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Normal distribution: curvature of log of height
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Taking the logarithm of the height of the density curve of a normal

distribution whose variance is σ2, we see that it is a quadratic curve

whose curvature is −1/σ2
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The likelihood curve is nearly a normal distribution

for large amounts of data

θ

θ  from t(x), the "sufficient statistic"
the value for our data set

θ

If we have large amounts of data, the values of parameters we need to try
are all very similar, and the shape of the distribution (which is nearly
normal) will not be too different for these values.
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Curvatures and covariances of ML estimates

ML estimates have covariances computable from curvatures of the
expected log-likelihood:

Var
[
θ̂
]
≃ −1

/(d2E(log(L))

dθ2

)

The same is true when there are multiple parameters:

Var
[
θ̂

]
≃ V ≃ −C

−1

where

Cij = E

(
∂2 log(L)

∂θi ∂θj

)
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With large amounts of data, asymptotically

When the true value of θ is θ0,

θ̂ − θ0√
v

∼ N (0, 1)

Since 1/v is the negative of the curvature of the log-likelihood:

ln L (θ0) = ln L(θ̂) − 1

2

(θ0 − θ̂)2

v

so that twice the difference of log-likelihoods is the square of a normal:

2
(
ln L(θ̂) − ln L (θ0)

)
∼ χ2

1
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Corresponding results for multiple parameters

ln L(θ0) ≃ ln L(θ0) −
1

2
(θ0 − θ)

T
C (θ0 − θ)

(θ − θ0)
T
C (θ − θ0) ∼ χ2

p

so that the log-likelihood difference is:

2
(
ln L(θ̂) − ln L (θ0)

)
∼ χ2

p

When in the (true) null hypothesis θ0 we have q of the p parameters
constrained:

2
(
ln L(θ̂) − ln L (θ0)

)
∼ χ2

q
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A log-likelihood curve
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A Likelihood curve in one parameter
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Its maximum likelihood estimate
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maximum likelihood estimate (MLE)

A Likelihood curve in one parameter

and the maximum likelihood estimate

Week 8: Testing trees, Bootstraps, jackknifes, gene frequencies – p.15/69



The (approximate, asymptotic) confidence interval
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a chi−square

with 1 d.f.

significant at 95%

95% confidence interval

maximum likelihood estimate (MLE)

A Likelihood curve in one parameter

and the maximum likelihood estimate and

confidence interval derived from it
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Contours of a log-likelihood surface in two dimensions
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Log-likelihood-based confidence set for two variables
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height of this contour is

less than at the peak by an amount

equal to 1/2 the chi−square value with
two degrees of freedom which is significant at 95% level

shaded area is the joint confidence interval
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Confidence interval for one variable
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one degree of freedom which is significant at 95% level
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Confidence interval for the other variable
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height of this contour is
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one degree of freedom which is significant at 95% level
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Likelihood ratio interval for a parameter
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ln
 L

Inferring the transition/transversion ratio for an F84 model with the
14-species primate mitochondria data set.
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LRT of a molecular clock – how many parameters?
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How does each equation constrain the branch lengths in the unrooted

tree? What about the red equation?
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Likelihood Ratio Test for a molecular clock

Using the 7-species mitochondrial DNA data set (the great apes plus

Bovine and Mouse), we get with Ts/Tn = 30 and an F84 model:

Tree ln L

No clock −1372.77620

Clock −1414.45053

Difference 41.67473

Chi-square statistic: 2 × 41.675 = 83.35, with n − 2 = 5 degrees of

freedom – highly significant.
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Model selection using the LRT

Jukes−Cantor K2P, T=2

K2P, T estimated

F84, T=2F81

25

26

28

29

27

F84, T estimated

Parameters

The problem with using likelihood ratio tests is the multiplicity of tests and
the multiple routes to the same hypotheses.
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The Akaike Information Criterion

Compare between hypotheses −2 ln L + 2p (the same as reducing the

log-likelihood by the number of parameters)

Number of
Model ln L parameters AIC

Jukes-Cantor −3068.29186 25 6186.58
K2P, R = 2.0 −2953.15830 25 5956.32

K2P, R̂ = 1.889 −2952.94264 26 5957.89
F81 −2935.25430 28 5926.51
F84, R = 2.0 −2680.32982 28 5416.66

F84, R̂ = 28.95 −2616.3981 29 5290.80
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Can we test trees using the LRT?
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If so, how many degrees of freedom for the comparison of the two peaks?

These are three-species clocklike trees (shown here plotted in a “profile
log-likelihood plot” plotting the highest likelihood for each value of the
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The bootstrap
θ(unknown) true value of  

(unknown) true distribution

estimate of  θ

Distribution of estimates of parameters

150 data points

(each 150 draws)

empirical distribution of sample

Bootstrap replicates

An example with mixed normal distributions. Draw from the empirical
distribution 150 times if there are 150 data points. With replacement!
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The bootstrap for phylogenies

Original
Data

sequences

sites

Bootstrap
sample
#1

Bootstrap
sample

#2

Estimate of the tree

Bootstrap estimate of
the tree, #1

Bootstrap estimate of

sample same number

of sites, with replacement

sample same number

of sites, with replacement

sequences

sequences

sites

sites

(and so on)
the tree, #2

Drawing columns of the data matrix, with replacement.
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A partition defined by a branch in the first tree

Trees:

How many times each partition of species is found:

AE | BCDF
ACE | BDF
ACEF | BD 1
AC | BDEF
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Another partition from the first tree

Trees:

How many times each partition of species is found:
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The third partition from that tree

Trees:

How many times each partition of species is found:
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Partitions from the second tree

Trees:

How many times each partition of species is found:

AE | BCDF
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Partitions from the third tree

Trees:

How many times each partition of species is found:
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Partitions from the fourth tree

Trees:

How many times each partition of species is found:

ACE | BDF
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
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Partitions from the fifth tree

Trees:

How many times each partition of species is found:

AE | BCDF 3

ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
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A C
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The table of partitions from all trees

Trees:

How many times each partition of species is found:

AE | BCDF 3
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABDF | EC 1
ABCE | DF 3
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The majority-rule consensus tree

C

A

Trees:

How many times each partition of species is found:

AE | BCDF 3
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABDF | EC 1
ABCE | DF 3
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Why will the MR consensus give a tree?

Suppose that for each partition in a tree we construct a (fake)
morphological character with 0 for one set in the partition, 1 for the
other.
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Why will the MR consensus give a tree?
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Such a character is compatible with a tree if (and only if) the tree
contains that partition.
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Why will the MR consensus give a tree?

Suppose that for each partition in a tree we construct a (fake)
morphological character with 0 for one set in the partition, 1 for the
other.

Such a character is compatible with a tree if (and only if) the tree
contains that partition.

If two of these characters both occur in more than 50% of the trees,
they must co-occur in at least one tree.
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other.
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morphological character with 0 for one set in the partition, 1 for the
other.

Such a character is compatible with a tree if (and only if) the tree
contains that partition.
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Why will the MR consensus give a tree?

Suppose that for each partition in a tree we construct a (fake)
morphological character with 0 for one set in the partition, 1 for the
other.

Such a character is compatible with a tree if (and only if) the tree
contains that partition.

If two of these characters both occur in more than 50% of the trees,
they must co-occur in at least one tree.

Thus the set of these “characters” that occur in more then 50% of
the trees are all pairwise compatible.

By the Pairwise Compatibility Theorem (remember that?) they must
then be jointly compatible

So there must be a tree that contains them all.
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The MR tree with 14-species primate mtDNA data

Bovine

Mouse

Squir Monk

Chimp

Human

Gorilla

Orang

Gibbon

Rhesus Mac

Jpn Macaq

Crab−E.Mac

BarbMacaq

Tarsier

Lemur

80

72

74

99

99

100

77

42

35

49

84
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Potential problems with the bootstrap

1. Sites may not evolve independently

2. Sites may not come from a common distribution (but can consider
them sampled from a mixture of possible distributions)

3. If do not know which branch is of interest at the outset, a
“multiple-tests" problem means P values are overstated

4. P values are biased (too conservative)

5. Bootstrapping does not correct biases in phylogeny methods
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Other resampling methods

Delete-half jackknife. Sample a random 50% of the sites, without

replacement.

Delete-1/e jackknife (Farris et. al. 1996) (too little deletion from a

statistical viewpoint).

Reweighting characters by choosing weights from an exponential
distribution.

In fact, reweighting them by any exchangeable weights having

coefficient of variation of 1

Parametric bootstrap – simulate data sets of this size assuming the

estimate of the tree is the truth

(to correct for correlation among adjacent sites) (Künsch, 1989)

Block-bootstrapping – sample n/b blocks of b adjacent sites.
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With the delete-half jackknife

Bovine

Mouse

Squir Monk

Chimp

Human

Gorilla

Orang

Gibbon

Rhesus Mac

Jpn Macaq

Crab−E.Mac

BarbMacaq

Tarsier

Lemur

80

99

100

84

98

69

72

80

50

59

32
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Bootstrap versus jackknife in a simple case

Exact computation of the effects of

deletion fraction for the jackknife

n
1

n
2

n  characters

n(1−δ)  characters
m

1
m

2

m
2

>m
1

Prob( )

m
2

>m
1

Prob( )

m
2

>m
1

Prob( )Prob(

m
2

=m
1

Prob( )+ 1

2

We can compute for various n’s the probabilities

of getting more evidence for group 1 than for group 2

A typical result is for  n
1

= 10,  n
2

= 8,  n = 100 : 

Bootstrap

Jackknife

δ = 1/2 δ = 1/e

0.6384

0.7230

0.6807

0.5923

0.7587

0.6755

0.6441

0.8040

0.7240

(suppose 1 and 2 are conflicting groups)
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Probability of a character being omitted from a bootstrap

N (1 − 1/N)N

1 0 11 0.35049 25 0.36040 100 0.36603

2 0.25 12 0.35200 30 0.36166 150 0.36665

3 0.29630 13 0.35326 35 0.36256 200 0.36696

4 0.31641 14 0.35434 40 0.36323 250 0.36714

5 0.32768 15 0.35526 45 0.36375 300 0.36727

6 0.33490 16 0.35607 50 0.36417 500 0.36751

7 0.33992 17 0.35679 60 0.36479 1000 0.36770

8 0.34361 18 0.35742 70 0.36524 ∞ 0.36788

9 0.34644 19 0.35798 80 0.36557

10 0.34868 20 0.35849 90 0.36583
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A toy example to examine bias of P values

0

True value of mean

"Topology" II "Topology" I

True distribution of sample meansDistribution of individual
values of   x  

of sample means

Estimated distributions

Assuming a normal distribution, trying to infer whether the mean is above
0, when the mean is unknown and the variance known to be 1
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Bias in the P values

estimate of the "phylogeny"

topology Itopology II 0

P

note that the
true P is more
extreme than
the average of
the P’s

the true mean
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How much bias in the P values?
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Bias in the P values with different priors
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The parametric bootstrap

original

data

estimate

of tree

data

set #1

data

data

data

set #2

set #3

set #100

computer

simulation

estimation

of tree

T
1

T

T

2

T
3

100
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The parametric bootstrap with the primates data

Bovine

Lemur

Tarsier

Squirrel Monkey

Mouse

Jp Macacque

Barbary Mac

Crab−Eating Mac

Rhesus Mac

Gorilla

Chimp

Human

Orang

Gibbon

96

95

96

93

98

82

98

81

78

83

98
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Goldman’s test using simulation

data

T

T
c

no clock

clock

l

l

l − l2 (

. . .

data data data . . . data
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An outcome of Brownian motion on a 5-species tree
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An outcome of Brownian motion on a 5-species tree
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An outcome of Brownian motion on a 5-species tree
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An outcome of Brownian motion on a 5-species tree
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Brownian motion along a tree
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Distribution of tips on a tree under Brownian Motion
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Tip 1 is the sum of two independent changes each of which is drawn

from a normal distribution (with mean 0 and variances v3 and v1)
so it is normally distributed with mean 0 and variance v3 + v1.
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Distribution of tips on a tree under Brownian Motion
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Tip 1 is the sum of two independent changes each of which is drawn

from a normal distribution (with mean 0 and variances v3 and v1)
so it is normally distributed with mean 0 and variance v3 + v1.

Similarly for tip 2 (variance is v3 + v2).
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Distribution of tips on a tree under Brownian Motion
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Tip 1 is the sum of two independent changes each of which is drawn

from a normal distribution (with mean 0 and variances v3 and v1)
so it is normally distributed with mean 0 and variance v3 + v1.

Similarly for tip 2 (variance is v3 + v2).

They share branch 3, and the change there affects both random

variables. So they are not independent or uncorrelated.
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Distribution of tips on a tree under Brownian Motion

‘
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Tip 1 is the sum of two independent changes each of which is drawn

from a normal distribution (with mean 0 and variances v3 and v1)
so it is normally distributed with mean 0 and variance v3 + v1.

Similarly for tip 2 (variance is v3 + v2).

They share branch 3, and the change there affects both random

variables. So they are not independent or uncorrelated.

Variance is the expectation of the square (of deviation from the
mean), and covariance is the expectation of the product of those
deviations, for the two variables.
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Distribution of tips on a tree under Brownian Motion

‘
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Tip 1 is the sum of two independent changes each of which is drawn

from a normal distribution (with mean 0 and variances v3 and v1)
so it is normally distributed with mean 0 and variance v3 + v1.

Similarly for tip 2 (variance is v3 + v2).

They share branch 3, and the change there affects both random

variables. So they are not independent or uncorrelated.

Variance is the expectation of the square (of deviation from the
mean), and covariance is the expectation of the product of those
deviations, for the two variables.

In fact the covariance of the values at tip 1 and tip 2 is the variance
of the shared term that is the same in both of them, so it is v3.
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Covariances of species on the tree
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Covariances are of form





a b c 0 0 0 0

b d c 0 0 0 0

c c e 0 0 0 0

0 0 0 f g g g

0 0 0 g h i i

0 0 0 g i j k

0 0 0 g i k l




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Likelihood under Brownian motion with two species
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What happens if we estimate means and branch lengths?

Do we get the right answer if we estimate for each coordinate (each

character) the value at the root and the branch lengths v1 and v2 ?
Actually no.

Below, we will do this by finding values of these that maximize the

likelihood, and show that the likelihood becomes infinite if either v1 or v2

approaches zero.

Even if we constrain there to be a clock, so v1 = v2 and look only at
their sum v1 + v2 this turns out to be half as big as the truth, even with an
infinite number of characters.

Why? The problem seems to be that we are estimating too many
parameters. There is one parameter (the root value) for each character.
So the ratio of data to parameters does not rise to infinity as we increase
the number of parameters. In circumstances like this, likelihood methods
can misbehave.
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The solution: don’t infer ancestors; use REML

We can eliminate these problems by:

1. Do not infer the states of the interior nodes.

2. Use only the relative positions of the tips. This eliminates the
starting state at the root. It is REML, a variant of ML that loses
almost no statistical power.
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Minimizing for each character i

Q =
(x1i − x0i)

2

v1

+
(x2i − x0i)

2

v2

so:
dQ

dx0i

= −2
(x1i − x0i)

v1

− 2
(x2i − x0i)

v2

= 0

and then:

x̂0i =
1
v1

x1i + 1
v2

x2i

1
v1

+ 1
v2

So that we have a maximum likelihood estimate of the starting value x0i for
each character.

The result is that

Q =
(x1i − x2i)

2

v1 + v2
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Likelihood after estimating initial coordinates

Substituting in our estimates of x0i, we end up with

L =
1

(2π)p (v1v2)
1
2
p

exp

(
−1

2

p∑

i=1

(x1i − x2i)
2

v1 + v2

)

and this finally turns into:

ln L = −p ln(2π) − 1

2
p ln (v1v2) − 1

2

p∑

i=1

(x1i − x2i)
2

v1 + v2

This actually goes to infinity as either v1 or v2 goes to zero! This is related
to the problem that Edwards and Cavalli-Sforza had with their maximum
likelihood method in 1964.
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If there is a clock ...

If instead we constrain v1 = v2 because assume a clock:

ln L = K′ − p ln(v1 + v2) − 1

2

D2

(v1 + v2)

which leads to

v̂1 = v̂2 = D2/(4p)

(which is half as big as it should be!)

The number of parameters being estimated is p + 1, which rises as we

consider more characters. The fact that the ratio of data to parameters
does not rise without limit is the reason why likelihood misbehaves in this
case.
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The difference between ML and REML

Information we use for  ML  inference:

1.0 2.0 3.0 4.0

species 1species 2 species 3species 4

species 1species 2 species 3species 4

Information we use for  REML  inference:

1.0+x 2.0+x 3.0+x 4.0+x

Does it matter that we don’t know x ? It makes it unnecessary to estimate
the starting value x0, and that eliminates p parameters. It means that the

ratio of data to parameters does then rise as we add characters.
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Using only differences between populations (REML)

We assume that we have observed only the differences x1i − x2i, and not
the actual locations on the phenotype scale. Then

L =

p∏

i=1

1√
2π

√
v1 + v2

exp

(
−1

2

(x1i − x2i)
2

v1 + v2

)

ln L = K − p

2
ln (v1 + v2) +

1

2 (v1 + v2)

n∑

i=1

(xi1 − xi2)
2
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Likelihood with two species using REML

ln L = K − p

2
ln (v1 + v2) +

D2

2 (v1 + v2)

ln L = K − p

2
ln (vT) +

D2

2 vT

v̂T = D2/p

The number of parameters being estimated is 1 (it is the sum v1 + v2).

The number of parameters does not rise as we consider more characters.
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“Pruning” a tree in the Brownian motion case

+
v

1 v
2

v
3 v

4v
5

v
6

x
1

x
2

x
3

x
4

v
1

v
2

x
1

x
2

v
3 v

4v
5

v
6

δ

x
3

x
4

x
12

v
1

v
2

δ =
v

2
v

1
+

x
1

x
2

x
12 v

2
v

1
+

=

v
1

v
2

+

The likelihood for the tree is the product of the linkelihoods for these two
trees. By repeatedly applying this we can decompose the tree into n − 1

independent two-species trees. Getting their likelihoods is easy.
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