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Summary

It is known that under neutral mutation at a known mutation rate a sample
of nucleotide sequences, within which there is assumed to be no recombination,
allows estimation of the effective size of an isolated population. This paper
investigates the case of very long sequences, where each pair of sequences allows
a precise estimate of the divergence time of those two gene copies. The average
divergence time of all pairs of copies estimates twice the effective population
number, and an estimate can also be derived from the number of segregating
sites. One can alternatively estimate the genealogy of the copies. This paper
shows how a maximum likelihood estimate of the effective population number
can be derived from such a genealogical tree. The pairwise and the segregating
sites estimates are shown to be much less efficient than this maximum likelihood
estimate, and this is verified by computer simulation. The result implies that
there is much to gain by explicitly taking the tree structure of these genealogies

into account.

1. Introduction
The famous paper of Cann, Stoneking, & Wilson (1987) has focused attention
on the potential of sequence samples from populations to illuminate population

parameters such as effective population sizes and migration rates.



We can observe the numbers of substitutions by which sequences differ. Un-
der the neutral mutation model these differences are expected to accumulate at
a rate of p per site per generation. We can estimate how long ago, in terms
of mutational events, the sequences diverged. Under genetic drift, the actual
divergence times of the sequences are related to the effective population size
N.. If p is known, we can convert the mutational scale into a time scale and
estimate N.. If u is not known, the best we can do is to estimate N.u. In this
paper I will discuss the problem in terms of the estimation of 4 N.u. This is
equivalent to estimation of N, if y is known.

Nei and Tajima (1981) have suggested the use of the average number of
differences per site between two sequences, which they call the nucleotide di-
versity, for estimation of 4N u. Tajima (1983) and Nei (1987) give a formula
for the variance of the estimate. A slightly different approach is used by Avise,
Ball, and Arnold (1988; see also Avise 1989 and Ball, Neigel, and Avise 1990).
They take pairs of sequences and make an estimate of divergence time from
each. They avoid using all pairs of sequences in order to make the individual
estimates more independent. In an isolated randomly mating population, we
expect the divergence time for a randomly chosen pair of gene copies to be
exponentially distributed with mean 2N,. They fit the observed distribution
of pairwise estimates to an exponential distribution in order to estimate this
quantity.

Watterson (1975) has presented results on the number of segregating sites at
a locus under the neutral “infinite sites” model, which can also be used as the
basis for an estimate the N, or 4N u. It is important to realize when reading
the literature on infinite sites models that the p which is described there is the
mutation rate per locus; throughout this paper it will be the mutation rate per
site.

Neither of these estimates makes the most efficient use of such data. In this

paper I will discuss maximum likelihood estimation, which I will show is con-



siderably more efficient. Its efficiency is demonstrated both theoretically and
by computer simulation. The present paper discusses only the extreme case
of an infinitely long nucleotide sequence; the more practical matter of deal-
ing efficiently with sequences of finite length requires computationally intensive
techniques that will be covered elsewhere. For the moment the objective is

simply to show the weakness of the pairwise and segregating sites approaches.

2. A maximum likelihood method

In hopes that it will make efficient use of the data, let us make a maximum
likelihood estimate of 4N p in the case of long sequences. We assume that the
sequences allow us to estimate their genealogy without error, and that there is a
single such genealogy, i.e., no recombination has occurred within the sequences
during the relevant period of time. The genealogy is assumed to be produced by
Kingman’s “coalescent” process: we assume that to be a good enough approxi-
mation to the genealogy produced by random genetic drift in a finite population.
This will be true if N, is not small.

The results of Kingman (1982a, b) on the coalescent and those of Harding
(1971) on random trees establish that under the coalescent the prior distribution
on the genealogy assigns equal probability to all possible bifurcating trees with
interior nodes ordered in time. The n tips are assumed to be contemporaneous.
Each interior node has a time, and if two trees differ in the order of these times
they are considered to be different. Kingman’s coalescent also places a prior on
the times. Starting from the n tips, which occur at time 0 (the present) the
time back to the most recent coalescent event is exponentially distributed with
expectation 4N, /[n(n — 1)]. This is an approximation, which is excellent for
large N, when n < N, as is usually the case.

Tavaré (1984) has reviewed the logic of this approximation. Strictly speak-
ing, it requires that as we take larger and larger values of N, we observe the
process on a time scale whose units are N, generations. If we scale time in ex-

pected mutations per site (as we would if we did not know 1), the mean of the



scaled time u,, would be 4N, p/[n(n —1)]. We will in effect invoke the diffusion
approximation, by assuming that N, — co and g — 0 in such a way that their
product remains constant. Thus 4N, will equal some constant 6, and we are
approximating the genealogy of the actual population which has finite values of
N, and p by Kingman’s coalescent process.

Prior to the most recent coalescence, uhere were n — 1 tips, and the interval
of scaled time wu,,_1 back to the previous coalescent event is independently expo-
nentially distributed with mean 4N.p/[(n — 1)(n — 2)]. In general, if § = 4N, u

then, scaling time in expected mutations per site,
ug, ~ Exponential (0/[k(k —1)]) (1)

with k =n,n—1,...2.

The topology of the genealogical tree has no information about 6. We have
already seen that all topologies with time-ordered nodes are equiprobable, so
that their distribution does not depend on #. All information about 6 is con-
tained in the scaled coalescence times and the intervals u; between them.

Assume that we have collected a sample of n long sequences from a random-
mating population whose sequences are diverging under neutral mutation. The
sequences are sufficiently long that we can infer precisely the genealogical tree
connecting those sequences, and from it the scaled time intervals ug. Thus we
will consider the u; to have been observed.

The k-th of these has the exponential density function
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so that the full set of ug’s has a joint density function, the likelihood
n
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Taking logarithms, the log-likelihood is
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To find the maximum likelihood estimate for 8 we differentiate with respect
to it. The first two terms, which are logarithms of factorials, do not contain 6

and disappear, so that
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Equating this to zero and solving for 8, we get as the maximum likelihood

estimate

n
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This is a simple average of the k(k — 1)u, whose variance is easily obtained.

Since the variance of the exponential variate uy is the square of its mean,

Var(d) = 7@}1)2 kijz k2 (k — 1)2Var(ug)
= ke 2 Rk — 1)2(0/k(k — D)2, (7)
k=2
n—1

so that the squared coefficient of variation of 6 is simply

Var(0) 1

02 n_1 (8)

Although the estimate in equation (6) is the maximum likelihood estimate,

it could also be derived by many other methods. It is the minimum variance



unbiased estimate, the method of moments estimate, and the weighted least
squares estimate as well.

Note that the quantities k(k — 1)uy are independent and all exponentially
distributed with the same expectation 6. This suggests that it would be straight-
forward, given the uy, to construct various goodness-of-fit tests that could detect
whether there is a trend in the ug, a trend that would indicate that the effective

population sizes had changed through time.

3. The pairwise method

An attractive alternative to maximum likelihood would be to use pairs of
sequences to estimate divergence time, and to average these estimates over all
pairs of tips. Any two randomly chosen sequences have a time of divergence
which is exponentially distributed with mean 2N., so that if the divergence
time is stated in mutations per site it has mean 2N,.pu which is /2. If we have
long sequences, as we assume here, we can estimate 6 by taking the mean of all
these pairwise divergence times and then estimating € by doubling that. Since
the estimate is a mean of random variables, each of which has expectation 6,
it obviously makes an unbiased estimate of 6. This method is analogous to the
mean codon difference method of Nei and Tajima (1981) but is not identical to
it: theirs is a pairwise method using mean codon difference, whereas the present
method makes pairwise estimates of divergence time and then averages them.
Pairwise methods are attractive because they do not involve estimating the tree
topology and have an aura of robustness.

The aura is, I hope to show, misleading. To show this, we must compute
the variance of the estimate. Each pair of sequences has a most recent common
ancestor who occurred at the time of one of the coalescences. If tj is the time
(scaled in mutations per site) from the present back until the coalescent event

that reduced k lineages to k — 1, then by our earlier definition of the wy,



n
te = Up + Up_1 +un_2+...+uk.:2ui (9)
i=k
Figure 1 shows the relationship between the ¢; and the ug. Suppose that we

define my to be the number of pairs of sequences that have as their most recent
common ancestor the coalescence that occurs when k lineages are reduced to
k — 1. Since every one of the n(n — 1)/2 pairs of sequences has one or another

coalescence as their most recent common ancestor, it must be true that

Zmi =n(n—1)/2, (10)

and we can express the pairwise estimate of # in terms of the my as

noo_ 1=2
e (11)

The t; are random variables, but are not independent. We can use (9) to

express them in terms of the u;, which are independent, obtaining

13 mi 3y ug
Ao =2 =i
bp = n(n —1) (12)

which on rearranging summations and changing their limits becomes

4> ui ), my
5 =2 j=2
0 =V ].
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This is a weighted sum of the u; but not necessarily a weighted average. Let

j=2

Substituting this into (13),

4 i u; C;
Fo_ i=2
bp n(n—1) (15)



For each tree topology with ordered internal nodes, we can calculate the
m;, and from those using (14) the C;. For that tree topology, we can use (15)
to compute the expectation and variance of ép, using the fact that the wu; are
independently exponentially distributed according to (1). The expectation and

variance given the C; are

Eldp| C] = n(n4— . 1;2 k(ke 0 (16)
and
~ n 2
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The expectation (16) will not be the same from one ordered tree topology
to another. The mean of these means will be @, but each ordered tree topology
will have a slightly different mean. For each ordered tree topology the estimate
is biased, but the mean bias is zero.

To complete the calculation from this formula of the variance of the pairwise
estimate of 8, we would need to sum over all ordered tree topologies, obtaining
the C; for each, using formulas (16) and (17), and adding the mean of (17) to
the variance of the means (16). Alternatively we would need a theory of the C;
so that the summation over ordered tree topologies would not be necessary.

However, development of such a theory is not necessary, as Tajima (1983)
has developed expressions for the mean and variance of the mean number of
nucleotide differences between pairs of sequences in a sample from a single pop-
ulation without recombination. We use the modification of Tajima’s expressions
in equations (10.9) and (10.10) of Nei (1987) which takes the number of sites
sampled into account. As the number of sites (Nei’s mr) becomes infinite we

have, in our notation,

2(n? +n + 3)6?

Var(0p) = In(n —1)



So that from (7) we can compute as the efficiency of the pairwise method

Var(f) B 9n

Variances of the maximum likelihood and pairwise estimators and the ef-

ficiency of the pairwise estimator, computed from (7), (18), and (19) are pre-
sented in Table 1. These are also shown as solid curves in Figures 2 and 3. It
will immediately be apparent that the efficiency of the pairwise method rapidly
becomes small, falling below 0.22 at 20 sequences, 0.11 at 40 sequences, and
0.045 at 100 sequences. The variances are computed for § = 4 but as they are
proportional to 2 they can be directly computed from this table for any value
of 6 by appropriately multiplying these values.

Note that the variance of the pairwise estimate does not fall to zero, ap-
proaching instead 202?/9 as n — co. The reason for this behavior is that the
pairwise estimate takes most of its information from the times of the earli-
est few coalescences. It can be shown that of all pairs of species, a fraction
(n+1)/(3n — 3) of them are expected to be separated by the bottom fork of
the genealogical tree. This fraction is always greater than 1/3. This means that
over 1/3 of all the information in the pairwise estimate comes from the time of
this one fork!

That this is so is the consequence of a remarkable fact. If we consider the
two lineages that result from this earliest fork, and wait until a total of n lin-
eages exist, the distribution of the number of descendants of the left lineage is
uniform on 1,2,...,n — 1. This follows imediately from Theorem 1 of Harding
(1971). It can also be obtained by realising that the process of splitting of the
left and right lineages is modelled by Polya’s Urn Model. Let us represent the
two original lineages by balls of different colors. Splitting a random lineage cor-
responds to choosing a random ball, and adding to the urn another of that color.
Expression (2.3) in Feller (1968) then establishes that when we reach n balls the

fraction that are of a given color is uniformly distributed. From this uniform



distribution the expected fraction of pairs of balls that are of different colors is
easily calculated as being (n + 1)/(3n — 3). Maddison and Slatkin (1991) and
Slowinski and Guyer (1989) have also used this result in their work on random
trees. A reviewer has pointed out to me that it also can be obtained directly
from formula (2.3) of Saunders, Tavaré, and Watterson (1984) by considering
the case i = n,j7 = 2, and [; = [ = 2. Their formula is then calculating the
probability that among a population of N organisms reproducing according to
the asexual or haploid version of Moran (1958), when sample of size n has been
traced back to two ancestors, a subsample of a pair of organisms will still have
two distinct parents. This result is interesting as in this case the formula holds
even when the population size is finite.

In contrast to the pairwise estimate, the maximum likelihood estimate uses
information from all coalescence events. As m increases, it has more and more
coalescences to work from and hence the estimate becomes more and more
accurate.

Ball, Neigel, and Avise (1990) have presented simulation results for their
technique of averaging divergence times for a subset of all pairs of sequences,
chosen so that each sequence is only used once. Their results for an average
divergence time of 50 pairs of sequences drawn from a simulated population
of 100 sequences shows the expected lack of bias of the estimator, as well as
substantial departures from independence of the 50 quantities, as expected from

the argument given here.

4. Watterson’s method

Watterson (1975) obtained the distributions of the number of segregating
sites for a sample of n sequences from a random-mating population under an
infinite-sites model of mutation. The infinite-sites model is the limit of the
present model as the mutation rate becomes small, and the number of sites
large. Although Watterson does not discuss the estimation of 6 directly, Nei
(1987, p. 255) pointed out that an estimate can be based on the expectation

10



Watterson computed for the number of segregating sites in the sample, that is,
the number of sites at which there is more than one base present. Watterson’s
derivation uses the assumption that there are finitely-many sites, but assumes
that the mutation rate per site i is allowed to get small and the population size
large at the same rate, so that their product Nu remains constant. Watterson
shows that if K, is the number of sites showing genetic variation among a sample
of n randomly chosen copies, that the expectation and variance of K,, are to

good approximation if n < V:

n—1
1
E(K,) =0 ; - (20)
and )
n— 1

We will in addition assume that there are a very large number of sites in the
gene, so that although finite, 6 is large. In this case, the term E(K,,) makes an
unimportant contribution to the right-hand-side of (21). An unbiased estimator

of 6 is (Nei, 1987, p.255), from (20),

GK/Z (22)

and from (21) we can work out the variance of this estimate and compute its

S| =

coefficient of variation to be

Var(é) _ Z?:_ll 1/i? (23)

(i)

The estimate is unbiased, and as n — oo its coefficient of variation decreases to

zero, so that it makes a consistent estimate.

If the number of sites is not so large, then (23) is increased by the amount
1/63%,(1/i), so that (23) is in effect a lower bound on the coefficient of variation
of Watterson’s estimate. We are interested in the cases where the sequences are
very long and hence the number of segregating sites is large. Thus we are

investigating Watterson’s method in the cases most favorable to it.
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The efficiency of Watterson’s estimate must be, taking the ratio of (8) and
(23), no more than
(i i)’
(n—1) 70 1/i2

The variance (from equation 21) and the efficiency (from 24) of Watterson’s

(24)

estimate are shown in the rightmost two columns of Table 1. Actually the
variance shown is the lower bound, using only the second term of the right-hand
side of (21). This is asymptotically valid, as mentioned above, for large values
of 6. The value shown is the bound for § = 4: as with the other variances in the
table, the value will be proportional to #2 and this can be used to compute this
lower bound for all values of #, and hence compute the variance approximately
for all large values of 6.

The variance does decrease to zero with increasing n, but not as quickly
as does the maximum likelihood estimator. Efficiency drops with larger n, and
although not as low as that for the pairwise estimator, it is 0.42 for 20 sequences,

0.29 for 40, and 0.17 for 100 sequences.

5. Simulation results

One might well wonder whether the formula (18) can be applied to the pair-
wise estimation method as defined here. Tajima (1983) and Nei (1987) derived it
as the variance of the average pairwise codon difference between sequences. This
is not the same as the average scaled divergence time separating the sequences,
which is the quantity of interest here. However for an infinitely long sequence,
the Tajima-Nei variance formula is proportional to #2. When sequences are in-
finitely long and 6 is small the divergence time will be proportional to the codon
difference between sequences. Equation (18) will be correct in that limit. For a
set of sequences the joint distribution of estimated divergence times will be the
same as it is when 6 is small, but scaled proportional to 6. Equation (18) should
then continue to apply to the mean of the scaled divergence time estimates.

This argument is sufficiently indirect that it is helpful to check it by computer

12



simulation. A large computer simulation has been used both to compute the
expected power of the pairwise method, and to check that the variances are
correct. Two programs were written in MIPS Pascal on a Digital DECstation
3100 and a DECstation 5000. The first program is given the number of sequences
to be sampled, and the number of replicates, as well as a random number seed.
It simulates the coalescent, starting with a number of lineages equal to the
desired number of sequences, drawing pairs of lineages and the sampling the
times of their immediate common ancestor from the distribution (1). This
technique of simulating the coalescent by working backwards was pioneered by
Hudson (1983). The true genealogical tree is recorded, including the ordered
tree topology as well as the actual times of the interior nodes.

From the time-ordered tree topology we can compute the quantities m; which
are used in (14), (16), and (17). This gives us the expectation and variance of
the estimate of 6 for that ordered tree topology. The overall expectation of the
estimate of 6 will be the average of (16) over all tree topologies. The variance
of the estimate will be the average of the within-topology variances (17), plus
the variance of the expectations (16), averaging over all ordered tree topologies.
Lacking a theory of the statistical behavior of the C; we cannot compute the
expectation and variance of the estimate of 8 in the pairwise method.

The approach taken here has been to compute these approximately by sam-
pling a large number of ordered tree topologies. The second computer program
takes each one and computes (16) and (17). These then can be used to com-
pute the approximate expectation and variance of the estimate of 6 under the
pairwise method. Table 2 shows the results. Its penultimate column shows the
variance of the pairwise estimate in the same case, as determined by this combi-
nation of simulation and theory. The computed expectations of the estimate of
0 are not shown; they were always quite close to € and support the conclusion
that the pairwise method, like the maximum likelihood method, is unbiased.

The variances of the pairwise estimate computed from the simulation are quite
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close to the values obtained from the Tajima-Nei formula.

The computer programs that simulate the coalescent record not only the
ordered tree topology, but the true ages of the interior nodes as well. This
makes it possible in each case, using (6), (11), and (22), to compute what the
maximum likelihood, the pairwise, and the segregating sites estimates of § would
be for that tree, given that long enough sequences were available to estimate
the genealogical tree exactly. So for each simulated tree we get three estimates
of . The means of these estimates were in accord with the unbiasedness of the
estimates and are not shown here. The first six columns of Table 2 show the
empirical variances of the three estimates, and the ratios of variances, which
are estimates of the efficiency of the pairwise and the segregating sites methods,
computed directly from the simulations without using equations (8), (16), (17),
or (24). Figures 2 and 3 show the variances and efficiencies from both tables.
The lines connect the theoretical variances and efficiencies from Table 1, and the
points are the empirical variances and efficiencies from the simulation results
in Table 2. Again, the results show excellent agreement of the theory with the

simulations.

6. Relation to infinite-sites models

The present approach may at first seem unrelated to the papers by Strobeck
(1983), Ethier and Griffiths (1987), and Griffiths (1989) which calculate prob-
abilities of different kinds of samples that might be taken from a population
undergoing an infinite-sites model of mutation, in the absence of recombination.
Strobeck (1983) used a diffusion approximation to derive recurrence relations
among the probabilities of the different possible kinds of observed samples for
two or three sequences. Ethier and Griffiths (1987) gave a general recursion for-
mula for these probabilities for any number of sequnces. Strobeck (1983) shows
how to use these formulas to make maximum likelihood estimates of §. Griffiths

(1989) describes a computer program that can calculate these probabilities. The
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probability of the observed sample is of course the likelihood, and by varying 6
one can compute the likelihood curve and the maximum likelihood estimate.

The effect of having infinitely long sequences, as assumed here, is most easily
seen by considering Strobeck’s equations, for the case where two sequences are
observed. As we use p for the mutation rate at a single site, suppose that U
is the mutation rate for the whole locus, and that Q2 = 4N,U. This is the
quantity that these authors call § in their equations. Strobeck’s equation (2)
for the case of two different sequences shows, for n = 2 and m; = my = 1, that
the distribution of the number of mutations by which two sequences differ is
geometric, with mean . The variance of this distribution will be Q% 4+ Q. The
maximum likelihood estimate of {2 turns out to be simply the observed number
of mutations by which the sequences differ, so that the mean and variance of
the estimate are also © and Q2 + Q. The squared coefficient of variation is the
1+1/9.

This exceeds the value calculated in this paper by 1/Q. The extra variation
is due to the inaccuracy of estimating the tree (which in this case is simply the
divergence time of the two sequences). As the number of sites is taken larger
and larger for a given value of 6,  — oo so that 1+ 1/Q — 1. Thus the extra
variability of the estimate due to the finiteness of () disappears, and we are
left only with the variability due to the randomness of the true genealogy, the
randomness accounted for in this paper. I expect that the same behavior will
occur when more sequences are considered, and that this could be verified by a
detailed consideration of the equations in Strobeck (1983) and Griffiths (1989).

If so, there would be no conflict between their results and mine.

7. Limitations

The proofs above rely on a number of assumptions that are questionable:
(i) No recombination. It is assumed that the sequences have a genealogy
which is a branching tree, and this can only happen when there is no recombi-

nation in the region in any of the lineages leading back to the common ancestor
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sequence. Recombination would result in a single sequence (the recombinant)
having contributions from two or more ancestors. With a single recombination,
the front and rear ends of the sequences would have different, but similar, ge-
nealogical trees. Treating such cases is a major challenge for the future. For
mitochondrial DNA sequences, strict maternal inheritance guarantees that this
problem does not arise.

(i) Infinitely long sequences. The analysis here was enormously facilitated
by the assumption that we have infinitely long sequences so that they allow
us to estimate the details of the genealogy without error. The statistical error
in this study is thus only the error that comes from having a finite number of
sequences. If instead we had sequences of finite length, as we always would,
the maximum likelihood method becomes much more difficult computationally.
I hope to present in a separate paper a computationally intensive procedure
that can make a maximum likelihood estimate of effective population size from
samples of finite-length sequences. In that case there is additional statistical
error from the imprecision of estimation of both the topology of the genealogy
and the divergence times. It would inflate the error of all of the estimates. It is
not obvious which one would be affected most, but it is at least possible that,
as both the numerator and the denominator of the efficiencies are affected, that
the efficiency of pairwise and segregating sites methods would not be as low
when the sequence lengths were small. However when sequences are long, the
variances and efficiencies must approach the values given here.

(i4i) Lack of geographical subdivision. It has been assumed that there is
only one population, mating at random. If there are a number of local pop-
ulations exchanging migrants, the notion of effective population size becomes
complicated: we have both local effective sizes (Sewall Wright’s (1940) concept
of “neighborhood size”) and an effective number for the whole species which can
be considerably larger. Both contribute to the rate of coalescence of lineages.

When two lineages are in the same local population, it will be possible for them
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to coalesce in the previous generation, while when they are in different local
populations they cannot. Slatkin (1987), Takahata (1988) and Takahata and
Slatkin (1990) have investigated this for two populations exchanging migrants.
The distribution of the time to coalescence of two lineages collected from the
same local population is no longer exponential and is not easy to obtain. Slatkin
and Maddison (1989) have proposed an estimate of migration rate between the
populations for the case of infinitely long sequences. For the case where the
sequences are not very divergent their estimate is probably close to being a
maximum likelihood estimate.

It should be obvious that much remains to be done; it may be doubted

whether the methods of analysis will ever catch up with the collection of data.
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Table 1. Theoretical variance of the maximum likelihood estimate of 8, when
0 = 4, of the pairwise method, using equations (7) and (18), and of Watterson’s
method, from equation (23). The efficiencies of the pairwise method, from

equation (19) and of Watterson’s method, from equation (24), are also shown.
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100
150
200
300
400
500

Var(ML)

16.0000
8.0000
5.3333
4.0000
3.2000
2.6667
2.2857
2.0000
1.7778
1.1429
0.8421
0.6667
0.5517
0.4706
0.4103
0.3636
0.3265
0.2712
0.2319
0.2025
0.1798
0.1616
0.1074
0.0804
0.0535
0.0401
0.0321

Var(P)

16.0000
8.8889
6.8148
5.8667
5.3333
4.9947
4.7619
4.5926
4.4642
4.1143
3.9579
3.8696
3.8130
3.7737
3.7447
3.7226
3.7050
3.6791
3.6608
3.6473
3.6368
3.6285
3.6038
3.5916
3.5795
3.5734
3.5698

Ef ficiency(P)

1.00000
0.90000
0.78261
0.68182
0.60000
0.53390
0.48000
0.43548
0.39823
0.27778
0.21277
0.17228
0.14469
0.12470
0.10956
0.09768
0.08813
0.07371
0.06334
0.05553
0.04943
0.04454
0.02980
0.02239
0.01495
0.01122
0.00898
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Var(W)

16.0000
8.8889
6.4793
5.2480
4.4917
3.9754
3.5980
3.3085
3.0784
2.3850
2.0259
1.8001
1.6424
1.5245
1.4323
1.3577
1.2957
1.1980
1.1236
1.0646
1.0163
0.9759
0.8405
0.7607
0.6661
0.6093
0.5700

Ef ficiency(W)

1.00000
0.90000
0.82313
0.76220
0.71243
0.67080
0.63528
0.60451
0.57751
0.47918
0.41567
0.37034
0.33593
0.30868
0.28643
0.26784
0.25201
0.22637
0.20637
0.19024
0.17688
0.16561
0.12776
0.10569
0.08033
0.06582
0.05625



Table 2. Empirical variances of the coalescent, pairwise, and Watterson es-
timates of € in the computer simulations, plus the empirical efficiency of the
pairwise and Watterson method obtained by taking the ratio of the coalescent
variance to those for these other two. The seventh column shows the value of
the variance of the pairwise method obtained by simulation, computing within-
and between tree topology variances by sampling ordered tree topologies for
this value of 6 and using equations (16) and (17), for different values of n. The

eighth is the number of ordered tree topologies sampled in the simulation.
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© 00 N O Ot e W N

10
15
20
25
30
35
40
45
50
60
70
80
90
100
150
200
300
400
500

Var(ML)

16.0510
7.9562
5.3259
3.9900
3.1971
2.6553
2.2895
2.0020
1.7770
1.1433
0.8446
0.6648
0.5524
0.4704
0.4098
0.3636
0.3257
0.2707
0.2314
0.2019
0.1794
0.1614
0.1073
0.0803
0.0536
0.0400
0.0325

Var(P)

16.0510
8.8401
6.8132
5.8340
5.3470
4.9679
4.7656
4.5827
4.4475
4.1089
3.9564
3.8759
3.8092
3.7637
3.7458
3.7244
3.6870
3.6853
3.6809
3.6484
3.6164
3.6249
3.5991
3.6124
3.5718
3.5772
3.8180

Eff(P)

1.00000
0.90001
0.78170
0.68391
0.59793
0.53449
0.48042
0.43686
0.39954
0.27824
0.21346
0.17153
0.14501
0.12499
0.10940
0.09762
0.08833
0.07345
0.06287
0.05534
0.04960
0.04451
0.02983
0.02222
0.01500
0.01119
0.00852
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Var(W)

16.0510
8.8401
6.4732
5.2227
4.5022
3.9524
3.6010
3.2978
3.0746
2.3835
2.0267
1.8042
1.6427
1.5194
1.4330
1.3579
1.2933
1.2014
1.1275
1.0631
1.0116
0.9723
0.8383
0.7626
0.6677
0.6132
0.5953

Eff(W)

1.00000
0.90001
0.82277
0.76397
0.71012
0.67181
0.63579
0.60707
0.57796
0.47966
0.41671
0.36848
0.33625
0.30963
0.28596
0.26775
0.25183
0.22530
0.20526
0.18993
0.17731
0.16594
0.12805
0.10526
0.08022
0.06527
0.05462

Var'(P) Replicates

16.0000 1,000,000
8.9709 1,000,000
6.7988 1,000,000
5.8855 1,000,000
5.3343 1,000,000
4.9923 1,000,000
47590 1,000,000
45990 1,000,000
4.4661 1,000,000
4.1124 1,000,000
3.9557 1,000,000
3.8694 1,000,000
3.8144 1,000,000
3.7717 1,000,000
3.7440 1,000,000
3.7229 1,000,000
3.7036 1,000,000

3.6782 500,000
3.6627 500,000
3.6498 500,000
3.6354 500,000
3.6281 500,000
3.6063 500,000
3.5922 500,000
3.5794 200,000
3.5729 200,000
3.5725 10,000



FIGURE CAPTIONS
Figure 1. A genealogical tree, showing the relationship between the u; and

the ¢;. Both are measured in generations back from the present.

Figure 2. The variances of the estimates of # from the simulation from
n=3 to n=500 when computed by the coalescent maximum likelihood method
(circles) the pairwise method (squares), and Watterson’s method (pluses). The
continuous curves are the corresponding theoretical values from equations (7),
(18), (23). The value for n=>500 is based on many fewer simulations than the

other values.

Figure 3. Theoretical and empirical values of the efficiency of the pairwise
and segregating sites estimates of € from n=2 to n=500. The lower curve shows
the theoretical value, computed from equation (19), and the upper curve the
theoretical efficiency of Watterson’s method, from (24). Squares show the em-
pirical values obtained by taking the ratio of the empirical variances among
replicates of the coalescent and pairwise estimates, and pluses the empirical

values for Watterson’s method.
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