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ABSTRACT

An informal degrees-of-freedom argument is used to count the number of

phylogenetic invariants in cases where we have 3 or 4 species and can assume a

Jukes-Cantor model of base substitution with or without a molecular clock. A

number of simple cases are treated and in each the number of invariants can be

found. Two new classes of invariants are found: non-phylogenetic cubic invari-

ants testing independence of evolutionary events in different lineages, and linear

phylogenetic invariants which occur when there is a molecular clock. Most of the

linear invariants found by Cavender (1989) turn out in the Jukes-Cantor case

to be simple tests of symmetry of the substitution model, and not phylogenetic

invariants.

1. Introduction

The method of phylogenetic invariants, also known as “evolutionary parsi-

mony”, has been introduced into the field of phylogenetic inference by Caven-

der (Cavender and Felsenstein, 1987) and by Lake (1987). The invariants are

polynomial expressions (quadratic in Cavender’s case, linear in Lake’s) in the

expected frequencies of different patterns of characters states. They are invari-

ants if they have the same value (usually zero) for all phylogenies of a given
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tree topology. I define phylogenetic invariants as the ones that have the same

value for all phylogenies of one tree topology, but have a different value for at

least one tree of a different topology. They are usually constant only in one tree

topology. Non-phylogenetic invariants have the same value in all phylogenies.

Testing whether phylogenetic invariants have this value is useful as a test of the

tree topology.

In this paper I will count the number of invariants that exist in certain

cases, those with a symmetric model of change of character state. The cases I

will consider have four character states (the four nucleotides A, C, G, and T)

and four species. The model of nucleotide substitution considered is that of

Jukes & Cantor (1969). I will also consider similar models with two and three

states.

2. Definitions and Notation

Suppose that we have four different species for which we have nucleotide

sequences, and consider s sites at which they can be correctly aligned, and in

which the nucleotides are available in all four sequences. We will assume that

the process of evolution occurs independently at each site, though of course

not independently in the four species. The likelihood of the sequences is then

a product over sites. If pijkl is the probability, at a site, of observing the

nucleotides i, j, k and l in the four sequences, and if bij is the base observed at

site j of species i, the likelihood is:

L =
s∏

i=1

pb1ib2ib3ib4i
. (1)

We can rearrange the terms in this product so that terms that have the same

four-tuple of bases are adjacent. This leads to the alternate form:

L =
∏
ijkl

p
nijkl

ijkl , (2)

where the indices i, j, k, and l each run over the four bases in the set {A,C,G, T}
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and nijkl is the number of terms in (1) that have the bases i, j, k, and l. The

sum of the nijkl must be the total number of sites s.

The 4-tuple of bases ijkl will be called, in agreement with Cavender (1978)

a pattern. There are 256 possible patterns, AAAA, AAAC, ... TTTT, if we

ignore (as we do) ambiguous nucleotides. nijkl is thus the observed number of

occurrences of pattern ijkl.

Note that the probabilities pijkl are functions of the tree topology and the

lengths of branches, plus whatever other parameters exist in the model of base

change. I have presented here only the case of four species, but the three-species

case is entirely analogous, leading to:

L =
∏
ijk

p
nijk

ijk . (3)

It should be immediately clear that the set of nijkl are sufficient statistics for

estimation of the phylogeny of the species and the testing of assertions about

the model of nucleotide substitution. In the three-species case the sufficient

statistics are of course the nijk.

3. The model of base substitution

.

The results of this paper depend on a symmetric model of base substitution,

that of Jukes & Cantor (1969). A natural question, left unanswered here, is

to what extent these results would generalize to models with fewer symmetries,

notably the 2-parameter model of Kimura (1980). The Jukes-Cantor model is

the simplest possible symmetric model. The probabilities of base change in a
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given branch of a phylogeny are given by the table:

to : A C G T

from :

A 1− q q/3 q/3 q/3

C q/3 1− q q/3 q/3

G q/3 q/3 1− q q/3

T q/3 q/3 q/3 1− q

(4)

where q is a parameter which depends on the product of the length of the branch

in time (t) and the substitution rate (u) per nucleotide in that branch:

q =
3
4
(1− e−

4
3 ut). (5)

Basically q is the net probability of change in that branch, and is the same

no matter what the current nucleotide. If a nucleotide changes, it has an

equal probability of changing to each of the other three nucleotides. Under the

Jukes-Cantor model the equilibrium distribution of nucleotides (the expected

nucleotide composition) is 0.25 : 0.25 : 0.25 : 0.25. The largest biologically rea-

sonable value of q is 3/4. We assume in all cases that the evolutionary process

has reached equilibrium before the start of the divergence of the species.

4. A simple case: 3 species and no clock

The meaning of invariants will be clearest in the simplest cases. It is useful

to start with three species, a Jukes-Cantor model, and no molecular clock. The

“molecular clock” is in this context simply the assertion that the probability

of base substitution (u) is constant per unit time and the same in all lineages.

With three species and four nucleotides there are 64 patterns, AAA, AAC, ...

TTT. It should immediately be apparent that the symmetry of the Jukes-Cantor

model will leave the probability of any given set of data, as expressed by the

equation (3), unchanged if we replace all A’s in the data by C’s and all C’s by

A’s, or for that matter if we carry out any other permutation of the four bases.
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Thus if σ is the permutation, so that σb is the base into which base b is changed

by the permutation,

pσiσjσk
= pijk (6)

for all bases i, j, k, and l, whether or not those are distinct. An analogous result

of course holds for the four-species case.

Symmetry tests. The probability of the pattern AAC on a given tree will be

the same as the probability of pattern GGA, and similarly for any pattern of the

form xxy, where x and y stand for any two distinct nucleotides. This argument

allows us to see that there are in fact only five types of patterns: xxx, xxy,

xyx, yxx, and xyz, where x, y, and z are distinct nucleotides. We will call these

classes of patterns pattern types. Type xxx consists of patterns AAA, GGG,

CCC, and TTT. All four of these have equal expected frequencies. One test of

the symmetry which the Jukes-Cantor model predicts is to test whether these

four patterns are significantly unequal in frequency. This can easily be done by

a chi-square test of the equality of the numbers of times the four patterns occur.

The test has 3 degrees of freedom.

There are similar tests within each pattern type. Table 1 shows an account-

ing of the different pattern types, how many patterns each contains, and thus

how many degrees of freedom are available within each pattern type for testing

the symmetry of the model of base substitution. There are 64 patterns in all.

The pattern frequencies thus have 63 degrees of freedom, which is equivalent to

the statement that the 64-dimensional space of expected pattern frequencies is

constrained to a 63-dimensional subspace, namely those that add up to 1 (they

are also confined to a simplex in that subspace, namely the sets of frequencies

that have no negative frequencies).

The accounting of symmetry test degrees of freedom shows that there are

59 equations, in fact linear equations, which are consequences of the symmetry.

For example, pAAA = pCCC and pACG = pAGT are two of them. If the expected

pattern frequencies satisfy these 59 linear equations as well, they must lie in a
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64 - 1 - 59 = 4-dimensional linear subspace. The 4-dimensional subspace in fact

corresponds precisely to the frequencies of the 5 pattern types, less one for the

fact that the total of the frequencies of pattern types is 1.

The sufficient statistics for estimating the phylogeny in this case are not the

observed numbers of the 64 patterns, but the observed numbers of occurrences

of the 5 pattern types. Let us represent by nxxx the frequency of any one of the

patterns of type xxx, and by Nxxx the total frequency of all patterns of type

xxx, and analogously for the other patterns. Let pxxx and Pxxx be the expected

frequencies of one pattern of type xxx and the total expected frequency of all

patterns of type xxx, and analogously for the other patterns.

We can note that in this model the expected frequencies of the five pattern

types can be written as functions of the unknown net probabilities of change in

the three branches of the unrooted tree, which we will call q1, q2, and q3:

Pxxx = (1− q1)(1− q2)(1− q3) + q1q2q3/9 (7)

Pxxy = (1− q1)(1− q2)q3 + 1/3 q1q2(1− q3) + 2/9 q1q2q3 (8)

Pxyx = (1− q1)q2(1− q3) + 1/3 q1(1− q2)q3 + 2/9 q1q2q3 (9)

Pyxx = q1(1− q2)(1− q3) + 1/3 (1− q1)q2q3 + 2/9 q1q2q3 (10)

Pxyz = 2/3 q1q2(1− q3)+2/3 q1(1− q2)q3 + 2/3 (1− q1)q2q3 +2/9 q1q2q3 (11)

The expected frequencies of the five pattern types add up to 1. Thus we have

four equations in three unknowns. This implies that there is one algebraic

relationship between the five quantities (although it does not prove it – see

section 10 below).

After some tedious algebra (for which see Appendix 1), one can find this

relationship, a cubic polynomial equation:

3 (2Pxxx − 2Pxxy − 2Pxyx − 2Pyxx + 1)2

−[4(Pxxx + Pxxy)− 1][4(Pxxx + Pxyx)− 1][4(Pxxx + Pyxx)− 1] = 0.

(12)
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I suspect that this cubic equation is a consequence of the independence of sub-

stitution in different lineages.

With three species, the Jukes-Cantor model, the expressions (7)-(11) do not

depend on where the root of the tree is, and there is only one possible unrooted

tree topology. The cubic polynomial is an invariant for this case, in that it is an

expression in the expected pattern type frequencies which has the same value

for all trees of a given topology, whatever their branch lengths. In fact, since

the placement of the root of the tree does not affect the pattern frequencies, and

since there is only one possible unrooted tree topology, this cubic invariant is not

a phylogenetic invariant. We have thus accounted for all the degrees of freedom

in this case, and find invariants, but of course no phylogenetic invariants.

5. The Jukes-Cantor model with 3 species and a clock.

The first signs of phylogenetic invariants occur when we impose the con-

straint of a molecular clock. If the tree topology is the second tree in Fig. 1,

this corresponds to requiring that q1 = q2. and that q3 > q1. There are still 64

patterns and 63 degrees of freedom, and still 59 of these which are accounted

for by the symmetries of the Jukes-Cantor model. Of the 4 remaining degrees

of freedom, 2 of them are accounted for by the branch lengths of the tree. With

a molecular clock, the constraint that q1 = q2 implies that there are only two

independent branch lengths (q1 and q3).

One degree of freedom is still accounted for by the cubic equation (12), which

still holds in this case, as this case of a clock is a subcase of the preceding one.

This leaves us with one degree of freedom unaccounted for. We have 5 expected

pattern frequencies which must sum to 1, and two parameters, implying that

two equations can be written in the expected pattern type frequencies. One of

these is (12). The other is not hard to find. The equality of the branch lengths

q1 and q2 implies that patterns xyx and yxx are expected to be equally frequent.

Examination of equations (8) and (9) verifies that if q1 = q2 then Pxyx = Pyxx.

This is the missing invariant. It is not simply a consequence of the symmetry
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of the model of base substitution or of the independence of substitutions in

different branches of the tree, for it will not hold in models that have both of

these, but lack a clock. It will also exist in models that lack the symmetry and

independence assumptions but have a clock. This invariant is a phylogenetic

invariant, as in the third tree in Fig. 1 it is no longer true that Pxyx = Pyxx,

but now instead Pxyx = Pxxy. We have thus identified a phylogenetic invariant,

and a linear one at that. Strictly speaking, the invariants are the expressions

C1 = Pyxx − Pxyx, (13)

C2 = Pxyx − Pxxy, (14)

and

C3 = Pxxy − Pyxx. (15)

Note that C1 + C2 + C3 = 0. For the second tree shown in Fig. 1, C1 = 0,

and we must then have C2 + C3 = 0. For each of the other two bifurcating tree

topologies, there are similar relationships with C2 = 0 or C3 = 0.

6. Jukes-Cantor model with 4 species and no clock.

When we reach 4 species things become more complicated. There are 256

patterns of nucleotides. The situation is shown in Table 2. Taking into account

the exchangeability of the four nucleotides, there are now 15 pattern types.

This means that after the symmetry invariants have been taken out, there must

remain 15 degrees of freedom, so that there are fully 241 degrees of freedom

accounted for by symmetry of the nucleotides. These 15 degrees of freedom

can be reduced by one since the expected pattern frequencies must add to 1.

There is, in an unrooted 4-species tree, one parameter per branch and there are

five branches. This leaves 15-1-5 = 9 degrees of freedom. Fortunately, we can

make use at this point of invariants found by Cavender (Cavender & Felsenstein,

1987), Lake (1987), and Drolet & Sankoff (1990) to account for some of these.
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a. Cavender’s Invariants

Cavender investigated a model of two states, 0 and 1, and found for each

of the three possible unrooted tree topologies with four species and no clock

that there were two quadratic expressions in the expected frequencies that were

phylogenetic invariants. In the present case we can group the four bases into two

groups of two in any way (it does not matter how because of the symmetry of the

bases). We may, for example, code bases into R and Y (purine and pyrimidine).

R and Y will evolve as two symmetric states, the model Cavender considered.

We can then classify the 256 site patterns into sixteen classes: RRRR, RRRY,

... YYYY.

The symmetry between the Y and R symbols reduces these further to eight:

0000, 0001, 0010, 0011, 0100, 0101, 0110, and 0111, where 0 and 1 are place

holders of which one stands for an R and the other a Y. The expected frequen-

cies of these eight classes of patterns must satisfy Cavender’s two phylogenetic

invariants (his K and L invariants), as the evolution of states R and Y follows

his assumptions exactly. We shall here call the frequencies of these eight pattern

types S0000, S0001, S0010, S0011, S0100, S0101, S0110, and S0111, as they aggregate

the patterns into types in a way different from the classes whose frequencies are

indicated above by the P ’s.

For the first tree topology in Fig. 2, Cavender’s K-invariant is

K1 = (S0100 − S0111)(S0010 − S0001)− (S0110 − S0101)(S0000 − S0011) (16)

and his L-invariant is:

L1 = (S0001 + S0010)(S0100 + S0111)− (S0000 + S0011)(S0101 + S0110) (17)

Both of these invariants are zero, and both are phylogenetic invariants. It

is worth noting that the Cavender K invariant can be considered to be a conse-

quence of the four-point metric condition of Buneman (1974). Buneman pointed

out that for a tree of this topology if there is a distance dij that is additive along
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branches of the first tree in Fig. 2, it must satisfy

d14 + d23 = d13 + d24. (18)

In the derivation of Cavender’s result we note that the branch lengths are

additive, and that a branch length t may be expressed in terms of the probability

D that the states of the species at the two ends of the branches are different,

t = −1
2

ln (1− 2D). (19)

If Dij is the probability that species i differs in state from species j, in the

two-state case

D14 = S0001 + S0011 + S0101 + S0111, (20)

D23 = S0010 + S0011 + S0100 + S0101, (21)

D13 = S0010 + S0011 + S0110 + S0111 (22)

and

D24 = S0001 + S0011 + S0100 + S0110. (23)

We can express the Dij in terms of the S’s in this way, and use these and

equation (19) to express the total branch lengths between species i and j in

terms of the S’s. Since these total branch lengths can be used in place of the

dij to satisfy Buneman’s condition, we end up with an expression in the S’s.

This turns out to be precisely Cavender’s K invariant.

One might imagine that another classification of the four bases into two

sets of two bases each would lead to a different pair of invariants based on

Cavender’s invariants. Such different invariants will exist, but they can be

derived from (16) and (17) using the symmetry conditions, and so they provide

no extra information about tree shape and count for nothing in the accounting

of degrees of freedom.
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b. Lake’s Invariants

Lake (1987) found two linear invariants in a model of base change which had

balanced transversions (so that if an A changed, it was equally likely to change

to a C or a T). The Jukes-Cantor model has this property, among others. Thus

Lake’s two linear invariants must also apply to the present model.

In the present notation, Lake’s invariants are

2
3
Pxyxy +

1
3
Pxyzw − 1

3
Pxyxz −

1
3
Pxyzx = 0 (24)

and
2
3
Pxyyx +

1
3
Pxyzw − 1

3
Pxyzx −

1
3
Pyxxz = 0. (25)

Taking Cavender’s and Lake’s invariants into account reduces the 9 degrees of

freedom by 4 so that we have 5 degrees of freedom to account for.

c. Three-species cubic invariants

In the three-species Jukes-Cantor case we found one cubic invariant. In the

present case we can always consider three of the four species and ignore the

remaining one. The 256 patterns then reduce to 64 in the obvious way: if the

first species is being ignored, the pattern AAA refers to any pattern which has

A in all of the last three species. Its expected frequency is the sum of the

frequencies of AAAA, CAAA, GAAA and TAAA. The expected frequencies of

these 64 classes will satisfy the cubic polynomial (12). There are four different

ways in which we can drop one of the species (one for each species we could drop),

hence four such cubic invariants. None of them is a phylogenetic invariant. It

will not take readers long to satisfy themselves that these four quantities are

independent. Each depends on a different three-species marginal distribution,

and none of those distributions can be computed from each other. We have thus

reduced the number of degrees of freedom from 5 to 1.
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d. Drolet-Sankoff quadratic invariant

That one remaining degree of freedom is the four-state quadratic invari-

ant discovered by Drolet & Sankoff (1989). They investigated the case of four

species, without a clock, and with the a symmetric model of change among n

states. The Jukes-Cantor model is the n = 4 case of the one they consider. The

quantity they found is a phylogenetic invariant which is quadratic. This too

must be satisfied by the expected frequencies in the present case. Drolet and

Sankoff’s first quadratic phylogenetic invariant is:

F2 − F3, (26)

where

F2 = [4(Pxxxx + Pxyxy + Pxyxz + Pxyzy)− 1]×

[4(Pxxxx + Pxyxy + Pxyyy + Pxxyx + Pxyxx + Pxxxy)− 1]

+ 4(Pxyyy + Pxxyx − Pxyxz)4(Pxyxx + Pxxxy − Pxyzy)

(27)

and

F3 = [4(Pxxxx + Pxyyx + Pxyzx + Pxyyz)− 1]×

[4(Pxxxx + Pxyyx + Pxyyy + Pxxxy + Pxxyx + Pxyxx)− 1]

+ 4(Pxyyy + Pxxxy − Pxyzx)4(Pxxyx + Pxyxx − Pxyyz)

(28)

for which the invariant is zero. They also found another quadratic invariant.

One might think that this is one too many. Actually, it implies the L invariant

of Cavender. In the case of the Jukes-Cantor model it can be shown (Appendix

2) that when the Drolet-Sankoff L invariant has the value it is predicted to, and

when the symmetry invariants do also, that the Cavender L invariant must also

have its predicted value.

It is interesting and important to note that we have now completely ac-

counted for the degrees of freedom:
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5 branch length parameters

1 Drolet-Sankoff quadratic phylogenetic invariant

2 Lake linear phylogenetic invariants

2 Cavender 2-state quadratic phylogenetic invariants

4 three-species cubic invariants

241 linear invariants testing symmetry of base substitution

1 since the expected frequencies add to 1

—–

256

Note that only 5 of these 256 degrees of freedom are phylogenetic invariants.

7. Jukes-Cantor model with four species and a molecular clock.

When we constrain the preceding case so that the tree is clocklike, the picture

changes slightly. The 5 branch lengths are replaced by 3 divergence times. All

the other invariants continue to be zero, as this case is a subcase of the preceding

one. Thus we have 2 degrees of freedom unaccounted for. These must test the

clockness of the tree,

Fig. 3 shows the two forms of possible clocklike unlabelled tree topologies.

The 15 possible bifurcating tree topologies are all of one or the other of these

two kinds. The enumeration of degrees of freedom is the same as before except

that the five degrees of freedom for branch lengths are replaced by 3 for branch

lengths and 2 for the phylogenetic invariants for clockness.
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3 branch length parameters

2 linear phylogenetic invariants for clockness

1 Drolet-Sankoff quadratic phylogenetic invariant

2 Lake linear phylogenetic invariants

2 Cavender 2-state quadratic phylogenetic invariants

4 three-species cubic invariants

241 linear invariants testing symmetry of base substitution

1 since the expected frequencies add to 1

—–

256

(and a partridge in a pear tree).

There is one surprise in the clock case. For the first tree topology in Fig. 3,

consideration of the symmetries will immediately suggest that the following are

invariants:

Pxyxx = Pyxxx, (29)

Pxyxy = Pxyyx, (30)

Pxyxz = Pxyyz, (31)

and

Pxyzx = Pxyzy. (32)

The problem is that there are too many of them. We are supposed to

have 2 degrees of freedom to test clockness, not 4. The dilemma could be

resolved if some of these invariants were not independent, if they were implied

by combinations of others. In fact, this is the case. We can use (29)-(32) to

show straightforwardly that when these hold, Lake’s two linear invariants (24)

and (25) are equal. We can also show that Cavender’s K invariant must equal

0, and we can also show that the three species cubic invariant for species 1,

3, and 4 necessarily equals that for species 2, 3, and 4. These conclusions are

explained in Appendix 3. Therefore equations (29)-(32) represent only one new
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clock invariant, not four. This is one too few clock invariants. In Appendix 3 it

is demonstrated that there is one more clock invariant:

2Pxxyx+Pxyxy+Pxyyx+Pyxzx+Pxyzx−Pxyxx−Pyxxx−2Pxxyy−2Pyzxx = 0 (33)

which is written more simply in another form in that Appendix.

For the second tree topology in Fig. 3, the same approach immediately

suggests 6 invariants: the ones in (29)-(32) plus two more:

Pxxxy = Pxxyx (34)

and

Pxyxz = Pxyzx (35)

These can also be used to prove the equivalence of the two Lake linear

invariants, and to prove that the Cavender K invariant is zero. They also prove

the equivalence of two pairs of three-species cubic invariants, the one mentioned

above plus the invariants for species 1, 2 and 3 and for 1, 2, and 4. This leaves

us with two clock invariants. Equation (33) is not an invariant for this tree

topology.

8. Cavender’s multiple linear invariants

Cavender (1989) has found all linear invariants in a four-species case far

more general than the present model. The Jukes-Cantor 4-species case pre-

sented here is a special case of the model he considers. The present calculations

shed some light on his invariants. Without an evolutionary clock we have 243

linear invariants. 241 of them are symmetry tests, and the two of those that are

phylogenetic invariants are the Lake invariants. Cavender finds 68 linear invari-

ants. In the present case most of these correspond to the symmetry tests. In

the Jukes-Cantor case they provide no information about the phylogeny. The

pattern frequencies are continuous functions of the parameters of Cavender’s

model. We can invoke continuity to argue that when Cavender’s model is near

15



the Jukes-Cantor model, that most of his linear invariants will have very little

information on the phylogeny. Most of the phylogenetic information expressed

in the linear invariants will thus be in the Lake invariants, except possibly when

the model is far from the Jukes-Cantor assumptions.

9. Properties of invariants in different cases

It is useful to tabulate a number of properties of the invariants. We have

seen that some invariants (such as Cavender’s K and L) are present in models

that have two states, while others (such as Lake’s linear invariants) are present

only when there are 4 or more states. In the table below we call this the state

level. Invariants also differ according to how many species must be present in

the tree before they exist. The cubic invariants discussed above are present

whenever there are 3 or more species, but the others all require 4 species. We

call this number the species level. The invariants are all polynomials in the

expected pattern frequencies; they differ according to the degree of the polyno-

mial, which we indicate by degree. Some are phylogenetic, some not. Finally,

they differ in one more way. If we consider the patterns as being in a 4-way

table, we can compute the various marginal sums of this table. Some invariants

can be computed using only these marginal sums. For example Cavender’s K

can be computed using only two-species marginals, but Lake’s linear invariants

cannot be computed from marginals. We call this the interaction level of the

invariant. It is also true that different n-species marginals cannot be computed

from each other. Thus the four 3-species cubic invariants in a 4-species case are

independent.

Here is a table of these properties, for the 4-species case with a clock:
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State Species Interaction

Invariant level level Degree Phylogenetic level

Symmetry 2 2 1 no 4

Clock 2 3 1 yes 2

Cubic 3 3 3 no 3

Lake 3 3 1 yes 4

Cavender K 2 4 2 yes 2

Cavender L 2 4 2 yes 4

Drolet-Sankoff 3 4 2 yes 4

The table gives an incomplete picture. In some cases we have denoted an

invariant as present for a given number of species or a given number of states

even though the number of that class of invariants rises as the number of states

or species rises. Thus Cavender’s K invariant, a single invariant, is present

whenever there are two or more species. By contrast, one invariant related to

Lake’s linear invariants is present when there are 3 states and 4 species, but

when the number of states increases to 4 there are then two Lake invariants.

The three-state Lake-like invariant is

Pxyxy + Pxyyx − Pyxzx − Pyxxz = 0 (36)

as can be verified by exact calculation of the probabilities of these four pattern

types as functions of the branch lengths.

Table 3 gives an accounting of invariants with different numbers of species

and different numbers of states with a clock. The corresponding table without

the clock is the same, except that the degrees of freedom for the clock must be

added to those for branch lengths, so that entries with 3 degrees of freedom for

branch lengths and 2 for clock invariants have instead 5 degrees of freedom for

branch lengths.

It is worth noting that one property, the interaction level, has implications

for independence of the invariants. The invariants that have one interaction
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level cannot depend on those that have another. It is a well-known fact that in

a multi-way table (in the nucleic acid sequence case, a 4 × 4 × 4 × 4 table, for

example), that an n-species marginal distribution cannot be computed from the

(n − 1)-species marginal distributions. Thus if one invariant is computed from

4-species pattern frequencies, for example, it cannot depend on others that are

computed from 2- or 3-species pattern frequencies.

10. Accounting for all degrees of freedom

The present study accounts for all of the degrees of freedom in the Jukes-

Cantor cases with 2, 3, or 4 species and 2, 3, or 4 states. In the absence of

a molecular clock, no new phylogenetic invariants have been found. In the

presence of the clock the linear clock phylogenetic invariants have been found.

However, there is a major limitation of these results. In cases like the present

one, where we consider nonlinear functions of the expected pattern frequencies,

we must be cautious about the notion of degrees of freedom. We have, for

example, 256 pattern frequencies predicted by 5 branch lengths, but it is not

immediately obvious that this means that there are 251 equations in the pat-

tern frequencies if they are the ones predicted by the model. This is because the

notion of degrees of freedom applies only to linear equations, and the present

equations include quadratics and cubics. It is possible that there are more invari-

ants to be found. I suspect not, but cannot prove this. The informal methods

used here do not prove that the invariants shown here are all independent. A

reviewer has pointed out that what is needed is to prove that the polynomials

found here form a basis of space of the 256 pattern frequencies. This has not

been done here. We cannot rule out the possibility that there are more to be

found, or that some of these are redundant.

It would be of interest to have an analysis similar to the present one for the

case of Kimura’s (1980) two-parameter model. While the inequality of transition

and transversion rates makes few realistic models of nucleotide substitution

close to the Jukes-Cantor model, more might be close to Kimura’s model, which
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allows for this inequality. The conclusions from the Kimura model as to which

invariants contain the information about the phylogenies might thus be much

closer to being correct in more realistic models.

11. Likelihood, parsimony, and invariants

If we were to test all invariants at once for having their desired values, this

would amount to a test of whether the observed pattern frequencies were in

the low-dimensional subspace defined by varying all branch length parameters

and for each computing the expected pattern frequencies. For example, for

the 4-species case without a clock, the subspace is 5-dimensional, as there are

then 5 branch lengths. We have not presented such a test; its full elaboration

is a matter for future work. However a straightforward approach would be to

take the likelihood ratio between the best fitting arbitrary expected frequencies,

which will be the same as the observed frequencies, and the best fitting expected

frequencies from a phylogeny. For any one tree topology twice the log of the

likelihood ratio should be distributed as χ2 with 255− 5 = 250 degrees of free-

dom. This is an asymptotic distribution, valid as the number of sites becomes

large.

One difficulty with this neat picture is that we are not simply finding the

best-fitting point in the 5-dimensional subspace defined by one tree topology,

but are picking the best tree from three different tree topologies. It is not clear

whether there is some way to correct for this. If the three tests were statistically

independent we could do so by a Bonferroni correction for multiple tests.

A more serious issue is how to compare different tree topologies, when we

are willing to assume that one or another of them provides a correct model

for the data. We cannot do a simple likelihood ratio test, as the hypotheses

are not nested one within another. It is in this case that the strengths of the

invariants approach are clearest. Many of the invariants, we have seen, test the

symmetries of the model. If we assume that symmetry, we can focus our test

on the phylogenetic invariants, and will not lose power by wasting effort testing
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those symmetries. The different invariants test somewhat different aspects of

the model, and this allows us to have a clearer idea what is being accepted and

what rejected. The linear invariants are readily tested (Lake, 1987), and the

Cavender L quadratic invariant is also (Cavender & Felsenstein, 1987). Drolet

& Sankoff (1990) have given expressions for the variances of the other quadratic

invariants and pointed out their asymptotic normality.

We do not yet have a complete picture of the statistical testing of invariants.

What is clear is that they provide a more precise picture of the different kinds of

evidence our data provides about tree topologies, branch lengths, and departures

from the model. Although some invariants can be related to parsimony (Lake,

1987), they seem to me much more naturally related to likelihood methods,

providing as they do an anatomical structure of the implications of the data.
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Table 1

The pattern types with a Jukes-Cantor model with 3 species

and no molecular clock.

Pattern type Patterns Symmetry d.f.

xxx 4 3

xxy 12 11

xyx 12 11

yxx 12 11

xyz 24 23

— —

Total 64 59
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Table 2

The pattern types with a Jukes-Cantor model with 4 species

and no molecular clock.

Pattern type Patterns Symmetry d.f.

xxxx 4 3

xxxy 12 11

xxyx 12 11

xyxx 12 11

yxxx 12 11

xxyy 12 11

xyxy 12 11

xyyx 12 11

xxyz 24 23

xyxz 24 23

xyzx 24 23

yxxz 24 23

yxzx 24 23

yzxx 24 23

xyzw 24 23

— —

256 241
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Table 3

Non-symmetry invariants with different numbers of states and of species in

the case of a molecular clock. The corresponding table for no clock is the same

except that the degrees of freedom for clock invariants instead become degrees

of freedom for more branch lengths.

Species States

2 3 4

2 2 classes (same as (same as

= 1 for sum 2 states) 2 states)

+ 1 branch length

3 4 classes 5 classes

= 1 for sum = 1 for sum (same as

+ 2 branch lengths + 2 branch lengths 3 states)

+ 1 clock + 1 clock

+ 1 cubic

4 8 classes 14 classes 15 classes

= 1 for sum = 1 for sum = 1 for sum

+ 3 branch lengths + 3 branch lengths + 3 branch lengths

+ 2 clock + 2 clock + 2 clock

+ 2 Cavender K and L + 2 Cavender K and L + 2 Cavender K and L

+ 4 cubic + 4 cubic

+ 1 Lake-like + 2 Lake

+ 1 Drolet-Sankoff + 1 Drolet-Sankoff
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FIGURE CAPTION

Figure 1. The three-species unrooted tree with the branch lengths shown,

and the three possible kinds of rooted bifurcating trees showing a molecular

clock.

Figure 2. The three different unrooted four-species bifurcating trees.

Figure 3. The two different shapes of rooted bifurcating trees with 4 species

showing a molecular clock. There are 15 bifurcating tree topologies in all, each

of one or the other of these forms.
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Appendix 1

The Three-Species Cubic Invariant

If we let

qi =
3
4
(1− fi), (37)

then

1− qi =
1
4

+
3
4
fi. (38)

These are in effect the substitution in equation (5) of

f = e−4/3ut (39)

Substituting these for the qi in equations (7)-(11) we get the equations

Pxxx =
1
16

+
3
16

f1f2 +
3
16

f2f3 +
3
16

f1f3 +
3
8
f1f2f3, (40)

Pxxy =
3
16

+
9
16

f1f2 −
3
16

f2f3 −
3
16

f1f3 −
3
8
f1f2f3, (41)

Pxyx =
3
16

− 3
16

f1f2 −
3
16

f2f3 +
9
16

f1f3 −
3
8
f1f2f3, (42)

Pyxx =
3
16

− 3
16

f1f2 +
9
16

f2f3 −
3
16

f1f3 −
3
8
f1f2f3, (43)

and

Pxyz =
6
16

− 6
16

f1f2 −
6
16

f2f3 −
6
16

f1f3 +
6
8
f1f2f3. (44)

Note that there are no linear terms in the fi in these expressions. Adding

the first two of these equations

Pxxx + Pxxy =
1
4

+
3
4
f1f2, (45)

from which

f1f2 = [4(Pxxx + Pxxy)− 1]/3, (46)

and in analogous fashion from the first and third equations,

f1f3 = [4(Pxxx + Pxyx)− 1]/3 (47)
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and from the first and fourth,

f2f3 = [4(Pxxx + Pyxx)− 1]/3. (48)

Substituting these into the last of the equations, we can eliminate all the

terms f1f2, f1f3, and f2f3, leaving only f1f2f3 for which we then can solve:

f1f2f3 =
2
3
(Pxxx − Pxxy − Pxyx − Pyxx +

1
2
). (49)

Squaring this equation and comparing it to the product of equations (46), (47),

and (48), we find that both have f2
1 f2

2 f2
3 on the left-hand side, and therefore we

can equate the right-hand sides and get equation (12).

Appendix 2

Equivalence of Drolet-Sankoff L Invariant and other invariants

Drolet and Sankoff’s second quadratic phylogenetic invariant is

L1 = Q1Q2 −Q3Q4 = 0, (50)

where

Q1 = Pxxxx + Pxxyy, (51)

Q2 = Pxxxy + Pxxyx + Pxxyz, (52)

Q3 = Pxyxx + Pyxxx + Pyzxx, (53)

and

Q4 = Pxyxy + Pxyyx + Pxyxz + Pxyzx + Pyxzx + Pyxxz + Pxyzw. (54)

We will see that this is not a separate invariant but implies the Cavender

L invariant in the Jukes-Cantor case, given the symmetries of that model, and

the Lake invariants. The Jukes-Cantor model was the one Drolet and Sankoff

(1990) were considering.
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An alternative form of (50) is obtained by noting that since each of the 15

P’s occur in exactly one of equations (51) through (54),

Q1 = 1−Q2 −Q3 −Q4, (55)

and substituting this into (50) gives

Q4 = (Q2 + Q4)(Q3 + Q4). (56)

We know that in a pattern type like xxyz each of the symbols stands for

a distinct nucleotide. There are then 4 × 3 × 2 = 24 possible assignments of

nucleotides to the symbols x, y, and z. In the Jukes-Cantor case the frequencies

of all of these patterns must be equal. Of these 24 equally frequent patterns,

1/3 have both x and y both pyrimidines or both purines. Making a similar

argument for the other pattern types, we find that on classifying the bases into

Y and R and those into 0 and 1, as done above in the discussion of Cavender’s

K invariant,

U1 = S0000 + S0011

= Pxxxx + Pxxyy + 1
3 (Pxxxy + Pxxyx

+Pxxyz + Pxyxx + Pyxxx + Pyzxx

+Pxyxy + Pxyyx + Pxyzw),

(57)

U2 = S0001 + S0010

= 2
3 (Pxxxy + Pxxyx + Pxxyz)

+ 1
3 (Pxyxz + Pyxxz + Pyxzx + Pxyzx),

(58)

U3 = S0100 + S0111

= 2
3 (Pxyxx + Pyxxx + Pyzxx)

+ 1
3 (Pxyxz + Pyxxz + Pyxzx + Pxyzx),

(59)

and
U4 = S0101 + S0110

= 1
3 (Pxyxz + Pyxxz + Pyxzx + Pxyzx)

+ 2
3 (Pxyxy + Pxyyx + Pxyzw).

(60)
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so that the Cavender L-invariant is

U1U4 − U2U3 = 0, (61)

which also can be written as

.U4 = (U2 + U4)(U3 + U4) (62)

Adding equations (58) and (60) gives

U2 + U4 =
2
3
(Q2 + Q4), (63)

and adding equations (59) and (60) gives

U3 + U4 =
2
3
(Q3 + Q4). (64)

If we could show that

U4 =
4
9
Q4, (65)

we would have completed the demonstration that the Drolet-Sankoff L invariant

is is not independent of the Cavender L invariant. This can be shown, but

requires use of the Lake invariants, equations (24) and (25). Adding those two

equations shows that the two terms in (60) satisfy:

Pxyxz + Pyxxz + Pyxzx + Pxyzx = 2(Pxyxy + Pxyyx + Pxyzw). (66)

If we define

V = Pxyxy + Pxyyx + Pxyzw, (67)

then (66) and (60) show that

U4 =
1
3
(2V ) +

2
3
V =

4
3
V. (68)

Since (54) shows that

Q4 = 3V, (69)

this, together with (68) immediately establishes (65). Thus the Drolet- Sankoff

L invariant is not autonomous but is a consequence of the Lake linear invariants,

Cavender’s L invariant, and the symmetry invariants.
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Appendix 3

Equivalence of some clock invariants and other invariants

For the two tree shapes in Fig. 3, in the four-state case respectively 5 and 6

clock invariants are given in section 7. This Appendix derives one of them, and

also shows how all but two of them are equivalent to other invariants.

Equivalence of the two Lake invariants. Examining equations (24) and (25)

and comparing them termwise, equations (30)-(32) can be used to turn equation

(24) into (25), proving that one implies the other.

Equivalence of cubic invariants. Equations (29)-(32) were obtained by noting

that any two patterns that can be obtained from each other by transposing the

bases in species 1 and 2 must have the same expected frequency. This also

immediately establishes that the three-species marginal pattern frequencies for

species 1, 3, and 4 must be the same as those for species 2, 3, and 4. The

cubic invariants for these two triples of species are the same functions of those

three-species marginal pattern frequencies, and hence must be equal. For the

second tree topology in Fig. 3, the principles are the same, except that species

3 and 4 may also be transposed (with or without transposing species 1 and 2)

without changing the pattern frequency. The cubic invariant for species 1, 2,

and 3 must then equal that for species 1, 2, and 4.

Clock invariants imply the Cavender K invariant. If the Dij are the two-

state distances between species i and j (the probabilities that species i is in a

different one of the two states than species j), section 6a above mentions how

it may be shown that Cavender’s K invariant is

K = (D14 + D23 −D24 −D13)− 2(D14D23 −D24D13). (70)

From the equivalence of patterns that have the first two species transposed,

and using equations (20) and (23), we can show that S0101 = S0110 and that

S0100 = S0111, which leads immediately to

D14 = D24. (71)
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In similar fashion it can be shown using (21) and (22) that

D13 = D23. (72)

When these are substituted into equation (70) they immediately establish that

Cavender’s K is 0. Since equations (71) and (72) hold for both of the trees in

Fig. 3, they establish that K = 0 for both of them.

Proof of equation (33). For the first tree topology in Fig. 3, in the four-

species case, we can imagine dropping species 1 or species 2 from the tree. For

the two remaining three-species trees there must be a clock invariant analogous

to equation (13). The three-species pattern types can obviously be written in

terms of the four-species pattern types. For example for the three-species tree

that drops species 1,

Pyxx = Pxyxx + Pxxyy + Pyzxx, (73)

and there is a similar equation for Pxyx. Equation (13) can then be written

in terms of the four-species pattern type frequencies. Similarly, for the three-

species tree in which species 2 is dropped the same thing can be done. The

resulting two equations define clock invariants; neither is equivalent to any of

the equations (29)-(32). This would seem to define two more clock invariants

when we needed only one. However, it can be shown that equations (29)-(32) do

establish the equivalence of the two new clock invariants, so that they account

for only one degree of freedom between them. Adding the two new invariants to

express the new clock invariant in the most symmetrical form, we get equation

(33).
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