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Normal distribution: curvature of log of height

density
log, (density)

X X

1 (z—p)? —pu)?
1 2 2 (constant stuff) — %%

Taking the logarithm of the height of the density curve of a normal
distribution whose variance is o2, we see that it is a quadratic curve
whose curvature is —1/0?
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Curvatures and covariances of ML estimates

ML estimates have covariances computable from curvatures of the
expected log-likelihood:

v = (£55)

The same is true when there are multiple parameters:

Var {é\} ~V~_C1!

0° log(L)
Ci =E ( 06; 00; )

where




With large amounts of data, asymptotically

When the true value of 6 is 6y,

N

0 — 6y
N

Since 1/v is the negative of the curvature of the log-likelihood:

~ N(0,1)

1 (6 — 0)°
2 v

InL(6p) = InL(@) —
so that twice the difference of log-likelihoods is the square of a normal:

2 (m L(6) —1nL(90)) ~ Xi



Corresponding results for multiple parameters

InL(6y) ~ InL(6) — % (Bo — )" C (6o — 6)

(0 —00)" C(0—00) ~ x>

so that the log-likelihood difference is:

(1nL(9“) 1nL(90)) ~ X2

When in the (true) null hypothesis 6, we have q of the p parameters
constrained:

(mL(é) 1nL(90)) ~ X



A log-likelihood curve

A Likelihood curve in one parameter

Ln (Likelihood)

length of a branch in the tree



Its maximum likelihood estimate

A Likelihood curve in one parameter
and the maximum likelihood estimate

Ln (Likelihood)

length of a branch in the tree

f

maximum likelihood estimate (MLE)



The (approximate, asymptotic) confidence interval

A Likelihood curve in one parameter
and the maximum likelihood estimate and
confidence interval derived from it

Ln (Likelihood)
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with 1 d.f.
significant at 95%

length of a branch in the tree



Contours of a log-likelihood surface in two dimensions
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Contours of a log-likelihood surface in two dimensions

MLE
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Log-likelihood-based confidence set for two variables

shaded area is the joint confidence interval

length of branch 2

height of this contour is
less than at the peak by an amount
equal to 1/2 the chi-square value with

two degrees of freedom which is significant at 95% level

length of branch 1



Confidence interval for one variable

length of branch 2

MR

~

height of this contour is

less than at the peak by an amount

equal to 1/2 the chi—square value with

one degree of freedom which is significant at 95% level

length of branch 1



Confidence interval for the other variable

Jl

length of branch 2

height of this contour is
less than at the peak by} an amount
equal to 1/2 the chi-sgyare value \A:lth

one degree of freedom Which is sigfificant at 95% level

length of branch 1



Likelihood ratio interval for a parameter
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Transition / transversion ratio

Inferring the transition/transversion ratio for an F84 model with the
14-species primate mitochondria data set.



LRT of a molecular clock — how many parameters?
A B C D E Constraints for a clock

vy | VY V| Vs vy =V,
Vg Vy = Vs
‘6
Vg itV = V3
Vo Vg + V5 = V; + Vg

How does each equation constrain the branch lengths in the unrooted
tree? What about the red equation?



Likelihood Ratio Test for a molecular clock

Using the 7-species mitochondrial DNA data set (the great apes plus
Bovine and Mouse), we get with Ts/Tn = 30 and an F84 model:

Tree In L
No clock —1372.77620
Clock —1414.45053
Difference 41.67473

Chi-square statistic: 2 x 41.675 = 83.35, with n —2 = 5 degrees of
freedom — highly significant.



Model selection using the LRT

Parameters
29 F84, T estimated

1

28 F81 F84, T=2

A
27
26 KZI;(estimated

25  Jukes-Cantor K2P, T=2

The problem with using likelihood ratio tests is the multiplicity of tests and
the multiple routes to the same hypotheses.



The Akaike Information Criterion

Compare between hypotheses —21InL + 2p (the same as reducing the
log-likelihood by the number of parameters)

Number of
Model InL parameters AlC
Jukes-Cantor —3068.29186 25 6186.58
K2P, R=2.0 —2953.15830 25 5956.32
K2P, R = 1.880 —2952.94264 26 5057.89
F81 —2935.25430 28 5026.51
F84, R=2.0 —2680.32982 28 5416.66

AN

F84, R=28.95 —2616.3981 29 5290.80



Can we test trees using the LRT?
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If so, how many degrees of freedom for the comparison of the two peaks?
These are three-species clocklike trees (shown here plotted in a “profile

log-likelihood plot” plotting the highest likelihood for each value of the
interior branch length).



The bootstrap

estimate of 0 \ (unknown) true value of 0 \
150 data pom v

Bootstrap replicates (each 150 draws)

C

Distribution of estimates of parameters

ilil

An example with mixed normal distributions. Draw from the empirical
distribution 150 times if there are 150 data points. With replacement!




The bootstrap for phylogenies

Original sites
Data ] o I — ]
sequences
———
T N Estimate of the tree
Bootstrap /= S———
sample R sites N
#1 / 7
/ \
/ [} \
! | sample same number 1
sequences of sites, with replacement T>
'
\ \ /
\ /
\ '\ / :
\\\ < _ Bootstrap estimate of
Bootstrap N ———3Tes the tree, #1
sample vy
#2
sample same number
sequences . . —
of sites, with replacement
(and so on) Bootstrap estimate of
the tree, #2

Drawing columns of the data matrix, with replacement.



A partition defined by a branch in the first tree

Trees:

B E

D C

F A
C B

>Y<

How many times each partition of species is found:

AE | BCDF
ACE | BDF
ACEF|BD 1

D
F

E B
A>—< >—<D
C F
E B E B
A ><Sc ¢ b C><

AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE | DF



Another partition from the first tree

Trees:

B E

D C

F A
C B

>Y<

How many times each partition of species is found:

AE | BCDF
ACE | BDF 1
ACEF|BD 1
AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE | DF

D
F

E B
A>—< >—<D
C F
E B E B
A ><Sc ¢ b C><



The third partition from that tree

Trees:

B E

D C

F A
C B

>Y<

How many times each partition of species is found:

AE | BCDF 1
ACE | BDF 1
ACEF|BD 1
AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE | DF

D
F

E B
A>—< >—<D
C F
E B E B
A ><Sc ¢ b C><



Partitions from the second tree

Trees:
E B E B
A>—<D c>—<n
C F A F
E B C B E B
A>—<C e Y o c>—<n
F D A F A F

How many times each partition of species is found:

AE | BCDF
ACE | BDF
ACEF | BD
AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE |[DF 1

—_ =k \) =



Partitions from the third tree

Trees:
E B E B
a><Sp e >
C F A F
E B C B E B
A>—<C e Y o c>—<n
F D A F A F

How many times each partition of species is found:

AE | BCDF
ACE | BDF
ACEF | BD
AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE | DF

—_ el ol = NN

—h



Partitions from the fourth tree

Trees:

E

A>—<

C
E B
p><Sc Y
F D A

B E

D C

F A
C B

How many times each partition of species is found:

AE | BCDF
ACE | BDF
ACEF | BD
AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE | DF

3

N) =k = = N

B
>—<D
F
E
D C>—<
F A

B

D
F



Partitions from the fifth tree

Trees:
E B E B
a><Sp e >
C F A F
E B C B E B
A>—<C e Y o c>—<n
F D A F A F

How many times each partition of species is found:

AE | BCDF
ACE | BDF
ACEF | BD
AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE | DF

WaAN2Aa2aWwWw



The table of partitions from all trees

Trees:
E B E B
a><Sp e >
C F A F
E B C B E B
A>—<C e Y o c>—<n
F D A F A F

How many times each partition of species is found:

AE | BCDF
ACE | BDF
ACEF | BD
AC | BDEF
AEF | BCD
ADEF | BC
ABDF | EC
ABCE | DF

W=aN = =W



The majority-rule consensus tree

Trees:

B E

D C

F A
C

B

E
A>—< >—<
C
E B E B
A>—<C e Y D c>—<n
F D A F A F
60

How many times each partition of species is found:

AE | BCDF
ACE | BDF

B

D

F
ACEF | BD B
D
F

Ve

E
AC | BDEF A
AEF | BCD 60 o
ADEF | BC C
ABDF | EC

ABCE | DF



Why will the MR consensus give a tree?

Suppose that for each partition in a tree we construct a (fake)
morphological character with O for one set in the partition, 1 for the
other.
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Why will the MR consensus give a tree?

Suppose that for each partition in a tree we construct a (fake)
morphological character with O for one set in the partition, 1 for the
other.

Such a character is compatible with a tree if (and only if) the tree
contains that partition.

If two of these characters both occur in more than 50% of the trees,
they must co-occur in at least one tree.

Thus the set of these “characters” that occur in more then 50% of
the trees are all pairwise compatible.

By the Pairwise Compatibility Theorem (remember that?) they must
then be jointly compatible

So there must be a tree that contains them all.



The MR tree with 14-species primate mtDNA data

Bovine
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Mouse
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84 Human
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Potential problems with the bootstrap

1. Sites may not evolve independently

2. Sites may not come from a common distribution (but can consider
them sampled from a mixture of possible distributions)

3. If do not know which branch is of interest at the outset, a
“multiple-tests” problem means P values are overstated

4. P values are biased (too conservative)
5. Bootstrapping does not correct biases in phylogeny methods



Other resampling methods

Delete-half jackknife. Sample a random 50% of the sites, without
replacement.

Delete-1/e jackknife (Farris et. al. 1996) (too little deletion from a
statistical viewpoint).

Reweighting characters by choosing weights from an exponential
distribution.

In fact, reweighting them by any exchangeable weights having
coefficient of variation of 1

Parametric bootstrap — simulate data sets of this size assuming the
estimate of the tree is the truth

(to correct for correlation among adjacent sites) (Kinsch, 1989)
Block-bootstrapping — sample n/b blocks of b adjacent sites.



With the delete-half jackknife
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Bootstrap versus jackknife in a simple case

Exact computation of the effects of
deletion fraction for the jackknife

1 2 (suppose 1 and 2 are conflicting groups)
L - 1 n characters

n(1-5) characters

We can compute for various n’s the probabilities
of getting more evidence for group 1 than for group 2

A typical result is for n1= 10, n2= 8, n=100:

Jackknife
Bootstrap 60=1/2 d=1/e

Prob(m ; >m2) 0.6384 0.5923 0.6441

Prob(m ) 3m2) 0.7230 0.7587 0.8040

Prob( m1 >m2)
1 -
+?Prob( m1 _m2)

0.6807 0.6755 0.7240




Probability of a character being omitted from a bootstrap

N (1-1/N)¥
0 11 0.35049 | 25 0.36040 | 100 0.36603
0.25 12 0.35200 | 30 0.36166 | 150 0.36665
0.29630 13 0.35326 | 35 0.36256 | 200 0.36696
0.31641 14 0.35434 | 40 0.36323 | 250 0.36714

0.32768 15 0.35526 | 45 0.36375 | 300 0.36727
0.33490 16 0.35607 | 50 0.36417 | 500 0.36751
0.33992 17 0.35679 | 60 0.36479 | 1000 0.36770
0.34361 18 0.35742 | 70 0.36524 co 0.36788
0.34644 19 0.35798 | 80 0.36557
0.34868 20 0.35849 | 90 0.36583

COWooNOOGLTA~,WDN =

—




A toy example to examine bias of P values

True value of mean

Distribution of individual True distribution of sample means
values of x
Estimated distributions
- of sample means
"Topology" Il 0 "Topology" |

Assuming a normal distribution, trying to infer whether the mean is above
0, when the mean is unknown and the variance known to be 1



Bias in the P values

note that the
true P is more
extreme than ﬁ .....................
the average of -
the P’s
P
E
topologyll 0 topology |

the true mean



How much bias in the P values?

Average P

1.0

0.8

0.6

0.4

0.2

0.0

0.2

04 0.6
True P

0.8

1.0



Bias in the P values with different priors

1.00

=
o'
S

0.60

0.40

0.20

Probability of correct topology

0.00

0.00 0.50 1.00
P for expectation of u



The parametric bootstrap

computer
simulation

estimate
of tree

original
data

/
T~

estimation
of tree

data
set #1

data
set #2

data
set #3

data
set #100

100




The parametric bootstrap with the primates data

Bovine
83 Lemur
— I Tarsier
78 Squirrel Monke
_| q y

98

Mouse
lJp Macacque

98
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R
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96 Human

Orang
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Goldman’s test using simulation

(related to the "parametric bootstrap”)

tree log—likelihood

no ClOCkV ]
data /2 (- lc )

clock S| c

/I \

simulating data sets

AN

data data data . « «| data

estimating clocklike and nonclocklike trees from each data set ...

2(1-1) 2(1-1)2(1-1) «-+ 2(1-1)



An outcome of Brownian motion on a 5-species tree
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Brownian motion along a tree




Distribution of tips on a tree under Brownian Motion

Tip 1 is the sum of two independent changes each of which is drawn
from a normal distribution (with mean 0 and variances vs; and v;)
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Distribution of tips on a tree under Brownian Motion

Tip 1 is the sum of two independent changes each of which is drawn
from a normal distribution (with mean 0 and variances vs; and v;)
so it is normally distributed with mean 0 and variance vs + v;.

Similarly for tip 2 (variance is vz + v»).

They share branch 3, and the change there affects both random
variables. So they are not independent or uncorrelated.

Variance is the expectation of the square (of deviation from the
mean), and covariance is the expectation of the product of those
deviations, for the two variables.

In fact the covariance of the values at tip 1 and tip 2 is the variance
of the shared term that is the same in both of them, so it is vs.



Covariances of species on the tree

vi+vg+vg vg+vog Vg 0 0 0
vg +Vvg Vo+Vvg+vVvg Vg 0 0 0
Vo Vg vit+vg O 0 0
0 0 0 wva+vi2 V12 V12
0 0 0 Vi2 Vs + Vi1 + V12 Vil + V12
0 0 0 V12 Vil +Vi2 Ve + Vvip + Vi1 + V12
0 0 0 V12 Vi1 + V12 V1o + Vi1 + V12

0
V12
Vi1 + V12
V10 + Vi1 + V12

V7 + V10 + V11 + V12




Covariances are of form

o O O | — | X | —
o o O Q0 | -— - | X
o O O o0 | C - —
O O O | 4% &0 o0 o
@) O V| O O o O
O | T OO O o O
T | O O o o o O




Likelihood under Brownian motion with two species




What happens if we estimate means and branch lengths?

Do we get the right answer if we estimate for each coordinate (each
character) the value at the root and the branch lengths v; and v, ?
Actually no.

Below, we will do this by finding values of these that maximize the
likelihood, and show that the likelihood becomes infinite if either v; or v,
approaches zero.

Even if we constrain there to be a clock, so vi = v, and look only at
their sum v; + v, this turns out to be half as big as the truth, even with an
infinite number of characters.

Why? The problem seems to be that we are estimating too many
parameters. There is one parameter (the root value) for each character.
So the ratio of data to parameters does not rise to infinity as we increase
the number of parameters. In circumstances like this, likelihood methods
can misbehave.



The solution: don’t infer ancestors; use REML

We can eliminate these problems by:

1. Do not infer the states of the interior nodes.

2. Use only the relative positions of the tips. This eliminates the
starting state at the root. It is REML, a variant of ML that loses

almost no statistical power.



Minimizing for each character i

V1 Vo
SO.
dQ o ai—xa) B x) _
dXOi Vi1 V2
and then:
1 1
/)ZOi . HX].I + EX2|
1 s 1
V1 \")

So that we have a maximum likelihood estimate of the starting value xg; for
each character.

The result is that
(Xli — Xzi)2
Q

Vi + V2




Likelihood after estimating initial coordinates

Substituting in our estimates of xq;, we end up with

1 1 = x2i)°
L = I exp ——Z bai = x)
(27T)p (V1V2)§ 2 Vi + V2

i=1

and this finally turns into:

(x1i — x2i)°
Vi 4 V2

1 1
InL = —pln(27) — Epln(v1v2) 5

E

i=1

This actually goes to infinity as either v; or v, goes to zero! This is related
to the problem that Edwards and Cavalli-Sforza had with their maximum
likelinood method in 1964.



If there is a clock ...
If instead we constrain v; = v, because assume a clock:

1 D?
2 (Vl + V2)

InL = K' — pln(vy +vp) —

which leads to
V1 = U = D?/(4p)

(which is half as big as it should be!)

The number of parameters being estimated is p + 1, which rises as we
consider more characters. The fact that the ratio of data to parameters

does not rise without limit is the reason why likelihood misbehaves in this
case.



The difference between ML and REML

Information we use for ML inference:

species 2 species 1 species4  species 3
I I I I
1.0 2.0 3.0 4.0

Information we use for REML inference:

species 2 species 1 species4  species 3
I I I I
1.0+X 2.0+x 3.0+x 4.0+x

Does it matter that we don’t know x ? It makes it unnecessary to estimate
the starting value xg, and that eliminates p parameters. It means that the
ratio of data to parameters does then rise as we add characters.



Using only differences between populations (REML)

We assume that we have observed only the differences x;; — x»;, and not
the actual locations on the phenotype scale. Then

_ 1 (x3; — Xai)°
H\/ﬂ\/m p<2 Vi + V2 )




Likelihood with two species using REML

InL = K — 2ln(vi +v) + >°
nL = — ~In(vi+v
2 : 2 2(V1—|—V2)
p D*
InL = K — =1 o
n 21r1(vT)—|—2VT

vr = D?/p

The number of parameters being estimated is 1 (it is the sum vy + v5).
The number of parameters does not rise as we consider more characters.



“Pruning” a tree in the Brownian motion case

The likelinood for the tree is the product of the linkelihoods for these two
trees. By repeatedly applying this we can decompose the tree into n — 1
independent two-species trees. Getting their likelihoods is easy.
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