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Bayes’ Theorem

Conditional probability of hypothesis given data is:

Prob (H | D) =
Prob (H & D)

Prob (D)

Since
Prob (H & D) = Prob (H) Prob (D | H),

substituting this in:

Prob (H | D) =
Prob (H) Prob (D | H)

Prob (D)

The denominator Prob (D) is the sum of the numerators over all possible
hypotheses H, so it is the sum of the numerators over those, giving

Prob (H | D) =
Prob (H) Prob (D | H)

∑

H Prob (H) Prob (D | H)
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A visual example of Bayes’ Theorem
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A dramatic, if not real, example

Example: “Space probe photos show no Little Green Men on Mars!”
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Calculations for that example

Using the Odds Ratio form of Bayes’ Theorem:

Prob (H1|D)

Prob (H2|D)
=

Prob (D|H1)

Prob (D|H2)

Prob (H1)

Prob (H2)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

posterior likelihood prior
odds ratio ratio odds ratio

For the odds favoring their existence, the calculation is, for the optimist
about Little Green Men:

4

1
×

1/3

1
=

4/3

1
= 4 : 3

While for the pessimist it is

1

4
×

1/3

1
=

1/12

1
= 1 : 12
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With repeated observation the prior matters less

If we send 5 space probes, and all fail to see LGMs, since the probability
of this observation is (1/3)5 if there are LGMs, and 1 if there aren’t,
we get for the optimist about Little Green Men:

4

1
×

(1/3)5

1
= =

4/243

1
= 4 : 243

while for the pessimist about Little Green Men:

1

4
×

(1/3)5

1
= =

1/972

1
= 1 : 972
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A coin tossing example

The
prior

0.0 0.2 0.4 0.6 0.8 1.0

p
0.0 0.2 0.4 0.6 0.8 1.0

p

The
likelihood
function

0.0 0.2 0.4 0.6 0.8 1.0
0

0.0 0.2 0.4 0.6 0.8 1.0

The
posterior

0.0 0.2 0.4 0.6 0.8 1.0

p

0.0 0.2 0.4 0.6 0.8 1.0

p

11 tosses with 5 heads 44 tosses with 20 heads
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Markov Chain Monte Carlo sampling

To draw trees from a distribution whose probabilities are proportional to
f(t), we can use the Metropolis algorithm:

1. Start at some tree. Call this Ti.
2. Pick a tree that is a neighbor of this tree in the graph of trees. Call

this the proposal Tj.

3. Compute the ratio of the probabilities (or probability density
functions) of the proposed new tree and the old tree:

R =
f(Tj)

f(Ti)

4. If R ≥ 1, accept the new tree as the current tree.
5. If R < 1, draw a uniform random number (a random fraction between

0 and 1). If it is less than R, accept the new tree as the current tree.
6. Otherwise reject the new tree and continue with tree Ti as the

current tree.
7. Return to step 2.
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Two programs demonstrating MCMC sampling

Two excellent programs exist to demonstrate how MCMC finds peaks in a
two-dimensional space. The user can place the peaks and can run both
regular and “heated” chains to explore the space.

Paul Lewis’s Windows program MCRobot which is available at
http://www.eeb.uconn.edu/people/plewis/software.php

John Huelsenbeck’s similar Mac OS X program McmcApp (also
called iMCMC) which is available at
http://cteg.berkeley.edu/software.html
(hint: to place a peak on the run window, before running move the
cursor on the window while holding down the mouse button. The
peak is much wider than the initial ellipse, so keep that smallish).

We will demonstrate one of these in class.
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Bayesian MCMC

We try to achieve the posterior

Prob (T) Prob (D | T) / (denominator)

and this turns out to need the acceptance ratio

R =
Prob (Tnew) Prob (D | Tnew)

Prob (Told) Prob (D | Told)

(the denominators are the same and cancel out. This is a great
convenience, as we often cannot evaluate the deonominator, but we can
usually evaluate the numerators).

Note that we could also have a prior on model parameters too, and as we
move through tree space we could also be moving through parameter
space.
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Using MrBayes on the primates data

Bovine
Lemur
Tarsier
Crab E.Mac
Rhesus Mac
Jpn Macaq
BarbMacaq
Orang
Chimp
Human
Gorilla
Gibbon
Squir Monk
Mouse

0.416

0.899

1.00

0.999

1.00

0.997

0.986

0.905

0.949

0.938

0.856

Frequencies of partitions (posterior clade probabilities)
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Issues to think about with Bayesian inference

Where do you get your prior from?
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Issues to think about with Bayesian inference

Where do you get your prior from?
Are you assuming each branch has a length drawn
independently from a distribution? How wide a distribution?
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Issues to think about with Bayesian inference
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Or is the tree drawn from a birth-death process? If so, what are
the rates of birth and death?
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Issues to think about with Bayesian inference

Where do you get your prior from?
Are you assuming each branch has a length drawn
independently from a distribution? How wide a distribution?
Or is the tree drawn from a birth-death process? If so, what are
the rates of birth and death?
Or is there also a stage where the species studied are chosen
are selected from all extant species of the group? How do you
model that? Are you modelling biologists’ decision-making
processes?
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Issues to think about with Bayesian inference
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Are you assuming each branch has a length drawn
independently from a distribution? How wide a distribution?
Or is the tree drawn from a birth-death process? If so, what are
the rates of birth and death?
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Issues to think about with Bayesian inference

Where do you get your prior from?
Are you assuming each branch has a length drawn
independently from a distribution? How wide a distribution?
Or is the tree drawn from a birth-death process? If so, what are
the rates of birth and death?
Or is there also a stage where the species studied are chosen
are selected from all extant species of the group? How do you
model that? Are you modelling biologists’ decision-making
processes?

Is your prior the same as your reader’s prior?
If not, what do you do?
Use several priors?
Just give the reader the likelihood surface and let them provide
their own prior?
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An example

Suppose we have two species with a Jukes-Cantor model, so that the
estimation of the (unrooted) tree is simply the estimation of the branch
length between the two species.

We can express the result either as branch length t, or as the net
probability of base change

p =
3

4

(

1 − exp(−
4

3
t)

)
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A flat prior on p

0.0 0.5 0.750.25

p
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The corresponding prior on t

0 1 2 3 4 5

t

So which is the “flat prior”?
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Flat prior for t between 0 and 5

0 1 2 3 4 5

t
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The corresponding prior on p

0.0 0.750.50.25

p
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The invariance of the ML estimator to scale change

^
t̂ = 0.383112

( p = 0.3 )

0 1 2 3 4 5
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Likelihood curve for t
when 3 sites differ out of 10
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The invariance of the ML estimator to scale change
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p = 0.3^

^( t = 0.383112 )
Likelihood curve for p

when 3 sites differ out of 10

Week 7: Bayesian inference – p.19/21



When t has a wide flat prior

0

1

2

3

4

5

1 10 100 1000

T

t 95% interval

MLE

The 95% two-tailed credible interval for t with various
truncation points on a flat prior for t
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What is going on in that case is ...

0

T is so large this is < 2.5% of the area

T
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