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Abstract. – Comparative methods analyses have usually assumed that the species

phenotypes are the true means for those species. In most analyses the actual values

used are means of samples of modest size. The covariances of contrasts then involve

both the covariance of evolutionary changes and a fraction of the within-species

phenotypic covariance, the fraction depending on the sample size for that species.

Ives, Midford, and Garland (2007) have shown how to analyze data in this case

when the within-species phenotypic covariances are known. The present model

allows them to be unknown and to be estimated from the data. A multivariate

normal statistical model is used for multiple characters in samples of finite size from

species related by a known phylogeny, under the usual Brownian motion model of

change and with equal within-species phenotypic covariances. Contrasts in each

character can be obtained both between individuals within a species and between

species. Each contrast can be taken for all of the characters. These sets of contrasts,

each the same contrast taken for different characters, are independent. The within-

set covariances are unequal, and depend on the unknown true covariance matrices.

An EM algorithm is derived for making an REML estimate of the covariances of

evolutionary change and the within-species phenotypic covariances. It is available in

the Contrast program of the PHYLIP package. Computer simulations show that the

covariances are biased when the finiteness of sample size is not taken into account,

and that using the present model corrects the bias. Sampling variation reduces the

power of inference of covariation in evolution of different characters. An extension of
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this method to incorporate estimates of additive genetic covariances from a simple

genetic experiment is also discussed.
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Since its introduction (Felsenstein, 1985) the method of contrasts has been widely

used to correct comparative methods for covariation of observations due to the

phylogeny of the species. It assumes that character change follows a model of

correlated Brownian motion, and that the phenotypic means of the characters are

observed in each species. But that is a strong assumption: invariably the mean of

a species is measured in a finite sample, sometimes quite a small sample. Ricklefs

and Starck (1996) have shown an example where the largest contrasts tended to be

those from the most closely related species, and they suggested that this was most

likely an artifact of sampling error caused by within-species variation.

Why there is a problem

To see why this artifact occurs, consider a single character in two sister species

that are separated by branches whose total length is such that we expect the variance

of the differences between species to be v. Now suppose that the within-species

variance of the character is σ2. This variance is either measurement error or simply

within-species phenotypic variation, arising from both genetic and environmental

causes. If we have sample sizes of n1 and n2 individuals from the two species, the

variance of the difference between these two species is

v +
1

n1
σ2 +

1

n2
σ2 (1)

If we ignored the within-species variation, we would assume that this contrast had

variance v. Contrasts are standardized by their standard deviations (more generally,
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by a quantity proportional to their standard deviations). So we would standardize

by dividing the contrast by
√

v. Thus the effect of the within-species variation is to

inflate the variance of the difference by multiplying it by a factor of

1 +
1

n1

σ2

v
+

1

n2

σ2

v
(2)

If the sample sizes n1 and n2 are both large, this may be a minor effect, but often

sample sizes may be small, with species in some case being represented by only a

single specimen.

When the two species are not closely related, v will be large and the inflation

may still be small, but when they are closely related, the small value of v means

that the contrast may have a much larger variance than expected. The contrast

will have been standardized by being divided by far too small a quantity. This is

presumably the reason that Ricklefs and Starck (1996) found that the outliers in

their statistical analysis tended to be the contrasts associated with close relatives.

It should be evident that this incorrect standardization can result in improper

weighting of evidence from different parts of the tree.

A correction for within-species variation and measurement error

The problem posed by within-species variation and measurement error has been

discussed by a number of people. Lynch (1991) gave a model that could be used

for within-species variation. It assumed that the species means were subject to an

additional, nonphylogenetic variation whose covariance matrix could be estimated.
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The primary motivation for that model was a nonphylogenetic burst of adaptation

specific to each species, making more explicit the model implicit in the work of

Cheverud et al. (1985) It is not intended to model variation from individual to

individual within species, but Lynch’s model would work for within-species variation

if the sample size for each species was one individual. Lynch mentioned the

possibility of using estimates of the sampling error of the species means to correct

his inferences. Housworth et al. (2004) have further discussed the possibility of

extending Lynch’s model to take account of within-species variation. Christman

et al. (1997) used an extension of Lynch’s model to cope with sampling variation,

implementing it in MATLAB. They did not give their detailed estimation equations.

Harmon and Losos (2005) have used computer simulation to check the effect of finite

intraspecific sample size on comparative studies. They found that it could cause

inflation of type I error rates, and they suggested using an ANOVA in advance to

check whether sample size was too small.

Ives, Midford, and Garland (2007) have addressed the problem and have shown

how to correct for the effects of within-species variation and measurement error.

Their method allows for each character to have variation within species and allows

for the measurements of different characters within species to be correlated. They

show how to compute ML, REML, and GLS (Generalized Least Squares) estimates

of the covariances of evolutionary change, allowing for the phenotypic covariances

within species as well. Their models are essentially identical to those given in this
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paper.

The present model extends their methods in one major way. They have assumed

that the phenotypic covariances within species are known, rather than to be

estimated from the data set. They argue that this is not a serious restriction in

practice with real data. The method given here is more general than theirs in that

it estimates both the within-species phenotypic covariances and the between-species

phylogenetic covariances from the same data set, thus allowing for our uncertainty

about the within-species covariances. The computational scheme presented here also

shows how the method of contrasts can be extended within and between species in

a self-consistent way. The EM algorithm developed here for inference of covariances

can readily be adapted to testing hypotheses about constraints on the covariances.

We will see in the discussion below that the present framework can also be extended

to accomodate quantitative genetics experimental designs, creating the possibility of

detecting whether the evolutionary change between species reflects natural selection

rather than genetic drift.

A model with within-species variation

In this paper I will modify Lynch’s model to allow for sample sizes greater than 1

and within-species phenotypic variance, and I will provide a computational strategy.

As we shall see, although contrasts can be used within species and between species,

the resulting contrasts cannot be scaled so as to all have the same variances, at

least not without knowing the parameters in advance. Alternatively, it would be
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possible to use the covariances of the original observations, without taking contrasts,

as Grafen (1989) did with his “phylogenetic regression” as an alternative to the

standard contrasts method.

The formulas presented here can be used either way. The present computational

scheme is an REML (reduced maximum likelihood) rather than an ML (maximum

likelihood) method. Lynch’s method was an iterative weighted least squares method

which converges to a direct maximum likelihood analysis of the full multivariate

normal model. My method transforms the data by taking between-species and

within-species contrasts, and doing this once for each character. For each character

we omit the grand mean of all observations. It is thus a REML analysis. As we shall

see, it can be extended to take into account of within-species genetic experiments

of a simple type (such as half-sib designs). The method is thus able to correct for

estimates of genetic covariation, treating within and between-species analyses in a

unified way.

This paper presents the computational strategy, some computer simulation

experience with the behavior of the estimates, and will discuss extension of the

method to allow for estimates of genetic covariation.

The model

The model used here will have a component for phenotypic variation from

individual to individual within the species. Such variation can arise from sampling

or from measurement error. The relationship of the present paper to previous
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treatments of Lynch’s model is somewhat circular: Housworth et al. (2004) mention

that Lynch’s Phylogenetic Mixed Model can be modified to take account of within-

species variation as well, and they cite a prepublication communication of the present

results as an alternative to their suggestions.

I will explain the model in terminology somewhat different from Lynch’s; he used

terms (such as “additive value”) from the analogous quantitative genetics context

from which his computational methods were derived. This has the disadvantage

that users may not realize that the additive genetic variation of traits within species

is not necessarily the cause of the “additive” variations between species. Lynch

warned against misinterpretation of this terminology. To help avoid the problem

I will instead call the between-species covariances “phylogenetic” and the within-

species covariances “phenotypic”.

Let us assume a Brownian motion model of evolutionary change with correlated

change of p characters along a phylogeny of s species. Within each species the

characters will also covary across individuals in a sample from a multivariate normal

distribution, with the covariances of characters assumed to be the same within all

species. This assumption ought to be controversial, as natural selection and genetic

drift can alter genetic covariances as gene frequencies change between populations; it

becomes increasingly suspect as we treat widely-diverged species. Nevertheless, we

need the assumption to carry through our analysis. Similar assumptions are made

by Lynch (1991) and by Ives, Midford, and Garland (2007).
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The within- and between-species covariances are allowed to be completely

different. I have explained elsewhere (Felsenstein, 1988, 2002a, 2004) why we should

not simply assume that these two sets of covariances are proportional to each other.

We will assume that a total of n individuals have been measured, with ni of them

coming from species i. As is usual in Brownian motion models, the expected change

of each character in a lineage is taken to be zero, so that the expectation of the

character in each species is given by the overall expectation. The joint distribution of

all characters in all individuals is multivariate normal. The distribution is therefore

determined by its expectations and covariances; we need to estimate them.

In a lineage the covariance of evolutionary change between characters k and ` per

unit branch length will be denoted ak`. The covariance of the total changes of these

two characters along a lineage will be obtained by multiplying this by the length of

the branch. If the branches of the phylogeny from the root up to the most recent

common ancestor of the species for individual i and the species for individual j are

of total length tij, then the covariance of character k in individual i and character `

in individual j due to shared evolutionary change will be (Felsenstein, 2004)

Cov [ xik, xj` ] = tij ak`. (3)

We stack the rows of the array xij, so that we make a vector y with the elements

yT = (x11, x12, . . . , x1p, x21, x22, . . . , x2p, . . . , xn1, xn2, . . . , xnp) , (4)

with all of the phenotypes for individual 1 followed by all those for individual 2, and

so on. We will assume that the individuals are themselves arranged so that members
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of the same species are adjacent. Then we can write the covariance matrix of the

elements of y compactly as a Kronecker product of matrix T and matrix A:

Cov[y ] = E[yyT ] = T ⊗ A (5)

The Kronecker product of these two matrices is an np×np matrix which arranges the

products tijak` in the appropriate order to be the covariance matrix of the stacked

vector y.

The variation within species is incorporated by adding to the covariance an

additional term for the within-species phenotypic covariance of character k in

individual i with character ` in that same individual. This is done using the

“Kronecker delta” δij which is simply the bookkeeping device which is 1 when i = j

and 0 otherwise (it has no subtle connection to the Kronecker product):

Cov [ xik, xj` ] = tij ak` + δij pk` (6)

This adds a within-species covariance pk` between characters of the same individual.

The result can be expressed in matrix terms by

Cov[y ] = E[yyT ] = T ⊗ A + I⊗ P (7)

where I is the n × n identity matrix.

Note that the matrix T expresses the phylogeny of the individuals. Individuals

in a sample from the same species are considered to be separated from each other on

it by branches of zero length (see Figure 1). This implicitly assumes that we have

sampled individuals independently from a single population. If we have samples from
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multiple populations for a species, the situation is more complex. I have elsewhere

outlined how one would construct a within-species comparative method (Felsenstein,

2002b). It is not easily integrated into the present framework, because it assumes

that phenotypes are selected towards a local optimum in each population rather

than undergoing an unconstrained Brownian motion.

(Insert Figure 1 about here)

We will assume that the tree T is known, and ask how the covariances A of

phylogenetic change can be estimated, as well as the within-species phenotypic

covariances P. Lynch (1990) gave a method based on the “mixed model” in wide

use in animal breeding. The method presented here will instead be based on having

contrasts among all individuals, calculated so as to remove all covariances due to

phylogeny. Each of these contrasts is computed for all characters. Unlike the original

contrasts method, the method does not scale the contrasts so that they have equal

variance, but instead standardizes the contrast coefficients to be an orthonormal

transformation. We will see that we can then use an EM algorithm to estimate the

covariances.

I will assume that all characters are available for all individuals. It would be

possible to develop a likelihood inference method for cases where there are missing

values; since even inference of simple covariance matrices becomes difficult with

missing data, this complication will not be covered here.
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Again, I emphasize that the use of contrasts is a convenience, that the whole

analysis could be done with the original phenotype values, and if a REML analysis

were used for that, the results would be equivalent.

The contrasts

The contrasts are obtained from the tree T in the usual way (Felsenstein, 1985),

except that they are not normalized to have variance 1, but rather to have the sum

of squares of their coefficients add to 1. Figure 1 will serve as an example for the

calculation of the contrasts.

Within-species contrasts

Contrasts for each character are first formed within each species that has multiple

individuals sampled. For example, species B has 4 individuals. A simple way to

form the orthonormal contrasts for each character within this species is to first take

the difference for the character between individuals 1 and 2, then the difference of

individual 3 from the mean of those two, then the difference of individual 4 from the

mean of the first three. These contrasts are then multiplied by appropriate constants

to make the sum of squares of their coefficients add to 1. Thus the contrasts will
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end up as

c1 = f1 (xB1 − xB2)

c2 = f2

(

xB3 −
(

1
2
xB1 + 1

2
xB2

))

c3 = f3

(

xB4 −
(

1
3
xB1 + 1

3
xB2 + 1

3
xB3

))

(8)

The normalization constants f1, f2, and f3 must be chosen so that the sum of squares

of the coefficients in each contrast is 1:

f 2
1 + f 2

1 = 1

f 2
2 + 1

4
f 2

2 + 1
4
f 2

2 = 1

f 2
3 + 1

9
f 2

3 + 1
9
f 2

3 + 1
9
f 2

3 = 1

(9)

which yields immediately

f1 =
√

1
2

f2 =
√

2
3

f3 =
√

3
4

(10)

and, more generally

fm =

√

m

m + 1
(11)

This is a convenient set of within-species contrasts. For each contrast, one computes

it for each character. The calculation of the contrasts in effect makes an orthonormal
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transformation of the original character values. The ith such contrast is independent

of the jth such contrast, but the ith contrast for one character has a covariance with

the ith contrast for another character, which is the same as the phenotypic covariance

of those characters.

We will see a similar pattern in the contrasts between species. There too, the

different contrasts are independent of each other, but the same contrast taken on two

different characters has a covariance equal to the covariance of the original values

of the characters.

There are many other ways that orthonormal contrasts could be taken within

the species; for the calculations in this paper, all are equivalent. They correspond

to different trees connecting the observations within species, each tree having all

of its internal branches of length zero, and all external branches of equal length.

All of these will leave us, for each character, with one linear combination of the

individual values that is orthogonal to all of these within-species contrasts. That

linear combination is, of course, the species mean of the character. The vector

of species mean phenotypes has covariances composed of two components: the

covariances of the true species mean phenotypes, plus a fraction of the within-species

phenotypic covariances P.

Between-species contrasts

Imagine taking the tree T and forming contrasts according to the usual contrasts

method, with the exception that each individual is a tip, connected to the node
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for its species by a branch of length 0. In the present case, each contrast is not

scaled so that its variance is 1, but so that the sum of squares of the coefficients

of the individual measurements is 1. There is a simple algorithm for doing this, an

extension of the usual contrasts algorithm. This algorithm forms a set of contrasts

among the individual measurements. We compute each contrast for each character.

The contrasts thus come in sets. Each set is the result of computing the

same contrast for all of the characters. The contrasts in the different sets are

independent. We will use these sets of contrasts to estimate the phylogenetic and

phenotypic covariances in a way that takes into account the effect of the within-

species phenotypic covariances on their distribution.

We start with the contrasts between individuals within species. Using the

contrasts outlined above, there will be n − s of these within-species contrasts in

all. Each has expectations 0 in all characters and covariance matrix P between

characters. We are then left with the means of each character in each species.

A recursive algorithm

There is a convenient algorithm for computing the between-species contrasts. To

carry out the algorithm for a single character, imagine computing three quantities at

each node of the tree. We start, not at the tips where the individual measurements

are, but at the nodes for each species (in the case of a species with a sample size of 1,

we do start at that individual). One of the three quantities is the mean phenotype

of the character at the node (x), another (δv) is proportional to the variance of that
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mean caused by the phylogenetic component of variance. Thus at the start it is zero,

as no phylogenetic component contributes to the differences between measurements

within a species. The third quantity (s) is the sum of squares of the coefficients

used to compute the mean at that node from the values in the ni individuals. The

necessary contrasts can be computed using these three quantities.

At the start, at the node for a species, the mean phenotype x is the mean of

all individuals for that species. As the mean was computed as the mean of the

values from the ni individuals in the species, the sum of squares of the coefficients

of the individual values in that mean is si = ni(1/n
2
i ) = 1/ni. The mean at any

interior node of the tree will be a linear combination of the means of the species

above it, and hence also a linear combination of the phenotypes of the individuals

of that species, and we will compute the sum of squares of the coefficients for those

individual measurements.

For interior nodes of the tree these three quantities are updated down the tree

recursively, the values at each node being computed from the values in its immediate

descendants. I will show how this can be done for a bifurcating tree. Multifurcations

can be dealt with in an entirely analogous fashion, most easily by inserting fictional

branches of zero length into the tree and treating each multifurcation as a series of

bifurcations (Felsenstein, 1985, p. 10; Purvis and Garland, 1993).

Suppose that we are computing the values at a node, whose immediate

descendants are nodes L (left) and R (right). The branch lengths leading from
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the node up to nodes L and R are vL and vR. The equations for the values of the

three quantities at the node are the weighted average of the two descendant values;

x =
1

vL + δvL

xL + 1
vR + δvR

xR

1
vL + δvL

+ 1
vR + δvR

, (12)

the variance of that weighted average is:

δv = 1
/(

1

vL + δvL

+
1

vR + δvR

)

, (13)

the sum of squares of the coefficients of the individual measurements above nodes

L and R in the weighted average is then

s = f 2
L sL + f 2

R sR, (14)

where the coefficients fL and fR are:

fL =
1

vL + δvL

1
vL + δvL

+ 1
vR + δvR

(15)

and

fR =
1

vR + δvR

1
vL + δvL

+ 1
vR + δvR

. (16)

The equations (12) and (13) are the same as in the usual contrasts method. The

third equation (14) computes for each node the sum of squares of the coefficients of

individual measurements in the weighted average at that node. This will be needed

when the orthonormal contrasts are computed.

As we compute the value for a character at each interior node, we also compute

a contrast for that character at that node. The set of contrasts we compute will be
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orthonormal, which implies that they will be independent and each will have the

sum of squares of its coefficients be 1. The contrast at this node will be of the form

c = K(xL − xR) (17)

for some value of K. The value of K must be chosen so that the sum of squares of

the coefficients of the contrasts is 1. this implies that

K2 sL + K2 sR = 1, (18)

so that

K =

√

1

sL + sR

(19)

The quantities wii, which are the variances of the values of K(xR −xL), are from

(14) and (19)

wii = K2 (vL + δvL + vR + δvR) =
vL + δvL + vR + δvR

sL + sR

(20)

As we go down the tree, successively considering nodes, we update these three

quantities using equations 12, 13, and 14 and compute the contrast values using

equations 19 and 17. We use equation (17) separately for each character. For n

species this will compute n − 1 contrasts for each character. It is rather easy to

see that the coefficients and sums of squares of a contrast will be the same for all

characters, so that although we need to compute the weighted averages and the

contrast values for each character, we do not need to recompute δv, the fi, K and

s for each character. As we carry out this algorithm, we are in effect defining the
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entries in a matrix of coefficients of individual measurements in the contrasts, C.

The matrix contains one row for each contrast, including all of the within-species

contrasts. The n − 1 contrasts being orthonormal, it follows that

CCT = In−1 (21)

where In−1 is the (n − 1) × (n − 1) identity matrix.

The matrix C has in effect been applied to all characters, so the transformation

of the vector y makes it into the (n − 1)p contrasts

z = (C ⊗ I) y. (22)

An example of the contrasts

The tree in Figure 1 can be used to show how this works. Let us assume that

the branch lengths are as given. The first between-species contrast for a character

is between species A and B. The sample sizes for the species A, B, C, D, and E are

respectively 3, 4, 4, 4, and 2. The sum of squares of coefficients when we finish doing

the contrasts within a species with ni samples is s = 1/ni. The contrast between

species means of A and B has, from (19),

K =

√

√

√

√

1
1
3

+ 1
4

= 1.309307 (23)

so that the contrast is

1.309307 x̄A − 1.309307 x̄B. (24)
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The weighted average for the ancestor of A and B is, from (12)

x̄AB =
1

1.2
x̄A + 1

0.8
x̄B

1
1.2

+ 1
0.8

= 0.4 x̄A + 0.6 x̄B (25)

and the extra branch length added above that ancestor is, from (13)

δvAB =
1

1
1.2

+ 1
0.8

= 0.48. (26)

The sum of squares of coefficients at the ancestor of A and B is, from (14),

sAB = 0.42 sA + 0.62 sB = 0.143333. (27)

The next step is to do the same calculations for the adjacent tips E and C. This

yields again

K =

√

√

√

√

1
1
2

+ 1
4

= 1.154701, (28)

the contrast is then

1.154701 x̄E − 1.154701 x̄C. (29)

The weighted average at their ancestor is:

x̄EC =
1

1.1
x̄E + 1

0.7
x̄C

1
1.1

+ 1
0.7

= 0.388888 x̄E + 0.611111 x̄C (30)

and the extra branch length added above that ancestor is:

δvEC =
1

1
1.1

+ 1
0.7

= 0.427777. (31)

The sum of squares of the coefficients is, from (19)

sEC = (0.388888)2 sE + (0.611111)2 sC = 0.1689815. (32)
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The next stage involves the contrast between D and the ancestor of E and C.

The contrast coefficient K is

K =
1

√

1
4

+ 0.1689815
= 1.544908 (33)

so that the contrast is

1.544908 x̄D − 1.544908 x̄EC. (34)

The weighted average for the character is

x̄DEC =

1

0.7
1

0.7
+

1

0.9 + 0.427777

x̄D +

1

0.9 + 0.427777
1

0.7
+

1

0.9 + 0.427777

x̄EC

= 0.6547945 x̄D + 0.3452055 x̄EC

(35)

The sum of squares of coefficients is

sDEC = (0.6547945)2 sD + (0.3452055)2 sEC = 0.1273260 (36)

This gives us what we need to compute the last contrast, between AB and DEC.

The coefficients are calculated as

K =
1√

0.143333 + 0.1273260
= 1.922157 (37)

so that the contrast is

1.922157 x̄AB − 1.922157 x̄DEC. (38)

The further calculation of values of x̄, s, and δv is unnecessary because we have

already obtained all of the contrasts.
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I have shown the calculation for a single character. In practice, as their coefficients

are obtained, the contrasts can be taken separately for each character, using the same

coefficients for each character.

The covariances of the new variables

The contrasts are (n − 1)p new variables, which of course have a multivariate

normal distribution, as they are linear combinations of variables from a multivariate

normal distribution. Each has expectation zero. The resulting variables are shown

in Appendix I to consist of n− 1 sets of p variables, each set independent of all the

others. The p variables in the ith set have expectation zero and covariance

Cov[z(i)] = wii A + P (39)

where the wii are the obtained in the process of computing the contrast coefficients.

We may compare this with sets of contrasts calculated in the original contrasts

method, which have no within-species error term P and thus can be made to have

a common variance by dividing each by the square root of wii.

Estimating the covariances

If we are given a tree, we can use the recursive algorithm above to compute the

contrasts calculated in equation 22 to obtain n − 1 independent contrasts for each

character. We organize them into n − 1 sets of variables, with variables in different

sets being independent. The sets have unequal covariances, which depend on the as-

yet-unknown phylogenetic covariances A and within-species phenotypic covariances
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P. Given the transformed variables z, we could imagine estimating these covariance

matrices by maximum likelihood. One algorithm that is easy to carry out, if not

particularly fast, is the EM algorithm (Dempster et. al., 1977). This uses our current

estimates of A and P to find the expectation of sufficient statistics for estimating

those matrices. New covariance matrices then are estimated from these expectations.

The EM algorithm can be proven to converge on the maximum likelihood estimates

of the covariance matrices. In the present case the contrasts z omit the grand mean

of each character, so that the ML estimation is actually REML (reduced maximum

likelihood).

There are n observations of each character in all, and these have been reduced to

n − 1 contrasts. Of these n1 + n2 + . . . + ns are the within-species contrasts, all

of which have wii = 0. With a total of s species, the remaining s− 1 contrasts have

possibly different values of wii. If we look at the covariance matrix W⊗A+ I⊗P,

we find that it is block-diagonal with a total of n− 1 blocks. If we break the vector

of contrasts z into parts that correspond to the blocks, these correspond to the n−1

sets of contrasts. The block-diagonality reflects the independence of these sets of

contrasts.

We call the i-th such set of contrasts z(i). The elements of the vector z(i) are p

adjacent values in the larger vector z. In principle the vector z(i) consists of two

parts, one from the phylogenetic changes and one from the within-species phenotypic

differences. We can write the random variable for the vector of characters in terms
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of its unknown phylogenetic and phenotypic components

z(i) =
√

wii a + p. (40)

In practice we cannot know exactly how much of z(i) comes from each of these

sources. If we did, we could estimate the covariance matrices A and P by averaging

aaT and ppT over all the contrasts. The within-species contrasts have wii = 0; they

provide estimates of only P, but they do not contain all of the information about

P, since it also appears in the covariances of the between-species contrasts.

The EM algorithm uses our current estimates of A and P to compute the

expectations of their sufficient statistics, which are sums over the sets of contrasts of

aaT and of ppT given the z(i). These are used in place of the unknown actual

values to make new estimates of A and P. Those are then used to compute

new expectations, and so on. When the process converges, the results are the

(reduced) maximum likelihood estimates. Appendix II derives the formulas for the

expectations of aaT and ppT from the z(i) and the formulas for the current estimates

of the covariances, A(t) and P(t).

Tests of covariation

The estimates of the phylogenetic and phenotypic covariance matrices A and P

allow us to test hypotheses about the covariation between characters. If we wish to

test whether the phylogenetic covariance is nonzero, we can maximize the likelihood

under the assumption that all elements of A are zero, by carrying out the EM
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algorithm while holding all of the aij zero. Another hypothesis of interest would

be that two sets of characters have no phylogenetic covariation. If these are (say)

the first q characters and the remaining p − q characters, we would instead hold

the q × (p − q) block of covariances between them, and also its transpose, zero in

A. These restricted hypotheses would be compared to the results of the full EM

algorithm in which all elements of A and P are estimated.

If the null hypothesis has covariance estimates A0 and P0, and the alternative

has A1 and P1, the likelihood ratio test uses the densities of the multivariate normal

distribution of the contrasts to compute

2 ln(L1/L0) =
∑

i
ln

(

|wiiA0 + P0|
|wiiA1 + P1|

)

− ∑

i
z(i) T (wiiA0 + P0)

−1z(i) +
∑

i
z(i) T (wiiA1 + P1)

−1z(i)

(41)

This will have an approximate chi-square distribution with q(p − q) degrees of

freedom in the case where we test whether one set of characters has no phylogenetic

covariation with the rest.

One might think that it would be useful to infer whether one phylogenetic

covariance (say vkl) was zero, but in view of the possibility that these characters

could still covary through their mutual covariation with a third character, one would

need to be cautious in interpreting this hypothesis. It would be possible to fit a full

Gaussian graphical model for the characters by constraining the appropriate set

of partial correlations to zero, which amounts to constraining some entries in the
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inverse of the covariance matrix, to zero (Lauritzen, 1996, section 5.1.3).

Another test of interest is whether we can assume that the phylogenetic covariance

A is proportional to the phenotypic covariance matrix P. Appendix II includes

iteration equations (55) − (57) which can maintain proportionality between these

two covariance matrices (and estimate the constant of proportionality). These two

matrices can be used as A0 and P0 in the likelihood ratio test. In this test the

degrees of freedom are p(p + 1)/2 − 1 which is (p + 2)(p − 1)/2.

Simulations

Table 1 and Figures 2 and 3 show the results of simulation tests of the method.

Three sets of runs were done. 10 trees of 40 species were generated by simulating

a birth process with birth rate 1, stopping just as the 41st species was about to be

born. This is expected to generate a tree of average depth (from the tips to the

bottommost fork)

1

2
+

1

3
+

1

4
+

1

5
+ . . . +

1

40
= 3.278543 (42)

This same set of 10 trees was used as the true trees for all three sets of simulation

runs.

In the first set of runs two characters were simulated as evolving up the tree

by Brownian motion, both with a variance of change 1.0 per unit time, and with

no correlation of change. For each species four individuals were measured, with

the within-species phenotypic variance being 1.0 in both characters and no within-
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species correlation of the characters. For each of the 10 trees 1000 such data sets were

simulated. These were each analyzed in two ways: by using the species means with

the original contrasts method, and by taking within-species phenotypic variation

and covariation into account using the methods discussed above.

(Insert Table 1 about here)

For each of these two analyses a likelihood ratio test was carried out of the (true)

hypothesis that there was no phylogenetic correlation among the characters. Table

1 shows, for each of the 10 trees, how many times out of 1000 data sets the null

hypothesis was rejected. It should be immediately apparent that when there is no

correction for within-species variance, the null hypothesis is rejected far too often

(an average of 20% of the time when the nominal level of rejection is set to 5%). This

is consistent with the results of similar simulations carried out by Harmon and Losos

(2005), which found the same effect. When the analysis allowed for within-species

phenotypic variance, the null hypothesis is rejected an average of 5.67% of the time,

significantly more often than 5%. One possible explanation for the discrepancy is

that it is reflects the use of a likelihood ratio test that is only asymptotically valid.

(Insert Figure 2 about here)

In Figures 2 and 3 histograms of estimates of the phylogenetic correlation between

two characters are shown. In each column, the top histogram is for analysis of

species means by the original contrasts method, and the bottom histogram is for a
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full within- and between-species analysis as described above. Each column is for one

true tree and 1000 simulated data sets, for each of which the phylogenetic correlation

is estimated. The four columns of histograms are for the first four of the 10 trees

used for Table 1.

(Insert Figure 3 about here)

Each histogram shows the distribution of estimates of the phylogenetic correlation

on a scale from -1 to 1 (only for the leftmost column is the label -1 visible). The

value of 0 is indicated by a vertical line of thin dashes. The two tables are both for

cases with a true phylogenetic correlation of 0.4 (shown on each histogram as the

darker vertical dashed lines).

In Figure 2, the within-species phenotypic variation has a correlation of 0.8

between characters. In the analysis using only means, this correlation affects the

estimates of the phylogenetic correlation, making it visibly biased upwards. In

Figure 3, the within-species phenotypic correlation is -0.2, and the result for the

analysis of means is a downward bias of the estimated phylogenetic correlation. In

both cases the full analysis removes this bias, resulting in estimates whose mean is

close to the truth. The distribution of estimates of the phylogenetic correlation is

somewhat asymmetrical, particularly in the case of high estimates. As with ordinary

correlation coefficients, the distributions become more symmetrical if we plot instead

Fisher’s z transformation.
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Genetic experiments

The evolutionary covariation of characters between species, A, reflects either

genetic drift or varying natural selection. A lineage can have the mean of the

characters change by either of these. It has been known since the work of Sewall

Wright that the covariance of means among lineages due to genetic drift is expected

to be a multiple of the within-species additive genetic covariance. With natural

selection the between-species evolutionary covariance will reflect a complicated

compromise of the additive genetic covariances and the selective covariance, which

is the covariance of selection pressures (see discussions in Felsenstein, 1988, pp.

446-454 and Felsenstein, 2004, pp. 415-426).

Mating designs

In principle, if we had estimates of the additive genetic covariance, we could tease

these apart and infer the selective covariance. Additive genetic covariances are often

inferred by mating designs (such as half-sib families or diallel crosses). A design of

sets of half-sub families that share male parents but have different female parents,

has two levels of nesting. The design has a series of males, each mated to a set of

females (the same female is not mated to more than one of these males). A large

genetic experiment is desirable, but not always possible.

Contrasts
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REML analysis of variance in such a design strongly resembles the contrasts

analysis that we have been doing. For example, in a conventional half-sib design, a

contrast between half sibs will have expectation zero and covariances proportional

to 3
4
G + D + E, where G is the additive genetic covariances, D the dominance

covariances, and E the environmental covariances. A contrast between means of

half-sib families will have expectation zero and covariances proportional to 1
4
G. In

this design, it would be possible to incorporate the analysis of the genetic experiment

with the comparative method analysis. For more complex designs of the genetic

experiment it might be necessary to do the inferences of the covariances separately

in the genetics experiment and the comparative method analysis.

Estimating selective covariances

We can estimate the covariance matrices for the genetic components from a

mating design, and then compare the results to the phylogenetic covariances A

and the within-species phenotypic covariance (here called P). In this notation, we

expect the phylogenetic covariances to be

A = G P−1 S P−1 G (43)

(Felsenstein, 1988, p. 451) where S is the covariances of the selection differentials

along lineages.

Given A and P inferred from the within- and between-species contrasts, and G

from the genetic experiments, we can use this to estimate the covariance of selection
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differentials as

S = P G−1 A G−1 P (44)

It is to be expected that these selective covariances (covariances of selection

differentials) will be hard to estimate accurately. One approach to their error would

be to resample individuals in the genetic experiments, and to resample individuals

in the population samples. The variation of S in this resampling could then be

observed. However, it is not clear whether it is also desirable to resample whole

species in the phylogeny. Another approach would be to use the likelihood surfaces

for the estimates of the matrices G, P, and A together with equation (44) to infer

the likelihood surface for S. If the two analyses (genetic and comparative) could

be combined, then the inference of S or tests of hypotheses about it would be

particularly straightforward.

Program

The EM algorithm approach to estimating the covariances A and P from

a bifurcating phylogeny (with branch lengths) on n species, and samples of p

phenotypes from ni individuals in the ith species has been available as the W menu

option in program Contrast of the PHYLIP package, versions 3.6a and later, since

July, 2000. However, the regression coefficients in that program were calculated

incorrectly (owing to a mistaken form of equations 50 and 51) in all versions prior

to version 3.67. That version was released in July, 2007. PHYLIP is available

free from http://evolution.gs.washington.edu/phylip.html (or you can simply
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type PHYLIP into any search engine).

The program estimates the covariances, and from them the regressions of the

variables on each other, and the correlations between the variables. Another option

is the analysis of multiple trees, so that bootstrap samples of trees can be analysed.

Likelihood ratio tests are available of the hypothesis that a set of q characters have

no phylogenetic covariation with the remaining p − q characters. A likelihood ratio

test of the assertion that all characters have no phylogenetic covariation is also

available. The program does not yet include the ability to make inferences from

genetic experiments.
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APPENDIX A

Distribution of the contrasts

If z is the vector of contrasts produced using the (n − 1) × (n − 1) matrix of

contrast coefficients C, their covariance matrix will be

V = E (zzT ) = E[ (C ⊗ I) (yyT ) (C⊗ I)T ]

= (C ⊗ I) E[yyT ] (C ⊗ I)T

= (C ⊗ I) (T ⊗ A + I ⊗ P) (C ⊗ I)T

(45)

Applying the multiplication rules for Kronecker products this becomes

V = (CTCT ) ⊗ A + (CICT ) ⊗ P (46)

which using orthonormality (equation 21) easily becomes

V = (CTCT ) ⊗ A + I ⊗ P, (47)

For each character the contrasts C are mutually independent. Thus the matrix

CTCT is diagonal. The diagonal elements corresponding to within-species contrasts

are all 0, and for the between-species contrasts the diagonal elements have nonzero

values. Let us call this diagonal matrix W. Then

V = W ⊗ A + I⊗ P. (48)
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This covariance matrix is of size (n − 1)p × (n − 1)p, consisting of n − 1 diagonal

blocks, each p × p in size.

We will use the diagonal elements of W, the wii in the estimation of the

covariances. It is not necessary to form the product CTCT explicitly. The variance

of the unnormalized contrast x̄L − x̄R is vL + δvL + vR + δvR (for a character with

unit variance of evolutionary change). The variance of the orthonormal contrast

K(x̄L − x̄R) is wii, so that from (19) we can obtain equation (20), and the relevant

one of the wii can easily be computed at each step of the recursion.

By applying the orthonormal contrasts within and between species, we have found

sets of variables in the vector z that are independent. The variables within each set

covary, and they have heterogeneous variances (as they have different wii).

APPENDIX B

The EM algorithm for inferring the covariances

For one of the sets of contrasts z(i), and given the current estimates A(t) and

P(t) of the covariance matrices, we want to obtain the expectation of aaT and ppT .

For this we will need the matrix of regression coefficients of a on z(i). The covariance

matrix of the contrasts z(i) we know to be wiiA+P. From 40 we can show that the

covariance between a and z(i) is

E(z(i)aT ) =
√

wii A(t) (49)
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which through the usual expression for regression coefficients leads to

Ba.z =
√

wii A(t) (wiiA(t) + P(t))−1. (50)

An exactly analogous derivation for the regression of p on z(i) gives

Bp.z = P(t) (wiiA(t) + P(t))−1. (51)

Having the regression coefficients, we want the expectations of the sufficient

statistics. The expectation of aaT given z(i) can be computed by finding

E[a | z(i)] E[a | z(i)]T and adding to it the residual variance around the regression

line of a on z. The result is

E[aaT ] = Ba.z zzT Ba.z
T + A(t) − Ba.z(wiiA(t) + P(t))Ba.z

T (52)

which when rearranged gives the expectation of aaT given z(i) as

A(t) + Ba.z (zzT − (wiiA(t) + P(t)) )Ba.z
T (53)

A very similar derivation for the expectation of ppT given z(i) gives

P(t) + Bp.z (zzT − (wiiP(t) + P(t)) )Bp.z
T (54)

One of these computations is done for each set of contrasts; the new estimates

of A and P are then computed as the averages of the expectations of aaT and ppT

for all contrasts. For the contrasts within species the regressions Ba.z are zero; for

those equation (53) shows that the expectations of aaT are to be taken as given by

A(t).
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If we have a constraint on the covariances, such as that there is no phylogenetic

covariance between two sets of characters, this is easily maintained by setting those

elements of A to zero at each stage of the EM iteration.

If we are testing the proportionality of A to P, we can use a model in which

A = αP. Iteration equations can be derived from the likelihood functions to

obtain estimates of α and P. Given current estimates of α, the new estimate of P

is

P′ =
1

n − 1

∑

i

z(i)z(i) T

wiiα + 1
(55)

and given the current estimate of P, a new estimate of α is obtained from

α′ =

∑

i
fi

1
wii

(

z(i) T P−1z(i)

p
− 1

)

∑

i
fi

, (56)

where

fi =
w2

ii

(α wii + 1)2
. (57)

These should converge on the REML estimates of α and P, and thereby on the

estimate of A as well.
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Table caption

Number of times that the (true) null hypothesis of no correlation between two

characters was rejected when the analysis used only the species means, and when

the analysis took the within-species variation into account. Each row is a different

40-species tree with 4 individuals measured per species.

41



Table

α (at nominal 0.05)

using only using within-species

tree species means information as well

1 137 / 1000 53 / 1000

2 237 / 1000 53 / 1000

3 305 / 1000 58 / 1000

4 84 / 1000 66 / 1000

5 149 / 1000 61 / 1000

6 102 / 1000 59 / 1000

7 259 / 1000 65 / 1000

8 76 / 1000 61 / 1000

9 205 / 1000 50 / 1000

10 446 / 1000 47 / 1000
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Figure Captions

Fig. 1 – The phylogeny connecting all individuals of all species in an example of the

model. Five species are shown as connected by a phylogeny. One of the species has

been magnified to show that it actually consists of a sample of 4 individuals, each

connected to the phylogeny by its own branch. In the model, these branches are of

length 0, though in the figure they are shown as having a small length so as to make

the connections clear.

Fig. 2 – Each column of histograms shows the estimates of the phylogenetic

correlations between two characters which have been simulated with true

phylogenetic correlation 0.4 in 1000 data sets on the same tree. The top analysis

uses the species means and the original contrasts method, the bottom ones use the

full analysis described in this paper. The within-species variance is taken to be 1.0

with correlation of 0.8 of the within-species effects. Four individuals are sampled per

species. The same 1000 data sets are analyzed in each column. The four columns

are for the first four trees used in the simulation.

Fig. 3 – Each column of histograms shows the estimates of the phylogenetic

correlations between two characters which have been simulated with true

phylogenetic correlation 0.4 in 1000 data sets on the same tree. The top analysis

uses the species means and the original contrasts method, the bottom ones use the

full analysis described in this paper. The within-species variance is taken to be 1.0
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with correlation of -0.2 of the within-species effects. Four individuals are sampled

per species. The same 1000 data sets are analyzed in each column. The four columns

are for the first four trees used in the simulation.
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