sites in that lineage (out of a total sequence
length of 1000) that are “active” in the sense of being ancestral to sites in the
tip sequences. Note that one lineage has a disjoint list of active sites.

An alternative way of thinking of genealogies with recombination is to think
of the genealogies at the different sites. At each site the genealogy is a simple
coalescent. Neighboring sites between which there has been no recombination
have the same coalescent. In the example in Fig. 1.4 the first 265 sites have
one coalescent tree, the next 127 sites another, and the final 608 sites a third.
Wiuf and Hein [56] have defined a stochastic process that makes changes in the
coalescent as one moves along a sequence in a way that correctly generates an
ancestral recombination graph. Most computer simulation of ancestral recombi-
nation graphs uses the program of Hudson [26] which generates the graph by
moving backward in time and considering the sets of sites in different lineages.

It is helpful to have a sense of the rate at which the coalescent tree changes as
one moves along the genome. How far must we go to have the tree be effectively
independent? A simple calculation can be based on the distance we must move
along the genome so that a lineage from a tip down to the root of the coalescent
tree is expected to have one recombination event. The distance to the root is
close to 4N generations. So we want to find how far along the genome we must
go to have 4Nr = 1. In a human meiosis there is about one recombination event
per 108 bases. If the effective population size tens of thousands of years ago were
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Fig. 1.4. An ancestral recombination graph for a sample of three sequences of
1000 bases. Next to each lineage are listed the sites in it that are ancestral
to the tip sequences. Coalescent events are shown as shaded circles, recombi-
nation events as white circles.

104, and the recombination rate were the same throughout the genome, this
implies a short distance, 2500 bases. If the effective population size were higher,
say 105, the distance is even shorter, only 250 bases!

You may wonder what justification I have for the rule 4Nr = 1. In fact,
the condition for similarity of trees is the same as the condition for there to be
nonrandom association of alleles at loci. These associations are known as linkage
disequilibrium. The coalescent tree at one site strongly affects the distribution
of alleles in the sample. An allele that has arisen by mutation at that site tends
to occur in the descendants of a single branch of the coalescent tree. If another
site shares the same coalescent tree, one of its alleles will be strongly positively
or negatively associated with the allele at the first site. Robertson and Hill [45]
make a calculation closely similar to the above one, calculating the size of blocks
of linkage disequilibrium.

Models can also be made of the effect of gene conversion on the coalescent,
although as yet there has been little use of them.

1.2.4 Natural selection

It has been difficult to accomodate natural selection in coalescents, but recently
there has been some progress in doing so. If there is no natural selection occur-
ring, then the shape of the coalescent genealogy is not affected by which copies
have which DNA sequence. In the presence of natural selection, there is such
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a dependence. If we have (say) 5 copies of one allele, and 5 of another, and if
the first allele has higher fitness than the second, then most likely the first allele
is spreading in the population. If so, it is more probable that two copies of it
coalesce when we go back in time than two copies of the other allele. The result
is that we cannot specify any coalescent without knowing more about the DNA
sequence in the copies.

For many years this was thought to make it impossible to specify any coales-
cent process in the presence of natural selection. Krone and Neuhauser [40, 31]
discovered a way to do so. It creates a coalescent by going back in time and hav-
ing both coalescence events and also special forks that reflect a natural selection
event. This produces a genealogy with loops in it. The genotype is then specified
at the root of this genealogy, drawn from an appropriate population-genetic equi-
librium distribution. Then genotypes are propagated up the genealogy, allowing
for mutation events as well. When the top of a loop is reached, it is decided
which side of that loop connects upward, depending on its genotype. Krone and
Neuhauser’s result is a breakthrough, though it does not specify a genealogy in-
dependent of the genotypes of the gene copies, as the other coalescent processes
do.

Earlier treatments of natural selection [27, 28] could handle only cases of
strong natural selection, which in effect divides the copies into subpopulations
whose sizes are the consequence of the fitnesses.

1.3 Inference methods

Having understood the stochastic processes that produce treelike genealogies of
gene copies, the next obvious step should have been to find a way to use these to
compute likelihoods or carry out Bayesian inference of parameters. The central
model framework for doing so is the neutral mutation theory of genetic varia-
tion, widely studied since the 1960s. Molecular sequences have been modelled as
evolving under genetic drift and mutation, without natural selection. This model
also serves as a null hypothesis against which to test for the presence of natural
selection.

In a coalescent, mutation can be accomodated by allowing it to occur on the
branches, modelled as happening in continuous time. This is the same model used
in the inference of phylogenies. The difference is that in the coalescent case, the
coalescent genealogy is not being estimated, but instead is part of the machinery
of statistical inference of the population and genetic parameters.

The models of mutation used are the usual models of sequence mutation
used with phylogenies. The presumption in most cases is that the mutations
are selectively neutral, with no fitness differences. Two approximate models are
also in wide use in the population genetics literature. One is the infinite alleles
model, due to James F. Crow and Motoo Kimura [4]. In it there is a constant
risk of mutation, at rate µ per locus, to a completely new allele. All alleles can be
distinguished, but they give us no clue which ones are derived from which other
ones. The same allele never arises twice. Mutations in DNA sequences behave
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approximately like this, as long as there are so many sites that the chance of the
same site mutating again is small. However, in real DNA sequences, the sequence
does give us information about which sequences are likely to be separated by one
mutational event.

A closer approximation is the infinite sites model of Watterson [52]. It rep-
resents the gene by a line segment, and each mutation occurs at a random lo-
cation chosen from (0,1). As such, no mutation ever recurs at the same exact
location. It is assumed that we can see the line and the placement of the dif-
ferences, but it is also usually assumed that we cannot know, at a site which
has a variation, whether the presence or absence of the variation is the original
state. Thus, if we see three copies that have their lists of variations present as
{0.366, 0.8197}, {0.366}, and {0.684}, the variation counted as present at position
0.366 in the first two copies could also be considered as one that is absent in those
copies but present in the third. The lists would then be {0.8197}, {}, and {0.366,
0.684}. If the variation at position 0.684 was considered absent in the third copy
but present in the other two, the lists would be {0.684, 0.8197}, {0.684}, and
{0.366}. These are all completely equivalent. As long as there is no recombina-
tion allowed within the locus, the exact locations on the line segment actually
do not matter, and each mutational event in effect partitions the copies into two
sets. The partitions are ordered and are compatible, in that when we intersect
any two such partitions they form no more than three sets. We shall see the
infinite sites model used in some of the inference methods below.

1.3.1 Earlier inference methods

It is a puzzling fact that little attention was paid to likelihood inference (and
Bayesian inference) in population genetics until the 1990s. Some of this inat-
tention may have been the result of the apparent intractibility of the problem.
The only model for which a likelihood could be computed was Ewens’s [9] model
of a locus undergoing mutation and genetic drift under an infinite-alleles model
of mutation. (One should mention also R. C. Griffiths for deriving a likelihood
inference of population divergence time under that same model [18]). But one
would have thought that the problem would at least have been posed as a major
challenge for theoretical population geneticists. It was not.

This may be related to the high prestige in that field of closed-form solutions
for distributions and changes of population composition, and the correspondingly
low prestige of statistical and computational methods. For example, for a field
with so much mathematically sophisticated theory, population geneticists main-
tain relatively few web sites and distribute relatively few computer programs.
They are far outclassed in this by systematists and molecular evolutionists, even
though those fields are mathematically less sophisticated. Although likelihood
and Bayesian inference methods became dominant in statistical inference from
human pedigrees during this period, population geneticists working on evolution
tended to ignore the likelihood paradigm and instead derive expectations and
variances for particular statistics.
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Many of those were heterozygosities which involved first and second moments
of gene frequencies. These can be shown to lose statistical power compared to
coalescent-based methods [13,16]. Another widely-used statistic for the infinite-
sites model, Watterson’s number of segregating sites [52], is more powerful, but
still less so than likelihood-based methods [13,14,16].

1.3.2 The basic equation

The first key to computation of the likelihood for a population sample of molec-
ular sequences is that we can compute it straightforwardly once the coalescent
tree is known. The likelihood models of phylogenetic inference allow the compu-
tation of Prob (D |T,P), the probability of the sequences given the tree and the
values of the relevant parameters. The second key is the realization that we do
not know the tree T , but that the sequences do give us some information about
it. The likelihood Prob (D | P) is

Prob (D | P) =
∑

T

Prob (D,T | P), (1.10)

=
∑

T

Prob (D |T,P) Prob (T | P). (1.11)

The summation is over all possible coalescent trees, and includes not only sum-
mation over tree topologies but integration over all possible combinations of co-
alescence times. The first term inside the summation is easily computed by the
standard dynamic programming methods of phylogeny inference. The second is
the density of the coalescent distribution.

1.3.3 Rescaling times

In the simplest case, of one population, the parameters in equation (1.11) are
the population size, N , and the mutation rate per site, µ. In fact, they cannot be
inferred separately. If we change the time scale of the branch lengths of the tree
T so that they are given, not in generations, but in units of expected mutations
per site, the expression for the likelihood now becomes a function of the product
4Nµ and the quantities µ and N do not appear separately. This makes intuitive
sense – if we are computing the joint probability of a set of sequences observed
at the present, there will be no difference between a tree with a given mutation
rate µ and one which is twice as deep but has half the mutation rate. The depth
of the tree is proportional to N , so that the likelihood is a function only of the
product Nµ. It is a convenience to express the product as Θ = 4Nµ.

In this simple case, the likelihood can then be written as

Prob (D |Θ) =
∑

G

Prob (G |Θ) Prob (D |G) (1.12)

since the branch lengths of the coalescent genealogy G are now expressed in
mutational units.
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The sum is of a product of two terms. The first is the coalescent density. If
the ith coalescent interval on the tree G is ui, measured in mutational units,
then the coalescent density for n sequences is

f(G |Θ) =
n−1∏

i=1

(
e−

(n−i+1)(n−i)
Θ ui

2

Θ

)
. (1.13)

The density is easy to calculate once we know the ui. Likewise the second term
on the right-hand side of equation (1.12) is easy to compute, using the standard
recursion for likelihoods on phylogenies. Although likelihood methods can be
slow, this is not so much true for the computation of the likelihood for one tree,
as we have one topology and are not optimizing the branch lengths.

1.3.4 How many coalescent trees?

This would seem to solve the problem, except for one matter. The summation is
over all possible coalescent trees that could connect the sequences. Each tree is
specified by a given sequence of pairs of lineages that coalesce, plus the times of
these coalescences. With n lineages, the sequence of coalescence events is specified
by choice of pairs of lineages to coalesce. The total number of possibilities is

n−1∏

i=1

(
n− i+ 1

2

)
=

n! (n− 1)!

2n−1
. (1.14)

These different possibilities are called labelled histories – they are different trees
in which we distinguish between the order of interior nodes in time. They were
defined by Edwards [8]; the formula counting them is given in that paper.

The number of labelled histories rises rapidly, more rapidly than the number
of tree topologies. For only 10 tip species, there are 2,571,912,000 of them. Worse
yet, evaluating the likelihood involves integrating over all possible coalescence
times. There are n − 1 of these, so for 10 tips we must evaluate 2.571 × 109

integrals, each 9-dimensional. It would be a great economy if there were a closed-
form formula for the integration, but there has been no progress toward that.

1.3.5 Monte Carlo integration

The integral in equation (1.12) can be thought of as the expectation of Prob (D |G)
over the Kingman coalescent distribution for parameter value Θ. If we cannot do
the integrals analytically, and cannot hope to do them all numerically, a natural
alternative is Monte Carlo integration. Perhaps we can draw a large sample of
coalescent genealogies from the Kingman density, compute Prob (D |G) for each,
and average.

I have tried to implement this at least once, and the results were disastrous.
For almost all of the possible genealogies G the value of Prob (D |G) is nearly
zero; for a small minority it is much larger. The result is that the averages vary
wildly from one sampling run to another, and no accurate estimate of the overall
likelihood is obtained.
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1.3.6 Importance sampling

It thus becomes essential to find some way of concentrating the sampling in the
relevant regions. The correction that needs to be made for importance sampling
has long been known. If we want to compute the expectation of function h(x)
over a distribution whose density function is f(x), but we choose the samples
from a distribution whose density function is g(x), it is easy to see that

Ef [h(x)] =

∫

x

f(x)h(x) dx, (1.15)

=

∫

x

f(x)

g(x)
g(x)h(x) dx, (1.16)

= Eg

[
f(x)

g(x)
h(x)

]
. (1.17)

We correct for the importance sampling by averaging, not h(x) but
(f(x)/g(x))h(x). An intelligent choice of the density g(x) can concentrate our
sampling on coalescent trees that make a substantial contribution to the integral.
The factor f(x)/g(x) corrects for the excessive density of points in some areas
of the space. If, for example, g(x) concentrates twice as many sampling points
around x as f(x) would, the factor f(x)/g(x) weights the samples to reflect the
fact that each should be taken to represent half as much area in the space as it
would if we sampled from the density f(x).

Importance sampling makes numerical sampling approaches to likelihood in-
ference or Bayesian inference with coalescents practical. Methods have been de-
veloped that draw independent samples, and also methods that draw correlated
samples. I will call both of these “sampling methods”. With the rise in popular-
ity of Markov chain Monte Carlo (MCMC) methods as means of sampling from
difficult distributions, it was inevitable that they would be applied to this task.
Although the drawing of independent samples is a trivial case of a Markov chain,
designation as MCMC methods is usually reserved for the correlated samplers.

1.3.7 Independent sampling

The pioneers in applying sampling methods for computing likelihood functions
in coalescents were Griffiths and Tavaré [21]. For samples whose mutational pro-
cess was the infinite sites model, Griffiths [19] had envisaged using a recursion
(due to Golding [17]) to compute all possible sequences of mutational and coa-
lescent events that could have led to the observed sample. This proved to be too
difficult computationally for more than a few samples. Griffiths and Tavaré [21]
proposed instead sampling paths through the recursion, and for each comput-
ing a functional that reflected the probabilities of events. Each such path is an
independent sample, a very desirable property, as it thus completely avoids the
problem of getting stuck in one region of the space.

At each stage, Griffiths and Tavaré consider the possible events that could
happen (going backwards in time). If there is only one sequence that has a
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particular site in the mutant state, then it is possible that this event is a mutation.
If there is more than one copy of a sequence, it is possible that this event is
a coalescence of two of them. They sample these events proportional to their
probability of occurrence, but not allowing those that would conflict with the
data. Suppose that there was one sequence that carries a mutant allele at position
0.2, another with mutant alleles at positions 0.4 and 0.5, and a third with a
mutant allele at position 0.2. With three sequences, we could have three possible
coalescences, and there are four copies of the mutant that could have recently
mutated (so that going backwards they unmutate). But as we have an infinite
sites model, position 0.2 cannot unmutate in either of its positions (i.e., the most
recent event cannot have been a mutation creating that mutant allele). Of the
three possible coalescences, two of them could not have been the most recent
event, as the genotypes of those pairs of sequences are different. In such a case,
Griffiths and Tavaré sample from among the one allowable coalescence and two
allowable mutations in proportion to their probabilities.

Griffiths and Tavaré go back in time, sampling possible events, until the
sample coalesces to one sequence. They then compute a functional, which is
simply the appropriate importance sampling weight. Their method can either
be thought of as sampling paths through the recursion, or sampling sequences
of past historical events. These are equivalent. The events define a genealogical
tree with mutations indicated on it, but no time scale is needed.

There is one more subtlety. We can’t actually know for any site that shows
variation in our sample which of its two states is the original state and which
the mutant. So Griffiths and Tavaré, in computing their importance sampling
weights, use the probabilities of unrooted trees rather than of rooted trees, in
effect summing up over all the ways that the ancestral state at the individual
sites could be interpreted.

I have given a rather cursory description of their method here – a more de-
tailed consideration of the way it fits into the framework of importance sampling
is given by Felsenstein et al. [15].

This independent sampling (IS) method is attractive because it not only
entirely avoids getting stuck in regions of tree space, but each sample is rapid.
However, because the importance sampling is imprecise, it often needs large
numbers of samples to be sure of sampling from the trees that contribute most
of the probability. It also approximates the mutation process by an infinite sites
model, which means that sites at which there are back mutations or parallel
mutations must be removed from the data to avoid getting a likelihood of zero.

The original sampler allowed for either constant or exponentially growing
populations. Bahlo and Griffiths [1] have extended the method to multiple pop-
ulations with migration, and Griffiths and Marjoram [20] have extended it to
sampling of ancestral recombination graphs.

The IS sampler can be extended to models of DNA sequences, but it then
proves extremely slow owing to the high probability that mutations going back-
wards in time will lead to widely divergent sequences. This problem was ad-
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dressed by Stephens and Donnelly [48], who have speeded up the IS sampler by
a large factor in the DNA case by biasing the sampling of mutations in differ-
ent sequences toward tracing back to a common ancestral sequence, and making
the appropriate importance sampling correction. De Iorio and Griffiths [5] have
derived an independent sampling method from consideration of the diffusion
approximation. They show that this leads directly to Stephens and Donnelly’s
method, which thus can be seen to be a particular case of a more general ap-
proach. They also [6] extend their method to subdivided populations with migra-
tion among them. This approach can presumably be used as a general method
for developing efficient independent sampling methods for other mixtures of evo-
lutionary forces.

Fearnhead and Donnelly [10] have made another such correction that greatly
speeds up independent sampling in the case of recombination, making it much
more practical. They have presented simulation evidence that their independent
sampler performs better than the correlated sampler described below.

1.3.8 Correlated sampling

A second approach by Kuhner et al. [34] comes from our lab. We sample our
way through tree space by sampling coalescent genealogies. In the simple case of
estimating Θ in a population of constant size, we used a trial value, the “driving
value” Θ0, and wanted to achieve an importance sampling distribution whose
density function was proportional to Prob (G |Θ0) Prob (D |G). If Θ is close to
Θ0, this would be nearly an optimal choice. Using equations (1.12) and (1.17),
if we are trying to compute the likelihood, it will be the average over sampled
trees of

Prob (G |Θ)Prob (D |G)

/(
Prob (G |Θ0)Prob (D |G)
∫
G

Prob (G |Θ0) Prob (D |G)

)
. (1.18)

The denominator of the denominator is simply the likelihood at Θ0, so after
some cancellation this is

Prob (G |Θ)

Prob (G |Θ0)/L(Θ0)
. (1.19)

If we sample n genealogies G1, G2, . . . Gn in our Markov chain Monte Carlo
run, and average this quantity, we find that L(Θ0) can be factored out so that

L(Θ)

L(Θ0)
=

1

n

n∑

i=1

Prob (Gi |Θ)

Prob (Gi |Θ0)
. (1.20)

Thus the likelihood ratio between Θ and Θ0 is estimated by the mean ratio
of the Kingman coalescent densities for each tree at these two parameter values.
The reader may wonder what happened to the data, which appears nowhere in
equation (1.20). Its influence is felt entirely through the sampler that chooses
the Gi.
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1.3.8.1 Tree proposals To implement this sampler, we need a proposal mecha-
nism and the usual Metropolis/Hastings acceptance-rejection method. Although
we initially used a much more limited tree rearrangement method, the proposal
mechanism we have found most useful (invented by Peter Beerli) is to choose a
node in the coalescent tree (excluding the root), and then dissolve the connection
between it and the node immediately ancestral to it. This lineage is then allowed
to reconnect to the tree by a conditional coalescent. A conditional coalescent is a
distribution whose density is proportional to the coalescent in all regions where
it is not zero. We sample from this by having the lineage go back in time, having
at any moment when there are k other lineages an instantaneous rate k/Θ0 of
coalescing with a random one of them. The lineage finally hooks itself back into
the tree. This can result either in a small change of the time of the coalescent
node or a major relocation of the lineage in the tree.

The Metropolis-Hastings sampler for this conditional coalescent proposal
mechanism turns out to be to accept the new genealogy with probability

min

[
1,

Prob (D |Gnew)

Prob (D |Gold)

]
. (1.21)

The terms for the Kingman coalescent are cancelled by the Hastings correction
for the biased proposal mechanism. This is convenient but not a large computa-
tional saving. The computations in 1.21 are still considerable, much more than
for sampling a single event history in the independent sampler.

The sampler does considerably better if Θ0 is close to the true Θ. In our
programs, we run an MCMC chain, infer a new value of Θ, and use that as Θ0

for the next chain. In a typical run, we do this 10 times, then use the resulting
Θ as the basis for one longer chain to get an even more accurate Θ. This in turn
is used for one final long chain to infer the likelihood ratio curve and the final
estimate of Θ.

1.3.8.2 Advantages and disadvantages The correlated sampler has some obvi-
ous disadvantages. It could become stuck in one region of the tree space, and
the calculations for each sample are much larger than for the independent sam-
pler. However, there are advantages as well. If Θ0 is close enough to Θ, the trees
sampled are close to being an optimum sample of the trees proportional to their
contribution to the likelihood. The independent sampler is less accurate, and
that can lead it to need much larger numbers of samples than the correlated
sampler. No clear conclusion has emerged about which method is superior.

1.3.8.3 Extensions of the correlated sampler Like the independent sampler, the
correlated sampler has been applied to more complex cases. Kuhner et al. [35]
have incorporated exponential population growth, Beerli and Felsenstein [2, 3]
have incorporated migration among a number of populations, and Kuhner et
al. [36] have incorporated recombination by having the sampler move in a space
of ancestral recombination graphs.
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One interesting discovery was made in the course of the work on exponential
growth. It had been overlooked in previous coalescent studies. It was found [35]
that the estimate of growth rate is strongly biased toward positive growth. If
we estimate both Θ and the scaled growth rate g/µ, the maximum likelihood
estimate of growth rate would usually be strongly positive even when true growth
rate was 0. This behavior is less alarming when it is considered that the interval
of allowable growth rates is wide in these cases, and quite frequently contains 0
as well. The reality of this bias can be demonstrated in the case of a sample size
of two sequences, when the integration can be done numerically without MCMC
sampling. The bias is little reduced by adding more samples, but is strongly
reduced by adding more loci. That allows us to rule out the possibility of a
strong positive growth rate by occasionally finding loci with deep coalescences.

1.3.9 Sampling from approximate distributions

The computational difficulty of the sampling methods has led to the develop-
ment of approximate methods that try to retain much of the statistical power
of the exact samplers, while avoiding all or most of the sampling effort. This
has been particularly tempting in the case of recombining coalescents, where the
size and complexity of the ancestral recombination graph is daunting. Li and
Stephens [37] have introduced the PAC (product of approximate conditionals)
likelihood method for inferring the recombination from a sample of haplotypes.
This approximates the coalescent distribution for the sample as the product of
conditional distributions, each itself an approximation. The resulting calcula-
tion is far faster than any of the sampling approaches. It has become widely
used. Hudson [25] and McVean et al. [39] have both used a different approximate
method, one which approximates the distribution of haplotypes as the product
of two-locus distributions. Fearnhead and Donnelly [11] give another approxi-
mate method based on using sampling methods on subregions and deriving an
approximate likelihood from the results. Li and Stephens present simulations
comparing these methods, finding that their method does best.

Those methods make an approximate computation of the likelihood of the
full data. An alternative approach is to reduce the data to some appropriate
summary statistics, and compute the likelihood for those reduced data. This
was pioneered by Weiss and von Haeseler [53]. A more extensive consideration
of methods for approximate inference that do not involve computing the full
likelihood of the full data is given by Marjoram et al. [38]. While these methods
enable much more rapid computation, the issue that must always be kept in
mind is whether the summary statistics retain enough information.

1.3.10 Ascertainment and SNPs

The growth in the use of SNP (single nucleotide polymorphism) data has raised
another issue, ascertainment bias. If sites are screened and only those found to
be varying in some panel of genomes are included, we will find these sites to
be much more variable in our sample than randomly sampled sites would be.
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If we included these sites without making any correction for the screening, the
result would be an unrealistically high estimate of the mutation rate µ. That in
turn would lead us to misestimate the rates of other parameters – for example,
discrepancies in the picture of the tree from different sites that might actually
be a sign of recombination would instead be too readily attributed to recurrent
mutation.

Several papers have derived the corrections needed for the ascertainment
of SNPs [42, 32, 6]. Both treat various possible ways in which a SNP screening
panel could be chosen. However, neither is able to treat the horrible reality. In
some cases, ethical or legal concerns prevent the release of enough information
about the panels to enable any sensible ascertainment correction to be made.
The data are thus safe from being abused, and also safe from being used. Until
recently, large-scale genomics projects acted as if they were blissfully unaware
that analysis of their data required knowledge of how the screening was done.
They either did not release the required information or, in some cases, they
simply did not know it, or know that they had to know it. For some purposes
(such as using the SNPs for linkage studies in pedigrees) this may not matter,
but for all population analyses it matters a great deal. It is gradually beginning
to be realized that an inability to correct the data for the way in which sites
were chosen rules out many important uses of the data, making them largely a
waste of money.

1.3.11 Bayesian samplers

I have so far discussed only likelihood inference. The spread in the popular-
ity of Bayesian inference has led it to be applied to coalescent-based infer-
ences [54, 55, 7]. In Bayesian sampling one updates both the genealogy and the
values of the parameters, sampling from these in proportion to their contribution
to the posterior distribution of the parameter values. This can involve simulta-
neous updates of parameters and trees, or it can involve alternating updates of
parameters and trees. The technology of sampling is very similar to the correlated
sampler, but the use of the resulting sample is very different. In the likelihood-
based methods, one uses the samples of the trees to compute a likelihood curve.
In Bayesian methods one uses the sample of parameter values as a sample from
the desired posterior, while ignoring the trees.

Bayesian samplers are attractive in their simplicity. They also have a tendency
to avoid problems with driving values, as they sample broadly from the possible
values of the parameters. When the objective is not Bayesian, these samplers can
still be usefully employed and the posterior distribution of parameters ignored.
One issue with posterior densities of parameters is that we need some means
of interpolating density between the sampled parameter values. This leads to
convolution of the extremely spiky posterior distribution with broader kernels
that smooth out the density. All these are to some extent arbitrary.

As with likelihood methods, approximate calculations and use of summary
statistics rather than the full data enable much faster computation. The Approxi-
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mate Bayesian Computation (ABC) method of Tavaré and his coworkers [44,38]
takes advantage of this with, as is inevitable, the concomitant worries about
whether one has chosen the best summary statistics.

1.3.12 Future extensions

I have barely skimmed the surface of the very active literature on coalescent-
based inference. Coalescent methods are continually expanding. They will ulti-
mately deal with all issues in evolutionary genetics. Some of the major extensions
of the methods under way are:

Sequential sampling Coalescent methods have assumed that all samples are
contemporary. If we can sample DNA from the past, some samples are at
different levels in time in the tree. These need to be scaled using the mu-
tation rate per generation (µ) and the generation time (T ) to put them on
the scale of branch length. In the simplest case [46], of the three quantities
N , T , and µ, we can estimate two of them. This is an improvement over the
case of contemporary tips, where we can only estimate one of these quan-
tities, the product of N and µ. Sequential sampling is important in studies
of ancient DNA, and is even more widely used in studies of rapidly evolv-
ing viruses such as HIV, where samples from the same patient over time
must be considered to be at different levels of a tree. Sequential sampling
methods are starting to be available in widely-distributed programs [7].
For a more extensive treatment of sequential sampling coalescent methods
see the chapter by Rodrigo, Ewing and Drummond in this book.

Uncertainty about haplotypes Data frequently come as diploid genotypes.
The usual way of handling these has been to try to resolve haplotypes,
then treat those reconstructed haplotypes as if they were observations. A
more realistic treatment would be to sum the likelihoods for all possible
haplotype resolutions, so that we incorporate our uncertainty about the
haplotype resolution into our statistical analysis. This has been proposed
by Kuhner and Felsenstein [33]. It requires extra rounds of MCMC sam-
pling, as we sample from among all possible haplotype resolutions. The
method is not available in most distributed programs – when it is, it may
replace most haplotype resolution calculations.

Multiple species It has been known since the work of Tajima [49] and Taka-
hata and Nei [51] how to extend the coalescent to multiple related species.
Each lineage in a tree of species will have a coalescent inside it, and such
coalescents at different loci are independent of each other. If we arrive at
a common ancestor, any gene copy lineages in each species that are not
yet coalesced (going backwards in time) now join a common pool and are
available to coalesce with each other. (It is best not to think of these mat-
ters forward in time, and thus not to use the confusing concept of “lineage
sorting”). Likelihood and Bayesian treatments of inferences about species
trees from single and multiple loci have begun to appear [41,43] and to be
made available in computer programs [7, 55]
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Linkage disequilibrium mapping . It is customary in genomics for researchers
to debate which measure of linkage disequilibrium to use to characterize
the joint distribution of variation at linked sites. The correct answer is
“none of them”. As we have seen, trees and D’s are intimately related, and
multiple-locus linkage disequilibrium describes the same phenomena as do
trees of recombining haplotypes. While the two equivalent descriptions can
be interconverted, it is the coalescent description that is easier to work
with. For a fully powerful analysis of multiple linked sites, the correct way
to compute the location score is to compute the likelihood for each possible
location of the disease locus. A Bayesian approach might propose different
locations for the disease locus, but it would accept or reject these based
on these likelihoods. In either case one needs a full coalescent calculation.
This point has been realized by all major researchers on recombining co-
alescents, but it has taken some time for linkage disequilibrium mapping
methods based on coalescents to become available. That situation is about
to change, and the discussion of methods in genomics will change with it.

Selection Inferring locations in the genome where there may have been selec-
tive sweeps or where there may be balanced polymorphisms is possible
by likelihood or Bayesian methods. To do so, natural selection needs to
be incorporated into the coalescent framework. This is perhaps the most
interesting frontier of coalescent methods; it is under active exploration
by a number of groups. As coalescent methods for detecting selection be-
come widely available, they should replace the present summary-statistics
methods.

Inferring the history As we sample past coalescent histories of our data, we
can see historical events such as the times of particular coalescences. We
could also imagine reconstructing when particular mutations occurred [22].
Knowing exactly what happened in the past has great appeal, and is al-
ways of interest to the popular science media. Taking a reasonable sample
will usually show these inferences to be very noisy. In addition, they are
not inferences of the parameters of the underlying models. As such, they
are not maximum likelihood estimates, but rather maxmimum posterior
probability estimates (in a Bayesian framework they have posterior prob-
abilities just as do the parameters). The question arises: is reconstructing
the exact history a trivial pursuit? The quantities which are needed in
further analyses are usually the underlying parameter values rather than
the exact times of particular events. However, the ages of mutations or the
depths of particular coalescences can serve as indications of whether an
allele is not neutral, or a population size not constant. The jury is not yet
in on how interested we should be in these reconstructions of history.

1.4 Programs

There are now many coalescent programs available. As of the summer of 2006,
some of the main ones I am aware of are:
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LAMARC Likelihood-based inference including inference of migration, popu-
lation growth, and recombination.
http://evolution.gs.washington.edu/lamarc.html

GENETREE Maximum likelihood estimation of mutation, migration and pop-
ulation growth parameters and inference of times of coalescence and of
mutation.
http://www.stats.ox.ac.uk/∼griff/software.html

BEAST Bayesian estimation of population sizes and growth rates, allowing for
sequential sampling. Allows a “relaxed” molecular clock.
http://evolve.zoo.ox.ac.uk/beast/

BATWING (Bayesian Analysis of Trees With Internal Node Generation) Bayesian
inference of mutation and population growth, with single or subdivided
populations.
http://www.mas.ncl.ac.uk/∼nijw/

msvar Bayesian inference of mutation rate and growth rate from microsatellite
data for multiple loci in one population.
http://www.rubic.rdg.ac.uk/∼mab/software.html

MDIV Likelihood inference of divergence time and migration rates for two pop-
ulations.
http://www.binf.ku.dk/∼rasmus/webpage/mdiv.html

MICSAT Likelihood inference for single-step microsatellite models.
http://www.mas.ncl.ac.uk/∼nijw/#micsat

MISAT Likelihood inference of mutation rates for single- and multi-step models
of microsatellite evolution in a single population.
http://www.binf.ku.dk/∼rasmus/webpage/misat.html

IM (Isolation with Migration) Likelihood inference of divergence times and ef-
fective population sizes in a model with two diverged populations with
subsequent migration between them.
http://lifesci.rutgers.edu/∼heylab/HeylabSoftware.htm#IM

MCMCcoal Bayesian estimation of population sizes in a known tree of species.
http://abacus.gene.ucl.ac.uk/software/MCMCcoal.html

LDHAT Composite likelihood method for estimating recombination rates.
http://www.stats.ox.ac.uk/∼mcvean/LDhat/

Hotspotter Product of Approximate Conditionals likelihood inference of re-
combination rates.
http://www.biostat.umn.edu/∼nali/SoftwareListing.html

Recs Coalescent inference of recombination hotspots.
http://www.maths.lancs.ac.uk/∼fearnhea/software/Rec.html

sequenceLD Approximate likelihood inference of recombination rate.
http://www.maths.lancs.ac.uk/∼fearnhea/software/Rec.html

sequenceLDhot Approximate likelihood inference of recombination hotspots.
http://www.maths.lancs.ac.uk/∼fearnhea/
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popgen R package that includes neutral coalescent simulation of samples with
recombination.
http://www.stats.ox.ac.uk/mathgen/software.html

CodonRecSim Simulation of sequence evolution under a codon model in a
coalescent with recombination.
http://www.binf.ku.dk/∼rasmus/webpage/CodonRecSim.html

SelSim Simulates samples under natural selection.
http://www.stats.ox.ac.uk/mathgen/software.html

hap and dip Simulate samples at a locus with natural selection.
http://www.maths.lancs.ac.uk/∼fearnhea/software/PS.html

ms Simulates samples under a neutral coalescent with recombination and mu-
tation.
http://home.uchicago.edu/∼rhudson1/source/mksamples.html

SIMCOAL Simulates sequence evolution in a coalescent with migration.
http://cmpg.unibe.ch/software/simcoal/

Treevolve Simulates sequences evolving on a recombining coalescent with neu-
tral mutation, population growth and migration.
http://evolve.zoo.ox.ac.uk/software.html?id=treevolve

Mesquite Can simulate coalescents within species trees.
http://mesquiteproject.org/Mesquite Folder/docs/mesquite/popGen/

PopGen.html#simulating

I have not tried to describe which operating systems each program requires. The
programs in this list are all free. I have omitted here a number of programs that
infer haplotypes rather than model parameters. By the time you read this, there
will probably be many more programs. Unfortunately, as yet there is no central
list of coalescent programs being maintained on the web.

1.5 The wave of the future

I have introduced the coalescent and some of the major approaches to infer-
ence that use it. I could not describe the full range of active work now going
on, particularly with models of natural selection, models of recombination hot
spots, and reconstruction of haplotypes from diploid data. We have passed the
time when a single article could cover coalescent approaches. At least one major
book on the coalescent has recently appeared [23]. It concentrates more on the
population genetic phenomena than on inference methods.

To many researchers on evolutionary genetics and population genomics coa-
lescent inference methods may appear to be one of the major approaches, but
only one. This perception will change, I hope rapidly. Coalescent inference meth-
ods are destined to replace most (perhaps all) other inference methods in these
fields. They are currently limited by their computational burden, and by the
difficulty of developing software to treat all cases. As those limitations are over-
come, we will look back on the past decade as the period in which the major
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methods of analysis of population-level data developed, a period in which molec-
ular evolution and population genetics began their ultimate merger. Students
who now see coalescents as one interesting topic among many will ultimately
understand that coalescents are the fundamental tool for analyzing evolutionary
data near the species level.
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