
1

AN ALTERNATING LEAST SQUARES APPROACH

TO INFERRING PHYLOGENIES FROM PAIRWISE DISTANCES

Joseph Felsenstein

Department of Genetics, University of Washington,

Box 357360, Seattle, Washington 98195-7360, USA1

Running Head: Fitting Trees to Distances by Alternating Least Squares

1E-mail: joe@genetics.washington.edu



Felsenstein 2

Abstract. – A computational method is presented for minimizing the weighted

sum of squares of the differences between observed and expected pairwise distances

between species, where the expectations are generated by an additive tree model.

The criteria of Fitch and Margoliash (1967) and Cavalli-Sforza and Edwards (1967)

are both weighted least squares, with different weights. The method presented

iterates lengths of adjacent branches in the tree three at a time. It can be shown

that the weighted sum of squares never increases during the process of iteration, and

that the iterates approach a stationary point on the surface of the sum of squares.

This iterative approach makes it particularly easy to maintain the constraint that

branch lengths never become negative, although negative branch lengths can also

be allowed. The method is implemented in a computer program, FITCH, which

has been distributed since 1982 as part of the PHYLIP package of programs for

inferring phylogenies, and is also implemented in PAUP*. The present method is

compared on some simulated data sets to an implementation of the method of De

Soete (1983); it is found to be slower than that method but more effective at finding

the least squares tree. The relationship of this method to the Neighbor-Joining

method is also discussed. [Phylogenies; distance methods; alternating least squares;

Fitch-Margoliash method]



Felsenstein 3

Distance matrix methods have long been used for inferring phylogenies, and their

popularity has increased in recent years as potential users have become aware of

long branch attraction problems that can afflict parsimony methods. They have

been particularly widely used with molecular sequences. There are a wide variety

of different distance matrix methods, including neighbor-joining (Saitou and Nei,

1987), minimum evolution (Kidd and Sgaramella-Zonta, 1971; Rzhetsky and Nei,

1992), and the least squares methods. The latter are of particular interest because

they use a single objective function to solve for branch lengths and to choose among

tree topologies, and can thus be related to the least squares method of statistical

estimation. Some, though not all, computer simulations (cf. Kuhner and Felsenstein,

1994) have shown least squares methods to perform better than the other distance-

based methods.

Fitch and Margoliash (1967) and Cavalli-Sforza and Edwards (1967) proposed

different but closely related criteria for fitting trees to distance matrices. Their

criteria were both of the form

Q =
∑
i∈T

∑
j∈T

wij(Dij − dij)
2 (1)

(T being the set of all tips on the tree) so that they were proposing a least squares

fit of observed to expected distances. The statistical model implicit in this criterion

is that the distances Dij are distributed independently, with mean dij and variance

the reciprocal of wij. Fitch and Margoliash took the variance of the distances to be

proportional to their expectations dij, and approximated this by choosing as their

weight the squared inverse of the observed distance:

wij = 1/D2
ij, (2)

while Cavalli-Sforza and Edwards assumed homogeneity of variances and thus chose

wij = 1. In both methods we have an additive tree model: the expectations dij



Felsenstein 4

are the sums of the branch lengths along a path from species i to species j in an

unrooted tree whose tips (terminal nodes) are the species. The branch lengths are

to be estimated by minimizing the weighted sum of squares Q. I have reviewed

the biological and statistical issues involved in inferring phylogenies from distance

matrices (Felsenstein, 1984); references to other distance methods will be found in

that paper.

One of the difficulties with least squares methods has been to compute the branch

lengths. These can be computed for a given tree topology by solving a set of linear

equations (Cavalli-Sforza and Edwards, 1967) one for each branch. However this can

be computationally diffcult, and it also does not allow us to constrain the branch

lengths to be nonnegative.

The purpose of this paper is to provide details of an alternating least squares

method that attempts to minimize Q for a given tree topology. It works for any

weighting system for which the weights do not depend on the expected distances

dij, and lends itself particularly well to the maintenance of the constraint that the

branch lengths not become negative. The iterations result in a sequence of values

of Q that are monotonic non-increasing, and converge to a stationary point on

the least squares surface. Combined with an algorithm for searching among tree

topologies, this alternating least squares method forms the basis of a computer

program, FITCH, which has been distributed as part of the PHYLIP package since

early 1982. PHYLIP executables, source code and documentation are available on

the World Wide Web at http://evolution.genetics.washington.edu/phylip.html. The

algorithm described in this paper also forms the basis for the least squares distance

matrix method in David Swofford’s program PAUP*.

The alternating least squares method (e.g. Wold, 1966) depends on a

transformation that temporarily reduces the dimensionality of the problem. A



Felsenstein 5

method will be presented of finding the least squares branch lengths for three

branches of the tree at a time, by “pruning” all but those branches from the tree, and

solving exactly for the remaining three branch lengths. By doing this successively

for different parts of the tree, one approaches asymptotically a least squares solution.

The Method

Notation

Figure 1 illustrates the notation employed. We chose some interior node of

the unrooted tree and number it 0. All other nodes are numbered in some order

1, ..., 2n− 3, where n is the number of tips. It is usually most convenient to number

the tips 1 through n. The branches of the tree are also numbered: each is assigned

the number of the node at the end furthest from node 0. In this Figure tips i, j,

and k, and node l, are shown. The length of branch i is denoted vi.

The tree topology will be specified by constants xij,k, where xij,k is 1 if branch

k lies on the path from node i to node j, and 0 otherwise. In practice, the array

xij,k need not be formed since its elements can be recovered as needed from the data

structures representing the tree. The Dij and the wij are assumed to be given at

the beginning of the computation for all pairs of tips i and j.



Felsenstein 6

Pruning the Tree

Our immediate objective will be, starting with some arbitrarily specified branch

lengths, to minimize the sum of squares Q with respect to the lengths of the three

branches incident on an interior node (e.g. node 0), holding all other branch lengths

constant. We can reduce the size of the problem by “pruning” the tree, removing

tips i and j and replacing the interior node k by a new tip, in such a way that

the sum of squares for this new tree as a function of the lengths of its remaining

branches differs from the sum of squares Q by a calculable constant. This constant

does not depend on the three branch lengths whose lengths we are to improve. By

pruning the tree repeatedly we can finally reduce it to a three-species tree whose

central node is node 0. The least squares branch lengths for this tree can be easily

computed, and the value of Q for the full tree differs from that of this three-species

tree by a known constant. This means that we can pick any interior node, and then

find for the three branches incident upon it the branch lengths that minimize Q, and

the value of Q. We can move around the tree, doing this succesively for different

interior nodes. The result is the required iterative method for minimizing the sum

of squares Q.

Considered as a function of the unknown branch lengths vi, the sum of squares

is

Q =
∑
p∈T

∑
q∈T

wpq(Dpq −
∑
u∈B

xpq,uvu)
2. (3)

where T is the set of all tips and B the set of all branches of the tree. This is a

quadratic form in the vi. It could be minimized by differentiating with respect to

the vi and equating the derivatives to zero to obtain normal equations for the vi,

but this will not be the approach taken here. We want to replace the problem of

minimizing Q with respect to the full set of the vi by a smaller problem. Consider

the phylogeny in Figure 1. For the moment we revert to the simpler equation (1),



Felsenstein 7

keeping in mind that the dij are sums of branch lengths. Suppose that we were

to regard the lengths of the branches connected to two adjacent tips, i and j, as

constants, and consider minimizing Q with respect to all branch lengths except i

and j. Let S be the set of all remaining tips after i and j have been removed, and

after the node at which they join, k, has been added to the set of tips. If k were

actually a tip it would have distances Dkl to all other tips still on the tree. In this

smaller tree which lacks segments i and j but has k, the sum of squares is

R =
∑
p∈S

∑
q∈S

wpq(Dpq − dpq)
2. (4)

the dpq being the sums of branch lengths between p and q in this pruned tree. We

would like to find a constant K, a set of distances Dkl, and a set of weights wkl such

that Q = R + K, where K does not depend on the lengths of any of the branches

except i and j. If we can do this, then the quadratic form R will be minimized at

the same values of the remaining branch lengths as will Q.

We can find K, the Dkl, and the wkl, by a process of equating coefficients in R to

corresponding terms in Q. We consider Q and R as functions of the branch lengths

vu. We first note that, for all pairs of tips (p, q) in S, neither of which can be equal

to i, j or k, the terms in R are identical to those in Q. This leaves us with only

terms involving i or j in Q or k in R. Taking the difference Q − R, we can write

this as

Q−R =
∑
l∈S

wil(Dil−dil)
2+

∑
l∈S

wjl(Djl−djl)
2+wij(Dij−dij)

2−
∑
l∈S

wkl(Dkl−dkl)
2 (5)

Recall that the lengths of the branches other than i and j remain in (5) only in

the quantities dkl. Recall also that

dil = dkl + vi

djl = dkl + vj.
(6)



Felsenstein 8

Inserting the expressions in (6) into (5) and collecting the terms in dkl and d2
kl, we

find that the coefficient of d2
kl in Q−R is

wkl − wil − wjl

and the coefficient of dkl is

−2wklDkl + 2wilDil + 2wjlDjl − 2wilvi − 2wjlvj.

If the difference between Q and R is to be a constant independent of the lengths of

the branches remaining on the pruned tree, then the above coefficients must all be

zero. Equating them to zero we can solve for the wkl and the Dkl:

wkl = wil + wjl (7)

and

Dkl =
wil(Dil − vi) + wjl(Djl − vj)

wil + wjl

. (8)

Since the terms in dkl have been eliminated from Q−R, we have now eliminated

all terms that could contain any of the branch lengths other than vi and vj. The

difference between Q and R must then be a constant not containing the lengths of

any branches other than i and j. We can find it by collecting all the terms in (5)

that do not have dkl in them:

Q−R =
∑
l∈S

wil(Dil − vi)
2 +

∑
l∈S

wjl(Djl − vj)
2 + wijDij

2 −
∑
l∈S

wklD
2
kl (9)

and using (7) and (8) this can be reduced after some algebra to

Q−R = wijD
2
ij +

∑
l∈S

wilwjl [(Dil − vi)− (Djl − vj)]
2

/
(wil + wjl), (10)

which can never be negative.



Felsenstein 9

Equations (7), (8) and (10) give us the means of reducing the size of the problem

from n tips to n−1 tips, dropping two branch lengths from the minimization problem.

We now show how this can be used to construct an alternating least squares method

for minimizing Q.

Iteration of Branch Lengths

We consider only the case of an unrooted bifurcating tree, which has each interior

node connected to three neighbors. As can be seen in Figure 1, if one proceeds

outwards from an internal node such as node 0 in any of the three possible directions,

one finds a rooted bifurcating tree. In any rooted bifurcating tree having two or more

tips there are always at least two tips branching from the same interior node: in

Figure 1 tips i and j are two of these, but three other such pairs are also visible.

Equations (7), (8) and (10) permit us to reduce the size of the problem by removing

two tips and creating one new one, while not affecting the values of the least squares

estimates of the lengths of the remaining branches. We can continue this process,

repeatedly applying these equations until only three tips are left, all connected

directly to the designated interior node (node 0). Let us designate these three nodes

as a, b, and c.

The problem is now reduced to minimizing the sum of squares

Q = K + wab(Dab − va − vb)
2 + wbc(Dbc − vb − vc)

2 + wac(Dac − va − vc)
2 (11)

As Farris (1972) has pointed out, the minimimum of (11) is achieved when the

rightmost three terms become zero when the branch lengths va, vb, and vc are chosen

to satisfy the equations:

Dab = va + vb,

Dbc = vb + vc,

Dac = va + vc,

(12)



Felsenstein 10

these being the normal equations that are derived by differentiating Q with respect

to the branch lengths and equating the derivatives to zero. The solution (Farris,

1972) is

va = (Dab + Dac −Dbc)/2,

vb = (Dab + Dbc −Dac)/2,

vc = (Dac + Dbc −Dab)/2.

(13)

Having used equations (7) and (8) to compute the quantities wab, wbc, wac, Dab,

Dbc, and Dac, we have minimized the sum of squares Q with respect to the three

branch lengths va, vb, and vc, holding all the other branch lengths constant. It

follows that Q is nonincreasing during each such step.

If we follow the strategy of moving through the tree, taking each interior node of

the tree in turn, pruning the tree to reduce the problem to minimization of Q with

respect to the three branch lengths incident on that node, and finding the optimum

lengths for those three branches, the successive values of the sums of squares Q

cannot increase: they will form a monotonic nonincreasing sequence bounded below

by zero. The sequence of values of Q must thus converge; it seems a reasonable

expectation that the sequence of values of the branch lengths will also converge.

The iteration at each stage sets the derivatives of Q with respect to three of the

branch lengths to zero. When further iteration through all interior nodes of the tree

produces no change, it follows that the derivatives of Q with respect to all branch

lengths are zero, so that we have reached a stationary point. We cannot guarantee

from this that the stationary point is a minimum. However, a glance at equation (1)

shows that if the wij are nonnegative the quadratic form Q cannot ever be negative;

this is sufficient to guarantee that no saddle-points or maxima can exist. We have

not ruled out that there could be directions in which the sum of squares might be

unchanging. This is the case where the quadratic form is positive semi-definite. In



Felsenstein 11

such a case the algorithm will reach one of the tied points along the line (or plane)

of equally good solutions. We can in any case guarantee that we have minimized

the quadratic form (1).

An alternative scheme would of course be to set up and solve the linear equations

which are the normal equations for the least squares problem. The present

method amounts to an iterative approach to solving these equations, differing from

conventional iterative approaches such as Gauss-Seidel iteration by changing the

variables three at a time instead of one at a time. It also avoids directly setting

up the equations, and takes advantage of the sparseness of the coefficient matrix in

a natural way. As we shall see, it also enables us to maintain the constraint that

branch lengths not be negative, if that is desired.

The Algorithm

The strategy used in the program FITCH starts with the first three species. These

are connected into an unrooted tree (only one topology is possible) and equations

(13) used to solve for least squares branch lengths. The program then considers

where the fourth species can be added to the tree. There are three possible places

that a new internal node could be added, with the fourth species connected to it, and

these are on the interiors of the three branches. Each of these is tried in turn, and

the least squares branch lengths found for each of these topologies. The program

accepts that placement of the species that results in the smallest sum of squares.

The algorithm continues in this fashion, adding each species to all possible places

in the tree, and picking the placement which minimizes the sum of squares after

iterative computation of the least squares branch lengths. It is convenient to start

the iteration for each topology by calculating the lengths of the branches incident

upon the newly introduced node, since that provides us with starting values for their



Felsenstein 12

lengths. The iteration for each topology procedes by traversing the tree outwards

from that node, optimizing branch lengths for each internal node encountered.

Although it would perhaps be best to repeat the traversal until the sum of squares

stopped changing, I have found for the data sets that I have encountered that four

passes through the tree is quite sufficient.

After each species is added to the tree, except the fourth species, a series of

local rearrangements is carried out to see if the tree can be improved. A local

rearrangement switches the order of adjacent branches in the tree. In the present

version of the program all local rearrangements are tried after each species is

added. If any local rearrangements improve the tree, as judged by the sum of

squares, the rearrangement process is continued until no further improvement by

local rearrangement is possible.

The user has the option of specifying that, after the last species is added to the

tree, the last bout of rearrangements should be global. In that case, each subtree is

removed from the tree and reinserted in all possible places, the best of these being

chosen, and the process continued until no further improvement results. Swofford

and Olsen (1990) have described this rearrangement strategy as Subtree Pruning

and Regrafting. At that point we have a tree that cannot be improved upon by

moving any single group. This does not guarantee us that we have found the best

topology, but it gives us some reassurance that we have at least made a serious

attempt to find it.

In PAUP* the strategy for searching among tree topologies is different and will

not be described here.

Avoiding Negative Branch Lengths

I have argued elsewhere (Felsenstein, 1984; 1986) that it is appropriate to find the



Felsenstein 13

least squares tree among all those having no negative branch lengths. The present

algorithm does not avoid negative branch lengths, as it is entirely possible for one or

more of the solutions to equations (13) to be negative. However, it is quite easy to

alter the algorithm to avoid negative branch lengths; this is what is done by default

in FITCH, allowing negative branch lengths being an option.

When we are finding the optimum values of the three branch lengths around an

interior node, suppose that we require that (11) be minimized but without allowing

any of va, vb, or vc to become negative. If the solution to (13) does not find any

negative branch length then there is no problem. If one or more of the branch lengths

is negative, in principle we should examine all seven possible patterns of zero branch

lengths in which one, two, or all three of the branch lengths are zero.

It would be possible to minimize (11) for each and pick the best solution, but I

have followed a simpler and less exact strategy. Any of the branch lengths that have

become negative are set to zero, and the resulting values taken as a starting point.

Each of the three branch lengths is then considered in turn. Fixing the values of the

other two, the least squares solution for va is

v̂a = [wab(Dab − vb) + wac(Dac − vc)]
/

(wab + wac) (14)

If the minimum occurs at a negative branch length, then the nonnegative value

of that branch length which minimizes (11) will be zero, since (11) is a quadratic

in each of its three variables, and has positive curvature in each. Thus, when a

branch length computed from (14) becomes negative, it is instead set to zero. The

branch lengths va, vb, and vc are determined in this way in turn, until there is no

further change. Although this procedure is not guaranteed always to find the best

nonnegative values of the branch lengths, it seems to do quite well in practice.

Complexity of the Computation



Felsenstein 14

In calculating how much effort is involved in the computation, we must consider

how many topologies of each given size are examined, and how much effort is involved

in optimizing the branch lengths for each topology. We start with three species,

adding the fourth in each of three possible places. When we add the n-th species,

there are 2n − 5 possible places to add it. There are also, for n > 4, 2n − 6 local

rearrangements that will be tried, assuming that none of them causes the tree to

be altered, which in turn would require additional rounds of rearrangement. The

addition of the n-th species will thus cause 4n− 11 evaluations of the least squares

branch lengths.

The evaluation of branch lengths on a tree requires four passes through the tree.

Each of these prunes the tree n − 3 times if it possesses n tips, and each time it is

pruned the distances of the central node to all other nodes are updated. When there

are m nodes remaining on the tree as it is being pruned, this updating requires on

the order of (2m− 3) operations.

Putting all of this together, one can show that estimating a tree and its branch

lengths requires on the order of n4 operations. This means that the algorithm will

be fairly slow for large numbers of tips. In a case having 20 species, FITCH required

46.9 seconds to execute on my DECstation 5000/125, a machine whose SPECfp92

rating is approximately 25 (so that it is approximately as fast as a 486DX/66). A

similar case having 40 species (the 20 species were a random sample from these 40)

took 730 seconds. This is 15.565 times longer, very close to the expected multiplier

of 24 = 16.

A Numerical Example

We can get some feel for the progress of the iteration by watching its progress on

an example. Consider the data set of Sarich (1969), which is reproduced in Table 1.



Felsenstein 15

Running FITCH on this data set without allowing negative branch lengths, using

the Fitch-Margoliash criterion, gives the tree shown in Figure 2, which is rooted

using the monkey as an outgroup. The weighted sum of squares for this tree is

0.06996. Figure 3 shows the progress of branch length iteration when we take this

tree topology and initially set all branch lengths equal to 1. The graph shows 8

passes through the tree: the branch lengths essentially cease changing after the first

four.

It should not be unexpected that the iteration succeeds rapidly. For moderately

clean data, the iteration computes the internal branch lengths using (13), which in

effect uses weighted averages of the distances between members of the three different

subtrees defined by an internal node. Once the tree approaches its final branch

lengths, if there is not serious internal conflict in the data these weighted averages

depend rather little on the details of the branch lengths within the subtrees, and

hence the branch lengths rapidly stabilize. It is the very independence of evolution

in the different subtrees, the very treeness of the data, that ensures the success of

this alternating least squares approach.

An Example with Sequence Data

To give a better feel for how the present algorithm copes with real data, we will

analyze the metazoan data set of Turbeville et. al. (1994). These have 16 species,

many of them chordates or their near relatives. These data can be retrieved from

the alignments section of the EMBL database as alignment DS16914. Both their

analysis and this one used only a subset of better-aligned sites. FITCH took 17.6

seconds to analyze these distances on a 486DX/33 running the Linux operating

system. On a Digital Alphastation 400 4/233 it took 1.46 seconds. The tree (shown

in Figure 4) is identical to the tree produced by Turbeville et. al. using the same



Felsenstein 16

program. It may be worth noting that in the study by Turbeville et. al., the trees

produced by FITCH were similar to those produced by neighbor-joining and by

likelihood, and trees produced by parsimony analysis of a combined molecular and

morphological data set, and these trees all supported the existence of the Chordata.

These differed from the tree produced by parsimony on the molecular data. The

utility of a comparison based on a single case, is, however, limited.

Comparison with De Soete’s method

An approach to searching over additive trees, constraining the estimated branch

lengths to be nonnegative, is the innovative method of De Soete (1983), which starts

with the observed distances and then gradually brings them closer to additive tree

distances while searching for the least squares fit. This is quite different from the

present approach, which searches in the space of additive trees: De Soete’s method

approaches that space from outside. It is therefore possible that it may carry out

a far more effective search for the tree topology that leads to the minimum sum of

squares.

The most widely used implementation of De Soete’s method is probably lsadt, a

C program by Michael Maciukenas which is distributed in Stephen Smith’s Genetic

Data Environment (GDE) package of programs for DNA analysis. To test whether

the present method had any advantages over lsadt, I have simulated the evolution of

20 DNA sequences on a tree. The tree was generated by a branching process, with

the rate of branching of a lineage being 1 per unit time. Branching was continued

until the 21st lineage was just about to be produced, and then the process was

stopped.

DNA sequences of 300 bases in length were stochastically evolved along the

resulting trees. Each branch had an expected rate of change per unit time of either



Felsenstein 17

0.066667 or 0.2, these values being chosen with equal probability. Thus the resulting

trees were not ultrametric when the branch lengths relevant to base change are

considered. All sites changed with equal probabilities, and a Kimura 2-parameter

model (Kimura, 1980) was used, with instantaneous transition/transversion ratio

equal to 2.

100 trees and data sets were produced by this simulation. Of these, 30 had at least

two identical DNA sequences on them. The resulting distances in those cases caused

lsadt to terminate with an error message. The remaining 70 distance matrices were

analyzed with both programs. The sum of squares of the fit from the lsadt results is

not provided by that program – it was computed by using the estimated trees that

emerged from lsadt as user trees whose branch lengths were not to be re-estimated

in a run of FITCH. In analysis of the distance matrices by FITCH the unweighted

least squares method of Cavalli-Sforza and Edwards (1967) was used, as lsadt was

also using that unweighted criterion.

In every case lsadt was at least 10 times faster than FITCH. Of the 70 distance

matrices on which both methods were run, for 4 of them the results were identical to

five decimal places. In all 66 of the ones in which the results were different, FITCH

gave a lower sum of squares. In many of these the differences were small, indicating

that some accuracy may have been sacrificed for speed in lsadt. But in 25 of the 66

cases, the lsadt sum of squares was more than 1% greater, and in 5 cases it was more

than 10% greater. When the trees were examined more closely, there were found to

be 24 cases in which the tree topologies estimated by lsadt and FITCH differed. In

none of these was the difference due to rearrangement of zero-length branches. In

11 of these 24 cases the sum of squares differed by more than 1%, in 2 cases by more

than 10%. It is interesting to note that this means that in 14 cases two trees of the

same topology differed in sum of squares by more than 1%, and in 3 cases by more



Felsenstein 18

than 10%.

The results suggest that the present method can sometimes find better tree

topologies, and/or better branch lengths, than De Soete’s method, in spite of the

constraint on its search algorithm to stay within the space of additive trees. It is

not clear how other implementations of DeSoete’s method would perform in these

comparisons.

Relationship to the Neighbor-Joining method

The Neighbor-Joining method of Saitou and Nei (1987) has become popular owing

to its speed: its execution time is proportional to the cube of the number of species.

Simulation studies (Kuhner and Felsenstein, 1994) show it to be nearly as effective

as the Fitch-Margoliash method in recovering the true phylogeny. It estimates the

lengths of branches to two tips that are “neighbors” on the tree, then removes these

and replaces them with a new tip. Distances are calculated from the new tip to all

other tips currently on the tree. Saitou and Nei show that the step that estimates the

branch lengths of two neighbors makes a least squares estimate, by the unweighted

criterion of Cavalli-Sforza and Edwards (1967) of the branch lengths vi and vj, for a

tree which has i and j as neighbors but has all the other tips that remain on the tree

branching from a multifurcating node. Figure 5 shows the tree topology to which

this least squares estimate applies. Neighbor-Joining may thus be regarded as an

approximation to the least squares algorithm of Cavalli-Sforza and Edwards (1967).

It differs from the present method in that, having settled on branch lengths vi and

vj, it never returns to that part of the tree to re-estimate them.

Saitou and Nei’s algorithm “prunes” the tree. Its recalculation of distances from

node k to each remaining tip closely parallels the current method: it uses

Dkl = (Dil + Djl −Dij)/2. (15)



Felsenstein 19

Note that since, in Neighbor-Joining as in the current method, for two neighbors on

the tree Dij = vi +vj, we can substitute this into equation (15) and rearrange it into

the case of equation (8) for which wil = wjl = 1, as is true for the Cavalli-Sforza

and Edwards criterion.

In the Neighbor-Joining method, the values of vi and vj are determined when the

tree is as shown in Figure 5. Being identical to the values one would get from Cavalli-

Sforza and Edwards’s unweighted least squares criterion, they are also identical to

the values that our algorithm would give to vi and vj if iteration was done with the

tree structure of Figure 5. The relative success of the Neighbor-Joining algorithm in

approximating the least squares solution to a completely resolved tree suggests that

the estimate is not very sensitive to the details of the resolution of the multifurcation

in Figure 5. David Swofford (personal communication) has pointed out that this

may also be the reason for the rapidity with which the present algorithm converges,

as shown in Figure 3. As vi and vj are not very sensitive to the other details of the

structure of the tree, they reach reasonable values very rapidly.

We may thus regard the Neighbor-Joining method as a quick and fairly accurate

approximation to the unweighted least squares method.

Relationship to the Minimum Evolution method

The Minimum Evolution distance matrix method (Kidd and Sgaramella-Zonta,

1971; Rzketsky and Nei, 1992) searches among tree topologies. For each tree

topology it evaluates branch lengths by least-squares fitting. The topology is

evaluated, not by the overall sum of squares, but by the sum of the lengths of

these branches. The present algorithms can thus be used to do the branch length

calculations in a minimum-evolution method. It is thus not hard to modify a

program that infers phylogenies by least squares to make one that infers them by



Felsenstein 20

minimum evolution. This will be done as an option in future versions of FITCH.

Summary

This paper does not describe a new distance matrix method. Instead, it

introduces a new computational framework for the long-existing least squares family

of distance matrix methods. This framework, by making effective use of the structure

of the tree, allows us to maintain a constraint of nonnegativity of branch lengths.

The algorithm “prunes” the sum of squares on the tree in a natural way. This

process may be helpful for other tree calculations that use least squares. It can

serve as the basis for either least squares estimation of the tree or minimum-evolution

estimation, and has some relationship to the neighbor-joining method. When used

in connection with local rearrangement of the tree, it seems more effective, if slower,

than De Soete’s innovative algorithm for searching the space of trees. It forms the

basis of the least-squares distance matrix calculations in the FITCH program of

PHYLIP, and in PAUP*. Having been in distribution in the former since 1982, it

has been used to compute most of the least squares trees that have been published

in the systematics and the molecular evoluition literature.

Acknowledgments

I wish to thank David Swofford for illuminating comments in discussion of these

matters, and John Huelsenbeck, Peter Beerli, and Mary Kuhner for corrections of

the manuscript and helpful suggestions. This work was supported in part by task

agreement number DE-AT06-76EV71005 of contract number DE-AM06-76RLO2225

between the U. S. Department of Energy and the University of Washington, by

National Science Foundation Grant numbers BSR-8614807, DEB-9207558, and BIR-

9527687, and by National Institutes of Health grants 2 R55 GM41716-04 and 1 R01

GM51929-01.



Felsenstein 21

References

Cavalli-Sforza, L. L. and A. W. F. Edwards. 1967. Phylogenetic analysis:

methods and estimation procedures. Evolution 32:550-570. Also published in Am.

J. Hum. Genet. 19:233-257.

De Soete, G. 1983. A least squares algorithm for fitting additive trees to proximity

data. Psychometrika 48:621-626.

Farris, J. S. 1972. Estimating phylogenetic trees from distance matrices. Am. Nat.

106:645-668.

Felsenstein, J. 1984. Distance methods for inferring phylogenies: a justification.

Evolution 38:16-24.

Felsenstein, J. 1986. Distance methods: reply to Farris. Cladistics 2:130-143.

Fitch, W. M., and E. Margoliash. 1967. Construction of phylogenetic trees.

Science 155:279-284.

Kidd, K. K., and L. A. Sgaramella-Zonta. 1971. Phylogenetic analysis:

concepts and methods. Am. J. Hum. Genet. 23:235-251.

Kimura, M. 1980. A simple model for estimating evolutionary rates of base

substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.

16:111-120.

Kuhner, M. K. and J. Felsenstein. 1994. A simulation comparison of phylogeny

algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11:459-468

(Erratum 12:525 1995).

Rzhetsky, A. and M. Nei. 1992. A simple method for estimating and testing

minimum-evolution trees. Mol. Biol. Evol. 9:945-967.

Saitou, N., and M. Nei. 1987. The Neighbor-Joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.



Felsenstein 22

Sarich, V. M. 1969. Pinniped origins and the rate of evolution of carnivore albumins.

Syst. Zool. 19:286-295.

Swofford, D. L. and G. J. Olsen. 1990. Phylogeny reconstruction. Chapter 11,

Pp. 411-501 in D. M. Hillis and C. Moritz, eds. Molecular Systematics. Sinauer

Associates, Sunderland, Massachusetts.

Turbeville. J. McC., Schulz, J .R. and R. A. Raff. 1994. Deuterostome

phylogeny and the sister group of the chordates: evidence from molecules and

morphology. Mol. Biol. Evol. 11:648-655.

Wold, H. 1966. Nonlinear estimation by iterative least squares procedures. Pp. 411-

444 in F. N. David, ed. Research Papers in Statistics. Festschrift for J. Neyman.

John Wiley and Sons, London.



Felsenstein 23

Table 1

The immunological distance data set of Sarich (1969) symmetrized. Dog: Canis

familiaris, bear: Ursus americanus, raccoon: Procyon lotor, weasel: Mustela vison,

seal: Phoca vitulina richardii, sea lion: Zalophus californicus, cat: Felis domestica,

monkey: Aotus trivirgatus. These data were used to construct the tree given in

Figure 2.

dog bear raccoon weasel seal sea lion cat monkey

dog 0 32 48 51 50 48 98 148

bear 32 0 26 34 29 33 84 136

raccoon 48 26 0 42 44 44 92 152

weasel 51 34 42 0 44 38 86 142

seal 50 29 44 44 0 24 89 142

sea lion 48 33 44 38 24 0 90 142

cat 98 84 92 86 89 90 0 148

monkey 148 136 152 142 142 142 148 0



Felsenstein 24

FIGURE CAPTIONS

Figure 1. The tree used to illustrate the pattern of computations in the text.

Figure 2. The least squares estimate for the Sarich (1969) data set, using the

Fitch-Margoliash criterion and the algorithm described in this paper. Horizontal

distance is proportional to branch length. The tree has been rooted with monkey

as the outgroup.

Figure 3. Change of branch lengths in eight passes through a tree (that of Figure

2) starting with arbitrary initial values. Note that the lengths essentially reach their

final values after four passes. As each iteration consists of successive changes around

each of the six interior nodes, we divide each time interval into sixths and show each

change at the point that it occurs.

Figure 4. The tree produced by FITCH on the 16s rRNA data set of Turbeville

et. al. (1994), when distances are computed by the Kimura 2-parameter method

with transition/traversion ratio 2.0. The alignment and selection of sites used was

that recommended by these authors.

Figure 5. Tree form used in the computation of the lengths of branches i and j in

the Neighbor-Joining method.



Felsenstein 25

i j

k

l

vi
vj

vk
0

Figure 1



Felsenstein 26

cat

weasel

seal sea lion
dog

raccoon

bear

monkey

19.26.8

0.85

100.86

47.14

18.88

2.1

12 12

7.53
3.87

25.46

20
.6

Figure 2



Felsenstein 27

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8

Iteration

B
ra

nc
h 

le
ng

th

Figure 3



Felsenstein 28

Xenopus
�

Squalus
�

Myxine
�

Styela
�

Tenebrio
�

Branchiostoma
�

Sebastolobus
�

Petromyzon
�

Ophiopholis
�

Strongylocentrotus
�

Limicolaria
�

Eurypelmia
�

Latimeria
�

Herdmania
	

Saccoglossus
�

Placopecten
�

Figure 4



Felsenstein 29

i

j

k

l

Figure 5


