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Abstract

A computer simulation study has been made of the accuracy of estimates of

Θ = 4Neµ from a sample from a single isolated population of finite size. The

accuracies turn out to be well-predicted by a formula developed by Fu and Li,

who used optimistic assumptions. Their formulas are restated in terms of accuracy,

defined here as the reciprocal of the squared coefficient of variation. This should

be proportional to sample size when the entities sampled provide independent

information. Using these formulas for accuracy, the sampling strategy for

estimation of Θ can be investigated. Two models for cost have been used, a cost-

per-base model and a cost-per-read model. The former would lead us to prefer to

have a very large number of loci, each one base long. The latter, which is more

realistic, causes us to prefer to have one read per locus, and an optimum sample

size which declines as costs of sampling organisms increase. For realistic values,

the optimum sample size 8 or fewer individuals. This is quite close to the results

obtained by Pluzhnikov and Donnelly for a cost-per-base model, evaluating other

estimators of Θ. It can be understood by considering that the resources spent

collecting larger samples prevent us from considering more loci. An examination

of the efficiency of Watterson’s estimator of Θ was also made, and it was found to

be reasonably efficient when the number of mutants per generation in the sequence

in the whole population is less than 2.5.
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Introduction

The availability of molecular sequencing at prices that even population biologists can afford

has brought into existence new methods of estimation of population parameters. Sequence

samples from populations enable one to make an estimate of the coalescent tree of genes

connecting these sequences. I have argued (Felsenstein, 1992a) that these enable a substantial

increase in the accuracy of estimation of population parameters like Θ = 4Neµ, the product of

effective population size and the neutral mutation rate per site. (This is usually expressed as

θ, the neutral mutation rate per locus, but is perhaps better thought of in terms of the neutral

mutation rate per site.)

Fu and Li (1993) analyzed my claim further. They developed some approximations to the

accuracy of maximum likelihood estimation of Θ. I will show below that these are remarkably

good approximations, better than one might have expected. My argument had assumed that an

infinite number of sites could be examined, and that the coalescent tree was therefore precisely

known in both topology and coalescence times. Fu and Li did not assume that the coalescence

times were precisely known, but they did assume that we could infer the substitutions on each

branch of the tree, and that in addition we could assign those according to which coalescent

interval they occurred in. Their result made use of the total number of substitutions in each

coalescent interval. Although it did not use the tree topology, it is hard to see how one could

have the assignment to coalescent interval without an assignment to branch of the topology

as well. Their approximations were therefore necessarily overoptimistic, though not as much

as mine had been. They found that there was an increase in accuracy of estimation using
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likelihood methods, but that it would not be as large an increase as I had claimed.

Fu (1994) developed a method which makes a UPGMA estimate of the coalescent tree and

constructs a Best Linear Unbiased Estimate conditional on that being the correct tree. In his

simulations using the infinite-sites model, his BLUE method achieved variances nearly as low

as the Fu and Li lower bound. It is not obvious from this whether it would perform as well

with data from an actual finite-sites DNA sequence model of evolution, where the tree is bound

to be harder to infer. Nevertheless, the good behavior of BLUE suggests that a full likelihood

method based on summing over all coalescent trees might do almost as well as the Fu/Li lower

bound.

In the present paper the results of a computer simulation of coalescent likelihood estimates

of Θ will be described, demonstrating that one of Fu and Li’s optimistic approximation

formulas does do a good job of calculating the accuracy of maximum likelihood estimates of

Θ. Formulas based on it can then to be used to investigate optimal design of experiments for

estimating Θ. The results turn out to be quite similar to those of Pluzhnikov and Donnelly

(1996), who evaluated optimal designs using earlier methods of estimation of Θ. Their

simulations explicitly check the effect of the number of loci, finding that the accuracy is

proportional to the number of loci, as expected and as assumed here. These allow one to

see how effectively accuracy can be increased by sampling more sites, or more sequences, or

more unlinked loci. The results, which strongly back collecting more loci rather than more

sites or more sequences, can be argued to be intuitively reasonable.

Likelihoods with Coalescents
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In population samples at a locus, there are likely to be only a few sites segregating within

the population, so that the tree topology is unlikely to be known well. Monte Carlo integration

methods have been developed by Griffiths and Tavaré (1994a, b, c) and by Kuhner et. al.

(1995) to address this problem.

The basic equation for likelihood estimation of Θ is (Felsenstein, 1988, 1992b)

L =
∑

G∗

Prob(G∗|Ne) Prob(D |G∗, µ) (1)

where Ne is the effective population size, µ the neutral mutation rate per site, and G∗ indexes

all possible coalescent trees of gene copies, including all possible trees and all possible branch

lengths of those clocklike trees. The summation over trees is, when summing over different

branch lengths, actually a multiple integration. This formula might, at first sight, seem to

allow separate estimation of Ne and µ, but this is an illusion. The coalescent trees G∗ have

their branch lengths given in generations. But our molecular observations only tell us about

number of sites differing, not about the number of generations separating two sequences. The

probability Prob(G∗|Ne) of the coalescent genealogy is given by Kingman’s (1982a, 1982b,

1982c) diffusion-equation approximation. When the Kingman coalescent is used, there turns

out to be a precise tradeoff: the effect on Prob (G∗|Ne) of multiplying Ne by a constant is

exactly offset by the effect on Prob (D |G∗, µ) of dividing µ by the same constant. If we

instead express the coalescent tree of gene copies so that its branch lengths are the expected

numbers of neutral mutations per site, it can be denoted by G and equation (1) becomes

L =
∑

G

Prob(G |Θ) Prob(D |G) (2)
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without loss of generality. Once again, the summation is assumed to be over all tree topologies,

and to be as well integration over all possible branch lengths of those trees. The Kingman prior

for a tree whose branch lengths are given in expected neutral mutations per site turns out to be

a function of Θ = 4Neµ rather than separately of Ne and µ. (The factor of 4 in Θ is included

to simplify the expressions in the Kingman prior.)

The summation in equation (2) is over all possible tree topologies with integration over

all possible branch lengths. In fact, the sum is actually over all possible labelled histories

(Edwards, 1970), entities that take all possible tree topologies and further distinguish between

the time orderings of interior nodes. There are a huge number of these. For population samples

of only 10 sequences, there are (Edwards, 1970) 2.571× 109 labelled histories. Within each of

them there are 9 coalescence times that can be varied from 0 to infinity. So to evaluate equation

(2) exactly in that case requires us to compute more than 2.571× 109 9-dimensional integrals.

Most of the labelled histories and most values of the branch lengths may conflict rather

strongly with the sequence data, and thus contribute little to (2). It is possible to obtain an

approximate integration of equation (2) by sampling a large number of values of coalescent

trees, concentrating the sampling on ones which contribute substantially to the integral. Two

major approaches exist. Griffiths and Tavaré (1994a, b) have developed a method that samples

histories of coalescence and mutation (rather than sampling trees which have no mutational

events specified but do have times of coalescence specified). Their method has the great

advantage that successive samples of histories are independent. Kuhner et. al. (1995)

have developed a method that uses Markov chain Monte Carlo (MCMC) sampling to draw



7

genealogical trees G in a way that is autocorrelated, so that the tree G wanders through

the space of possible trees, concentrating on the regions that contribute most to the integral

(2). Another approximate alternative to these two methods is Fu’s (1994) method, which

uses a single estimated coalescent tree, but applies a simulation-based correction formula to

approximately account for the effect of the other possible coalescent trees. Sampling methods

involving independent sampling or MCMC have been increasingly applied to these problems;

some of the newer programs use Bayesian inference (e.g., Wilson, Weale, and Balding, 2003),

which will not be directly considered here, as it requires specification of a prior distribution

on the parameters. However, when the amount of data is large, Bayesian methods should give

results similar to maximum likelihood methods.

A Measure of Accuracy

In this paper, I have used the COALESCE program of Kuhner et. al. (1995), version

1.3, to make maximum likelihood estimates from simulated data to infer the accuracy of

Monte Carlo maximum likelihood estimation of Θ and compare it to accuracy computed from

Fu and Li’s (1993) formulas. I do not expect that the present results would be different if

another computational approach, such as the method of Griffiths and Tavaré (1993) had been

applied instead. We measure accuracy of estimation by the inverse of the squared coefficient

of variation (hence Θ2/Var (θ̂)) of the estimate of the single parameter. The inverse of the

variance is a natural measure, because it is expected to be proportional to the number of

independent items of information used in the estimation. It is proportional to the Fisher
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Information of Θ. The accuracy scales this quantity by the square of the expected value of

Θ.

Fu and Li (1993) gave approximate formulas for the variance of the maximum likelihood

estimate of θ. Consider their approximation for the variance of their θm estimator. One

can easily recast equation (28) of their paper to give the accuracy of maximum likelihood

estimation of Θ. If there are L unlinked loci, n sampled sequences at each, with s sites, the

accuracy of estimation implied by their equations is

Θ2

Var(Θ̂)
= L

n
∑

k=2

1
(

1 + k−1
sΘ

) (3)

Figure 1 shows the accuracy of maximum likelihood estimation computed using their

approximation for two values of Θ, 0.01 and 0.003, for one locus, and for three sample sizes,

20, 50, and 100 sequences.

[Figure 1 to be inserted about here]

The accuracy of maximum likelihood estimation can be seen to increase with the number

of sites, the number of sequences, and the value of Θ. It will also increase (proportionately)

to the number of unlinked loci, which is not shown in this Figure. Note that the increase with

the sample size and with the number of sites is not proportional to the amount of data, but

shows diminishing returns. A brief consideration of equation (3) will show that the accuracy

of maximum likelihood estimation reaches an asymptote at n−1 with large numbers of sites,

and that it rises as approximately the logarithm of the sample size.
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Note also that the accuracy of maximum likelihood estimation is smaller when Θ is smaller.

Note that accuracy, as defined here, is a function of sΘ, and thus approaches the same

asymptote with increase of Θ as it does with increase of s.

We will be looking at the increase in accuracy of maximum likelihood estimation of Θ as

we add sites, sequences, or unlinked loci, so that seeing whether the curve rises proportionally

to these will be useful.

A Simulation Study

Fu and Li’s formula is an approximation. It comes from assumptions which they note are

overly optimistic, intended only to place a bound on the accuracy.. To see how close these

approximations may be, I have carried out a simulation study. Its design was hierarchical.

For each parameter combination, 200 coalescent trees were simulated, at the given value

of Θ. The trees consisted of tree topologies together with coalescent intervals expressed in

units of expected mutations per site. Along each of the trees two replicates were made of the

evolution of a single locus according to a Kimura (1980) 2-parameter model of DNA change,

with a transition/transversion ratio of 2.0. For each of these data sets, two runs of COALESCE

were made. The design of the simulation thus allows us to separate the effect of coalescent

trees, mutational events, and runs of the simulation program. Three sample sizes (20, 50, and

100) were examined, and five different numbers of sites (100, 200, 500, 1000, and 2000).

Two different values of Θ were used (0.003 and 0.01). These values are larger than is often

biologically reasonable; they are used here because they allow simulations to be done in a
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reasonable amount of time. There was no recombination; the sites in each locus were in effect

completely linked. No attempt was made to simulate different numbers of independent loci,

because the complete independence of the estimates from independent loci should make the

accuracy of maximum likelihood estimation straightforwardly proportional to the number of

loci.

Bias

The simulations can be examined to see whether the estimates of Θ were biased. Maximum

likelihood estimates are often biased, with the bias decreasing as the amount of data increases.

With a sample of two sequences, there is a very small chance that the two sequences are

diverged at more than 75% of their sites, which would lead to an infinite estimate of the

divergence time, and an infinite estimate of Θ. Thus, in theory, maximum likelihood estimates

of Θ should be infinitely strongly biased. In practice, these cases of more than 75% divergence

may almost never occur, but the estimate of Θ may still be biased. This behavior in a tiny

fraction of cases is not incompatible with the estimation being consistent, as the fraction of

cases in which there is more than 75% divergence declines rapidly with larger sample size,

and the estimate converges to the true value of Θ.

In the simulations with Θ = 0.01 the mean of the estimate of Θ varied across the 15 cases

between 0.00910183 and 0.01003190, with a median of 0.00975720, which is about 2.4% low.

In the simulations with Θ = 0.003, the mean estimates of Θ varied between 0.0025166 and

0.00297930, with a median of 0.00284698, which is about 5.1% low. Thus there was some
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underestimation of Θ, possibly connected with cases in which the Markov chains suffered

“fatal attraction” to zero. There was no particular pattern as to which cases suffered the most

from this underestimation, though the cases with 100 sites gave lower estimates of Θ than did

the others.

Variance

The hierarchical design lends itself to an analysis of variance. Doing this assumes that the

effects of trees, mutational events, and runs on the estimates are additive. To be a completely

efficient way of analyzing the data it would also require that the values be multivariate normally

distributed. As both of these are unlikely to be true, I have not tried to do any statistical tests

on the results of the analyses of variance, but merely tried to derive point estimates of the

accuracy of maximum likelihood estimation. A separate analysis of variance was performed

for each combination of the sample size, number of sites, and value of Θ.

The model for the analysis of variance is a two-level hierarchical analysis of variance with

random effects:

Y = µ + αi + βij + εijk (4)

where µ is the expectation of the estimate of Θ, αi is the random effect of the i-th tree, βij is

the random effect of the j-th set of mutational events events simulated along the i-th tree, and

εijk, the error term, is the effect of the k-th replicate Metropolis-Hastings run done on the j-th

locus from the i-th tree. The variances are:

σ2
Y = σ2

T + σ2
L(T ) + σ2

R(TL) (5)
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The analysis of variance does not assume that the effects of trees and of mutational events are

additive, for σ2
L(T ) contains the variance of any interaction between tree and mutational events,

as well as the variance of’ the effect of the mutational events. There are, of course, assumptions

of homogeneity of variance in this analysis, which I cannot completely defend. The objective

is to estimate the variance of the estimate of Θ. If the Metropolis-Hastings runs were infinitely

long, then they would (in theory) arrive at the same maximum likelihood estimate of Θ in each

replicate run. The variance of that estimate will then be

Var(Θ̂) = σ2
T + σ2

L(T ). (6)

We cannot run the programs for an infinitely long time, but we can estimate the variance

components, and use these estimates to infer the theoretical variance of the maximum

likelihood estimator using equation (6). Table 1 shows the analysis of variance formulas.

The conventions are the usual ones: dot subscripts indicate that the mean has been taken, t is

the number of trees, ` the number of unlinked loci per tree, and r the number of runs per locus.

[Table 1 to be inserted about here]

Using the estimates of σ2
T and σ2

L(T ) from this analysis of variance, we infer the accuracy of

maximum likelihood estimation as

Θ2

Var(Θ̂)
=

Θ2

σ2
T + σ2

L(T )

(7)

Figure 2 shows these empirical accuracies. They are larger as a result of our elimination

of the runs variance component. If the runs variance component is included, the accuracy of

estimation is somewhat smaller.
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[Figure 2 to be inserted about here]

The message of the simulations is simple: the Fu and Li approximation is remarkably

good. We have reason to suspect that it will be too optimistic, but the simulations show that it

is not far off. This is surprising, as it assumes that we can assign all mutations to their proper

coalescence interval, which even the Metropolis-Hastings sampler will not be able to do. For

example, a mutation on a long exterior branch of the tree could have occurred in any of the

coalescence intervals through which that branch passes, and no use of likelihood will be able

to make that assignment more precise. Yet the approximations based on the assumption that

we can assign the mutation to its proper interval turn out to work.

A Further Approximation

Fu and Li’s (1993) formula, as reworked here, is a summation with a number of terms

nearly as large as the population sample size. It would be helpful to have a formula that is

more compact. The integral method in summation of series is easily applied to approximate

and bound the sum in equation (3):

L
∫ n+1

2

1
(

1 + x−1
sΘ

) dx ≤ L
n
∑

k=2

1
(

1 + k−1
sΘ

)

≤ L
∫ n

1

1
(

1 + x−1
sΘ

) dx

(8)



14

The integrals are easily evaluated to yield:

L s Θ ln
(

sΘ + n

sΘ + 1

)

≤ L
n
∑

k=2

1
(

1 + k−1
sΘ

)

≤ L s Θ ln
(

sΘ + n − 1

sΘ

)

(9)

For simplicity, we will use the upper bound as a closed-form approximation to equation (3).

When s is large the two limits are very close; for L = 1 they seem never to differ by more than

1.

Implications for Design of Studies

If the Fu and Li approximations are reasonably good, they can be used to guide us in the

design of research projects. If we are estimating Θ, and seeking to make its coefficient of

variation as small as possible, we may be faced with the alternative possibilities of adding

more sites, adding more samples from the population, or adding more unlinked loci. These of

course will not be equal in cost. Pluzhnikov and Donnelly (1996) have made the pioneering

effort here, using formulas for Watterson’s (1975) and Tajima’s (1983) estimators of Θ. Our

formulas can be compared with theirs for the case where there is no recombination within

sequences.

Adding More Sites

If we use equation (3) or equation (9) and let s → ∞ we will find that the accuracy of

estimation approaches (n − 1)L asymptotically. Thus in cases with one locus, when n = 20
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the accuracy of estimation can never exceed 19, when n = 50 it can never exceed 49, and

when n = 100 it can never exceed 99. For the larger sample sizes these limits are far above

the curves in Figure 1. For the smaller sample sizes they are being approached even with the

numbers of sites on that figure. For n = 20 the accuracy of estimation is already halfway to

the asymptote when we have 1000 sites, and for n = 50 it is more than 1/3 of the way. With

an infinite number of linked sites, we can make an excellent estimate of the coalescent tree.

But that tree is itself stochastic, so that adding sites cannot subdue that part of the stochastic

variation. The implication is that adding sites to a study, by extending the sequencing of the

molecules, is a very limited way to add information.

Adding More Samples

Adding sample size, there is no asymptote. However, the accuracy of maximum likelihood

estimation rises rather slowly with increased sample size. The approximations in equation

(9) show that the increase of accuracy of maximum likelihood estimation with sample size is

ultimately logarithmic. This is borne out by Figure 1. For example, with Θ = 0.01, 500 sites

and 20 samples, the accuracy of maximum likelihood estimation is 9.17. When the sample

size increases from 20 to 50, the accuracy of maximum likelihood estimation is not 2.5 times

higher, but is 15.37, which is only 68% higher. When it increase from 50 to 100, the accuracy

of estimation does not double, but it increases only to 20.52, which is a rise of only 34%.

Ultimately the rate of increase will become logarithmic. To double the accuracy of maximum

likelihood estimation, logarithmic increase suggests that one would have to approximately
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square the sample size. This behavior begins to be approached for large sample sizes. For

example, to double the accuracy of maximum likelihood estimation for Θ = 0.01 and 500

sites from a sample size of 1,000, one must increase the sample size to 200,000.

Optimal Design of Studies:

A Cost-per-Base Model

Using the right-hand side of equation (9), we can optimize the design of studies, given that

the objective is to improve the accuracy of maximum likelihood estimation, and given a model

of costs. Naively, we could, for example, take the cost of a study to be a simple function of

the number of unlinked loci, the total number of sites sequenced, and the sample size. For

example, we could assume that the cost of adding a new locus to the study is CL, the cost of

adding an additional sample to the study is CS, and the cost of sequencing one more base is

CB for each sample and locus. A sample is assumed to be an individual haploid genotype from

which L loci are sequenced. Then the total cost of a study that has L unlinked loci, sample

size n, and s sites would be

C = L CL + n CS + L n s CB. (10)

Pluzhnikov and Donnelly (1996) used a cost function in their study which was simply (in our

notation) L n s CB. In effect this assumes that costs for developing new loci and for sampling

organisms can be neglected.

The accuracy of maximum likelihood estimation per unit cost is given by dividing the right-
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hand side of equation (9) by this cost:

Q =
L s Θ ln

(

1 + n−1
sΘ

)

L CL + n CS + L n s CB

(11)

In the special case where the only cost is the cost of sequencing per base, CB , this equation

reduces to

Q =
Θ ln

(

1 + n−1
sΘ

)

n CB

(12)

In this case L has disappeared from the equation and s is present only in the denominator

inside the logarithm. Decreasing s always increases the accuracy, so that the optimal value is

s = 1. L is then set by making it just big enough to achieve the target cost. In this special case,

the ideal design is to have a very large number of unlinked loci, each one base long. There is a

nontrivial optimization problem in choosing n, but the model of cost is not very realistic. Even

the more general cost-per-base model is not sufficiently realistic.

A cost-per-read model

Presently sequencing machines have a cost per “read”, and sequencing fewer bases does

not save anything. However, extending the length of the sequence beyond the length of a read

incurs a cost in the cost of extra reads plus the cost of development of primers for these extra

reads. This is similar to the cost incurred in developing a new locus; I will assume that these

are equal. Suppose that we have a total (across loci) of R reads per individual sampled, and

these are spread among L unlinked loci. Each read is sR bases long, and carries data from nR

sampled individuals. Sample size is n, as before, so that the total number of reads that must be
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done across all individuals is (n/nR)R. For the moment we ignore the fact that this should be

an integer.

The cost may then be taken to be

C = R CL + n CS + (n/nR) R CR (13)

where CL is the cost of developing a new locus or an additional read of a locus, CS is the cost

of collecting each sample, and CR is the cost of a single read. The accuracy per unit cost is,

using equation (9) with s = (R/L)sR,

Q =
R sR Θ ln

(

1 + L(n−1)
RsRΘ

)

R CL + n CS + (n/nR) R CR

(14)

Maximizing Q will give the same result as maximizing the accuracy for a fixed cost. It can be

seen immediately that L appears in only one place in the equations, and that Q must increase

with increase in the number of loci. Thus to maximize Q we should want L to be as large as

possible, which in this case means being equal to R, so that there is a different locus for each

read.

If we examine dependence on n, the pattern is not as clear. The optimum value of n is

neither infinite, nor is it to make n as small as possible. In such a case, we cannot simply

optimize Q. Instead we will try, for different values of the sample size n, to find the value of

R which achieves the target cost, and then to find the accuracy of estimation that is achieved

by those values. Plotting this against n discloses the optimum value of n.

As an example, suppose that we have sR = 600 and CL = 40. Some colleagues of mine

report that they are charged per lane rather than per read by sequencing services, which is as
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if nR = 1, which will be assumed in our calculations. We will take CR = 6. These costs are

close to the ones they report, in U.S. dollars. Suppose that Θ = 0.003 and that the cost per

sample, CS = 0.10.

Given a total cost for the study which is fixed at (say) 1000 dollars, we can try different

values of n and for each, compute what number of total reads per individual, R can be

accomplished with this total cost. Solving equation (13) for R we get

R =
C − nCS

CL + nCR

. (15)

(We have ignored the fact that R must be an integer in this calculation). For each such value

of R we can take L = R and then simply use

A = R sR Θ ln

(

1 +
(n − 1)

sR Θ

)

(16)

to compute what accuracy can be achieved. The results are shown in Table 2.

[Table 2 to be inserted about here]

They show that the optimum accuracy is achieved with n = 8, and R near 11. Note that if

a sample size of 50 is used, there is not enough money for three loci and only a bit more than

half as much accuracy is achieved. It is much better to use multiple unlinked loci with smaller

population samples.

This has assumed that the costs of sampling a new individual are very small. if instead they

are, say CS = 10, then the Table becomes instead Table 3.

[Table 3 to be inserted about here]
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Again, the optimum is small, n = 7, having shrunk slightly with the higher costs of

sampling. The optimum number of unlinked loci and reads is again R = 11. Once again,

a higher sample size sacrifices much accuracy by forcing use of fewer unlinked loci. If the

sample size is taken to be 50 instead, there is barely enough money to analyze two loci, and

the accuracy attained is not even 1/3 as great.

Calculations with a smaller value of Θ, 0.001, show that this favors slightly smaller sample

sizes and more loci. These show the surprising effectiveness of a many-locus, few-individuals

strategy.

If only integer numbers of reads are allowed and we wish not to exceed the cost target, R

must be rounded downwards from the value in equation (15) before being used in equation

(16). The effect is to alter the optimal sample sizes only slightly (the optimal values of being

7 in both cases, with a small reduction in accuracy per unit cost.

Comparison with Pluzhnikov and Donnelly

We may compare the results with those in the pioneering work by Pluzhnikov and Donnelly

(1996). They used the estimators of Watterson (1975) and Tajima (1983), and considered

both recombining and nonrecombining sequences. The present study ignores recombination,

though it does use a more powerful estimation method for Θ. Pluzhnikov and Donnelly also

used a more restricted model of costs. In effect, their model has CL = 0 and CS = 0. It also

takes the cost of sequencing to be a cost per base sequenced, equivalent to our first model. We

can make the analysis correspond closely to the central column of results in their Figure 3 by
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using the cost-per-base model, with C = 10000, Θ = 0.001 (their quantity Θ is our sΘ, their

L is in this no-recombination case our s), L = 1, and CB = 1.

In this case the total cost of the study will be L s n CB, which is fixed at 10,000. Therefore

maximizing the accuracy per base (equation 11) will maximize the accuracy for this fixed cost.

For each sample size n, we must use s = 10000/n. Substituting this into equation 11, we can

evaluate Q for each n:

[Table 4 to be inserted about here]

The optimum sample size is n = 8, essentially the same value found by Pluzhnikov and

Donnelly. The measured the squared coefficient of variation, which would in this case be the

inverse of 10000 Q. The accuracy values implied by these values show a curve similar to ours,

except that as they use less powerful estimators of Θ they achieve about 3/4 of the accuracy

we do.

Thus our results validate a central conclusion of their paper – that it is optimal to take small

samples of organisms from populations. Figure 3 shows a simulated coalescent tree. The tree

connecting 10 randomly-chosen tips is shown by the darker lines.

[Figure 3 to be inserted about here]

Adding 40 more tips, we add the thinner lines. Note that much of the length of the tree is

known once 10 tips have been sampled. The 40 additional tips add a minority of the length.

Many of the 40 additional sequences are near-duplicates of the first 10 sequences.
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Other Parameters

Both Pluzhnikov and Donnelly’s (1996) paper and this one have concentrated on the

estimation of Θ. In more complex cases we may well be interested in estimating migration

rates, population growth rates, or recombination rates. Pluzhnikov and Donnelly’s (1996)

paper contains evidence that the presence of other parameters will also change the conclusions

about estimating Θ. They find that as the sequence length is increased in the presence of

recombination, the accuracy of estimates of Θ increases, as one is examining regions that

have different coalescents. Both the present paper and theirs show that when there is no

recombination, extending sequence length does not increase accuracy of estimation of Θ.

Other parameters

There is no reason to believe that the optimal sample design will be the same for all

parameters that might be estimated. Here are some guesses as to how the conclusions would

change in other cases. In particular, likelihood methods are available to infer parameters in

cases with exponential population growth (Griffiths and Tavaré 1994a; Kuhner et al. 1998),

cases with recombination (Griffiths and Marjoram 1996; Kuhner et al. 2000) and cases with

migration (Beerli and Felsenstein, 1999, 2001; Bahlo and Griffiths, 2000).

Recombination. If we allow recombination, and estimate both Θ and the scaled

recombination rate per site r/µ, it seems likely that we need long sequences to do a good

job of estimating the recombination rate, because the opportunity for detecting recombination

increases with sequence length. To the extent that the objective is to maximize the accuracy
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per unit cost in estimating r/µ, one would want longer sequences and fewer loci.

Population growth. If the population were growing exponentially, and a scaled growth

rate such as g/µ was estimated, one could do a good job of estimating this parameter only by

sampling enough loci that the rate of coalescence could be inferred far enough back in time.

This would place a premium on having more loci and thus smaller population sample sizes.

Migration. When migration is allowed, and migration rates of the form mij/µ are inferred,

longer sequences will help make an accurate estimate of the individual coalescent trees and

thus place past migration events more accurately. This would suggest a shift in the tradeoffs

toward longer sequences, with correspondingly fewer loci. If the migration rates were high,

migration events deep in the coalescent tree would be less visible. To infer migration rates and

patterns, one would then want to have larger sample sizes in each population to detect recent

migrations.

All of these are speculations; these issues need intensive study by simulation and the

devlopment of adequate approximations to the variance of the estimators.

Watterson’s estimator

In all of the computer simulations, Watterson’s (1975) number of segregating sites estimator

of Θ was also obtained. We are therefore in a position to empirically assess its effectiveness as

an estimator of Θ. Fu and Li (1993) used the variance formulas in Watterson’s original paper

to evaluate the efficiency of the number of segregating sites estimator. In our terms this result

is
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The approximation formula (9) can also be used but is rather too rough for this comparison

– the upper and lower bounds give noticeably different answers unless the number of sites is

large.

The approximation formula (17) relies on Fu and Li’s approximation, and also assumes that

Watterson’s variance formula is exactly correct. It is correct for the infinite sites model, but we

are dealing here with a finite-sites model. Watterson’s estimator may be somewhat biased, and

the variance formula may be at least slightly incorrect.

Bias

In the infinite sites model, the Watterson estimator of Θ can be proven to be unbiased. For

the finite sites model used here, it would generally be expected to be biased downwards, since a

further mutation could remove a site from consideration as a segregating site. With Θ = 0.003,

the mean Watterson estimates of Θ ranged, over the 15 cases, from 0.00281320 to 0.00320929,

with their mean being 0.0029588, 1.37% low. Of these 5 of the 15 cases were above the true

Θ. This is less bias than was seen in the MCMC estimates. In the case where Θ = 0.01, the

mean Watterson estimates for the 15 cases ranged from 0.00926154 to 0.01002751, with their

mean being 0.00958219, 4.2% low. Only one case was above the true value 0.01. This may be

the downwards bias that is expected owing to multiple mutations at a site.
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Variance

[Figure 4 to be inserted about here]

We can extract empirical variances of the Watterson estimates from our simulation. In this

case there is no variance component for runs, so that we do not need to concern ourselves

with extrapolating what would happen with infinitely long runs of the program. The general

conclusion (from Figure 4) is that the approximation in equation (9) is good, though there is

some sign that the efficiency of Watterson’s estimator exceeds the approximation. A reviewer

of this paper has pointed out that the approximation formula reflects the fact that the behavior

of Watterson’s estimator under the infinite-sites model depends on s and Θ only through

their product, which is twice the expected number of mutations in the whole population per

sequence (this is conventionally called θ in population genetics). The efficiency of Watterson’s

estimator is reasonably high, but declines markedly as the θ exceeds 5, which is a larger value

of θ than is usually biologically reasonable. The coalescent likelihood estimators can then

extract noticeably more information from the data.
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Table 1: Analysis of variance for a set of runs for one combination of parameter values.

This is used to estimate the variance components rather then to test whether they are nonzero.

The usual ANOVA convention is followed of indicating by dots those subscripts over which

the mean has been taken.

Effect Sum of Squares d.f. Expectation of Mean Square

Trees SS(T ) =
∑

i

∑

j

∑

k(xi.. − x...)
2 (t − 1) σ2

R(TL) + rσ2
L(R) + r`σ2

T

Loci SS(L) =
∑

i

∑

j

∑

k(xij. − xi..)
2 t(` − 1) σ2

R(TL) + rσ2
L(T )

Runs SS(R) =
∑

i

∑

j

∑

k(xijk − xij.)
2 t`(r − 1) σ2

R)TL)

Total SS(Y ) =
∑

i

∑

j

∑

k(xijk − x...)
2 t`r − 1



31

Table 2: Numbers of unlinked loci and reads (R) and accuracy achieved (A) for different

sample sizes when costs total 1000 U.S. dollars. In this calculation the reads are assumed to

sequence 600 bases per sample, CL, CS , and CR are respectively assumed to be 40, 0.10, and

6, and Θ = 0.003.

n R A

2 18.85 14.988

3 16.72 22.494

4 15.00 26.482

5 13.57 28.583

6 12.37 29.591

7 11.34 29.935

8 10.45 29.864

9 9.68 29.529

10 9.00 29.027

20 5.00 22.024

30 3.18 16.264

40 2.14 12.038

50 1.47 8.841
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Table 3: Numbers of unlinked loci and reads (R) and accuracy achieved (A) for different

sample sizes when costs total 1000 U.S. dollars. In this calculation the reads are assumed to

sequence 600 bases per sample, CL, CS, and CR are respectively assumed to be 40, 10, and 6

and Θ = 0.003.

n R A

2 19.23 15.291

3 17.24 23.182

4 15.62 27.575

5 14.28 30.073

6 13.15 31.461

7 12.19 32.165

8 11.35 32.435

9 10.63 32.421

10 9.99 32.219

20 6.24 27.476

30 4.53 23.164

40 3.56 19.983

50 2.93 17.595
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Table 4: Sample size, number of bases which can be sequenced at a single locus with a

total of 10,000 bases sequenced, and the accuracy that is achieved (A) with a cost-per-base

model analogous to that of Pluzhnikov and Donnelly (1996).

n s A

2 5000.00 0.000091

3 3333.33 0.000157

4 2500.00 0.000197

5 2000.00 0.000220

6 1666.67 0.000231

7 1428.57 0.000236

8 1250.00 0.000236

9 1111.11 0.000234

10 1000.00 0.000230

11 909.09 0.000226

12 833.33 0.000221

20 500.00 0.000183

30 333.33 0.000149

40 250.00 0.000126

50 200.00 0.000110
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Figure 1: Accuracy of maximum likelihood estimation predicted by Fu and Li’s approxima-

tion. Two values of Θ, 0.003 and 0.01, are shown. The accuracy is shown as a function of

number of sites and of the number of sequences sampled (the numbers next to the curves).
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Figure 2: Accuracy of maximum likelihood estimation measured empirically by simulation.

The points show the accuracies from the simulation; the curves are the accuracies from Fu and

Li’s approximation. The empirical accuracy of maximum likelihood estimation is projected

for infinitely long runs of the Metropolis-Hastings sampler by eliminating the between-runs

variance component from the variance of the estimates of Θ.
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Figure 3: A simulated coalescent with 10 tips (dark lines) and with 40 more tips added.
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Figure 4: An approximation to the efficiency (equation (17) as curves) of the Watterson

estimator of Θ, together with simulation values (as points), for the two values of Θ. Note

the different vertical scales for the two graphs.


