
Week 6: Protein sequence models, likelihood, hidden
Markov models

Genome 570

February, 2016

Week 6: Protein sequence models, likelihood, hidden Markov models – p.1/57



Variation of rates of evolution across sites

The basic way all these models deal with rates of evolution is using the

fact that a rate r times as fast is exactly equivalent to evolving along a
branch that is r times as long, so that it is easy to calculate the transition
probabilities with rate r:

Pij(r, t) = Pij(r t)

The likelihood for a pair of sequences averages over all rates at each site,

using the density function f(r) for the distribution of rates:

L(t) =
sites∏

i=1

(∫ ∞

0

f(r) πni
Pmini

(r t) dr

)
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The Gamma distribution

f(r) =
1

Γ(α) βα
xα−1 e−

x
β

E[x] = α β

Var[x] = α β2

To get a mean of 1, set β = 1/α so that

f(r) =
αα

Γ(α)
rα−1 e−αr.

so that the squared coefficient of variation is 1/α.
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Gamma distributions

Here are density functions of Gamma distributions for three different
values of α:

α = 1/4
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Gamma rate variation in the Jukes-Cantor model

For example, for the Jukes-Cantor distance, to get the fraction of sites

different we do

DS =

∫
∞

0

f(r)
3

4

(
1 − e−

4
3
r ut
)

dr

leading to the formula for D as a function of DS

D = −
3

4
α

[
1 −

(
1 −

4

3
DS

)
−1/α

]
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Gamma rate variation in other models

For many other distances such as the Tamura-Nei family, the transition
probabilites are of the form

Pij(t) = Aij + Bij e−bt + Cij e−ct

and integrating termwise we can make use of the fact that

Er

[
e−b r t

]
=

(
1 +

1

α
b t

)
−α

and just use that to replace e−bt in the formulas for the transition
probabilities.
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Dayhoff’s PAM001 matrix

A R N D C Q E G H I L K M F P S T W
ala arg asn asp cys gln glu gly his ile leu lys met phe pro ser thr trp

A ala 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0
R arg 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8
N asn 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1
D asp 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0
C cys 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0
Q gln 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0
E glu 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0
G gly 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0
H his 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1
I ile 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0
L leu 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4
K lys 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0
M met 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0
F phe 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3
P pro 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0
S ser 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5
T thr 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0
W trp 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976
Y tyr 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2
V val 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0
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The codon model
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Probabilities of change vary depending

on whether amino acid is

Goldman & Yang,  MBE  1994; Muse and Weir, MBE 1994

Week 6: Protein sequence models, likelihood, hidden Markov models – p.8/57



A codon-based model of protein evolution

In each cell:

P
ij ij
(v) a

ij
P is the probability of codon change

and is the probability that the change is accepted

where (v) 

ij
 a

....

....
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Considerations for a protein model

Making a model for protein evolution (a not-very-practical approach)

Use a good model of DNA evolution.

Use the appropriate genetic code.

When an amino acid changes, accept it with probability that declines

as the amino acids become more different.

Fit this to empirical information on protein evolution.

Take into account variation of rate from site to site.

Take into account correlation of rates in adjacent sites.

How about protein structure? Secondary structure? 3D structure?

(the first four steps are the “codon model” of Goldman and Yang, 1994
and Muse and Gaut, 1994, both in Molecular Biology and Evolution. The
next two are the rate variation machinery of Yang, 1995, 1996 and

Felsenstein and Churchill, 1996).
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Likelihood ratios: the odds-ratio form of Bayes’ theorem

Prob (H1|D)
Prob (H2|D) = Prob (D|H1)

Prob (D|H2)
Prob (H1)
Prob (H2)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
posterior likelihood prior
odds ratio ratio odds ratio

Given prior odds, we can use the data to compute the posterior odds.
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With many sites the likelihood wins out

Independence of the evolution in the different sites implies that:

Prob (D|Hi)

= Prob (D(1)|Hi) Prob (D(2)|Hi) . . . Prob (D(n)|Hi)

so we can rewrite the odds-ratio formula as

Prob (H1|D)

Prob (H2|D)
=

(
n∏

i=1

Prob (D(i)|H1)

Prob (D(i)|H2)

)
Prob (H1)

Prob (H2)

This implies that as n gets large the likelihood-ratio part will dominate.
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An example – coin tossing

If we toss a coin 11 times and get HHTTHTHHTTT, the likelihood is:

L = Prob (D|p)

= p p (1 − p) (1 − p) p (1 − p) p p (1 − p) (1 − p) (1 − p)

= p5(1 − p)6

Solving for the maximum likelihood estimate for p by finding the maximum:

dL

dp
= 5p4(1 − p)6 − 6p5(1 − p)5

and equating it to zero and solving:

dL

dp
= p4(1 − p)5 (5(1 − p) − 6p) = 0

gives p̂ = 5/11
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Likelihood as function of p for the 11 coin tosses

0.0 0.2 0.4 0.6 0.8 1.0

L
ik

e
lih

o
o
d

p 0.454

Week 6: Protein sequence models, likelihood, hidden Markov models – p.14/57



Maximizing the likelihood

Maximizing the likelihood is the same as maximizing the log likelihood,
because its log increases as the number increases, so:

ln L = 5 ln p + 6 ln(1 − p),

and

d(ln L)

dp
=

5

p
−

6

(1 − p)
= 0,

so that, again,

p̂ = 5/11
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An example with one site
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We want to compute the probability of these data at the tips of the tree,
given the tree and the branch lengths. Each site has an independent
outcome, all on the same tree.
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Likelihood sums over states of interior nodes

The likelihood is the product over sites (as they are independent given the

tree):

L = Prob (D|T) =
m∏

i=1

Prob
(
D(i)|T

)

For site i, summing over all possible states at interior nodes of the tree:

Prob
(
D(i)|T

)
=
∑

x

∑

y

∑

z

∑

w

Prob (A, C, C, C, G, x, y, z, w|T)
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... the products over events in the branches

By independence of events in different branches (conditional only on their
starting states):

Prob (A, C, C, C, G, x, y, z, w|T) =

Prob (x) Prob (y|x, t6) Prob (A|y, t1) Prob (C|y, t2)

Prob (z|x, t8) Prob (C|z, t3)

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)
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The result looks hard to compute

Summing over all x, y, z, and w (each taking values A, G, C, T):

Prob
(
D(i)|T

)
=

∑
x

∑
y

∑
z

∑
w

Prob (x) Prob (y|x, t6) Prob (A|y, t1)

Prob (C|y, t2)

Prob (z|x, t8) Prob (C|z, t3)

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)

This could be hard to do on a larger tree. For example, with 20 species
there are 19 interior nodes and thus the number of outcomes for interior
nodes is 419 = 274, 877, 906, 944.
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... but there’s a trick ...

We can move summations in as far as possible:

Prob
(
D(i)|T

)
=

∑
x

Prob (x)

(
∑
y

Prob (y|x, t6) Prob (A|y, t1) Prob (C|y, t2)

)

(∑
z

Prob (z|x, t8) Prob (C|z, t3)

(∑
w

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)

))

The pattern of parentheses parallels the structure of the tree:

(A, C) (C, (C, G))
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Conditional likelihoods in this calculation

Working from innermost parentheses outwards is the same as working

down the tree. We can define a quantity

L
(i)
j (s) the conditional likelihood at site i

of everything at or above point j in the tree,
given that point j have state s

One such is the term:

L7(w) = Prob (C|w, t4) Prob (G|w, t5)

Another is the term including that:

L8(z) = Prob (C|z, t3)

(
∑

w

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)

)
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The pruning algorithm

This follows the recursion down the tree:

L
(i)
k

(s) =

„

P

x
Prob (x|s, tℓ) L

(i)
ℓ

(x)

«

×

 

P

y
Prob (y|s, tm) L

(i)
m (y)

!

At a tip the quantity is easily seen to be like this (if the tip is in state A):
“

L(i)(A), L(i)(C), L(i)(G), L(i)(T)
”

= (1, 0, 0, 0)

At the bottom we have a weighted sum over all states, weighted by their
prior probabilities:

L(i) =
X

x

πx L
(i)
0 (x)

We can do that because, if evolution has gone on for a long time before

the root of the tree, the probabilities of bases there are just the equilibrium
probabilities under the DNA model (or whatever model we assume).
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Handling ambiguity and error

If a base is unknown: use (1, 1, 1, 1). If known only to be a purine:

(1, 0, 1, 0)

Note – do not do something like this: (0.5, 0, 0.5, 0). It is not the

probability of being that base but the probability of the observation given
that base.

If there is sequencing error use something like this:

(1 − ε, ε/3, ε/3, ε/3)

(assuming an error is equally likely to be each of the three other bases).
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Rerooting the tree
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Unrootedness

L(i) =
∑

x

∑

y

∑

z

Prob (x) Prob (y|x, t6) Prob (z|x, t8)

Reversibility of the Markov process guarantees that

Prob (x) Prob (y|x, t6) = Prob (y) Prob (x|y, t6).

Substituting that in:

L(i) =
∑

y

∑

x

∑

y

Prob (y) Prob (x|y, t6) Prob (z|x, t8)

... which means that (if the model of change is a reversible one) the
likelihood does not depend on where the root is placed in the unrooted
tree.
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To compute likelihood when the root is in one branch

prune
in this
subtree

First we get (for the site) the conditional likelihoods for the left subtree ...
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To compute likelihood when the root is in one branch

prune
in this
subtree

... then we get the conditional likelihoods for the right subtree
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To compute likelihood when the root is in one branch

0.236

prune to bottom

... and finally we get the conditional likelihoods for the root, and from that
the likelhoods for the site. (Note that it does not matter where in that
branch we place the root, as long as the sum of the branch lengths on

either side of the root is 0.236).
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To do it with a different branch length ...

prune to bottom

0.351

... we can just do the last step, but now with the new branch length. The
other conditional likelihoods were already calculated, have not changed,

and so we can re-use them. This really speeds things up for calculating

how the likelihood depends on the length of one branch – just put the root
there!
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A data example: 7-species primates mtDNA

Mouse

Human

Chimp

Gorilla

Orang

Gibbon

Bovine

0.792 0.902

0.486

0.3360.121
0.049

0.3040.153

0.075
0.172

0.106

ln  L   =   −1405.6083

These are noncoding or synonymous sites from the D-loop region (and

some adjacent coding regions) of mitochondrial DNA, selected by Masami

Hasegawa from sequences done by S. Hayashi and coworkers in 1985.
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A simulation showing consistency of the ML tree
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As more and more sites are added the true tree topology is favored. Since

the vertical scale here is log(L) per site, the difference of log-likelihoods

becomes very great.
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Rate variation among sites

Evolution is independent once each site has had its rate specified

Prob (D | T, r1, r2, . . . , rp) =

p∏
i=1

Prob (D(i) | T, ri).
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Coping with uncertainty about rates

Using a Gamma distribution independently assigning rates to sites:

L =

m∏

i=1

[∫
∞

0

f(r; α) L(i)(r) dr

]

Unfortunately this is hard to compute on a tree with more than a few
species.
Yang (1994a) approximated this by a discrete histogram of rates:

L(i) =

∫
∞

0

f(r; α) L(i)(r) dr ≃

k∑

j=1

wkL
(i)(rk)

Felsenstein (J. Mol. Evol., 2001) has suggested using Gauss-Laguerre
quadrature to choose the rates ri and the weights wi.
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Hidden Markov Models

These are the most widely used models allowing rate variation to be
correlated along the sequence.

We assume:

There are a finite number of rates, m. Rate i is ri.

There are probabilities pi of a site having rate i.

A process not visible to us (“hidden") assigns rates to sites. It is a
Markov process working along the sequence. For example it might

have transition probability Prob (j|i) of changing to rate j in the next

site, given that it is at rate i in this site.

The probability of our seeing some data are to be obtained by

summing over all possible combinations of rates, weighting

appropriately by their probabilities of occurrence.
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Likelihood with a[n] HMM

Suppose that we have a way of calculating, for each possible rate at each

possible site, the probability of the data at that site (i) given that rate (rj).
This is

Prob
(
D(i) | rj

)

This can be done because the probabilities of change as a function of the

rate r and time t are (in almost all models) just functions of their product
rt, so a site that has twice the rate is just like a site that has branches
twice as long.

To get the overall probability of all data, sum over all possible paths

through the array of sites × rates, weighting each combination of rates by
its probability:
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Hidden Markov Model of rate variation
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Hidden Markov Models

If there are a number of hidden rate states, with state i having rate ri

Prob (D | T) =
∑
i1

∑
i2

· · ·
∑
ip

Prob (ri1 , ri2 , . . . rip)

× Prob (D | T, ri1 , ri2 , . . . rim)

Evolution is independent once each site has had its rate specified

Prob (D | T, r1, r2, . . . , rp) =

p∏
i=1

Prob (D(i) | T, ri).
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Seems impossible ...

To compute the likelihood we sum over all ways rate states could be
assigned to sites:

L = Prob (D | T)

=
m∑

i1=1

m∑
i2=1

· · ·
m∑

ip=1

Prob
(
ri1 , ri2 , . . . , rip

)

× Prob
(
D(1) | ri1

)
Prob

(
D(2) | ri2

)
. . .Prob

(
D(n) | rip

)

Problem: The number of rate combinations is very large. With 100 sites

and 3 rates at each, it is 3100 ≃ 5 × 1047. This makes the summation
impractical.
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Factorization and the algorithm

Fortunately, the terms can be reordered:

L = Prob (D | T)

=
m∑

i1=1

m∑
i2=1

. . .
m∑

ip=1

Prob (i1) Prob
(
D(1) | ri1

)

× Prob (i2 | i1) Prob
(
D(2) | ri2

)

× Prob (i3 | i2) Prob
(
D(3) | ri3

)

...

× Prob (ip | ip−1) Prob
(
D(p) | rip

)
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Using Horner’s Rule

and the summations can be moved each as far rightwards as it can go:

L =
m∑

i1=1

Prob (i1) Prob
(
D(1) | ri1

)

m∑
i2=1

Prob (i2 | i1) Prob
(
D(2) | ri2

)

m∑
i3=1

Prob (i3 | i2) Prob
(
D(3) | ri3

)

...

m∑
ip=1

Prob (ip | ip−1) Prob
(
D(p) | rip

)
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Recursive calculation of HMM likelihoods

The summations can be evaluated innermost-outwards. The same
summations appear in multiple terms. We can then evaluate them only
once. A huge saving results. The result is this algorithm:

Define Pi(j) as the probability of everything at or to the right of site i, given

that site i has the j-th rate.
Now we can immediately see for the last site that for each possible rate
category ip

Pp(ip) = Prob
(
D(p) | rip

)

(as “at or to the right of" simply means “at" for that site).
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Recursive calculation

More generally, for site ℓ < p and its rates iℓ

Pℓ(iℓ) = Prob
(
D(ℓ) | riℓ

) m∑

iℓ=1

Prob (iℓ+1 | iℓ) Pℓ+1(iℓ+1)

We can compute the P ’s recursively using this, starting with the last site

and moving leftwards down the sequence. Finally we have the P1(i1) for

all m states. These are simply weighted by the equilibrium probabilities of
the Markov chain of rate categories:

L = Prob (D | T) =
m∑

i1=1

Prob (i1) P1(i1)

An entirely similar calculation can be done from left to right, remembering

that the transition probabilities Prob (ik|ik+1) would be different in that
case.
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All paths through the array

array of conditional probabilities of everything at or
to the right of that site, given the state at that site
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Starting and finishing the calculation

At the end, at site m:

Prob (D[m]|T, rim) = Prob (D(m)|T, rim)

and once we get to site 1, we need only use the prior probabilities of the
rates ri to get a weighted sum:

Prob (D|T) =
∑

i1

πi1 Prob (D[1]|T, ri1)
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The pruning algorithm is just like

ancestor

ancestor

species 1 species 2

different bases
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the forward algorithm

site 22

site 21

site 20

different rates
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Paths from one state in one site
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Paths from another state in that site
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Paths from a third state
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We can also use the backward algorithm

you can also do it the other way
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Using both we can find likelihood contributed by a state

the "forward−backward" algorithm allows us to get
the probability of everything given one site’s state
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A particular Markov process on rates

There are many possible Markov processes that could be used in the
HMM rates problem. I have used:

Prob (ri|rj) = (1 − λ) δij + λ πi
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A numerical example. Cytochrome B

We analyze 31 cytochrome B sequences, aligned by Naoko Takezaki,
using the Proml protein maximum likelihood program. Assume a Hidden
Markov Model with 3 states, rates:

category rate probability
1 0.0 0.2
2 1.0 0.4
3 3.0 0.4

and expected block length 3.

We get a reasonable, but not perfect, tree with the best rate combination

inferred to be
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Phylogeny for Takezaki cytochrome B
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Rates inferred from Cytochrome B

1333333311 3222322313 3321113222 2133111111 1331133123 1122111112

african M-----TPMR KINPLMKLIN HSFIDLPTPS NISAWWNFGS LLGACLILQI TTGLFLAMHYS
caucasian .......... .........R .......... .......... ..T....... ..........
cchimp .......T.. .......... .......... .......... .......... ..........
pchimp .......T.. .......... .......... ..T....... .......... ..........
gorilla1 .......... T...A..... .......... ..T....... .......... ..........
gorilla2 .......... T...A..... .......... ..T....... .......... ..........
borang .......... T......... .L........ .......... ......I.TI ..........
sorang ......ST.. T......... .L........ .......... ......I... ..........
gibbon .......L.. T......... .L....A... ..M....... .........I .........T
bovine ......NI.. SH....IV.N A.....A... ..S....... ..I......L .........T
whalebm ......NI.. TH....I..D A......... ..S....... ..L...V..L .........T
whalebp ......NI.. TH....IV.D A.V....... ..S....... ..L...M..L .........T
dhorse ......NI.. SH..I.I... ......A... ..S....... ..I......L .........T
horse ......NI.. SH..I.I... .......... ..S....... ..I......L .........T
rhinocer ......NI.. SH..V.I... .......... ..S....... ..I......L .........T
cat ......NI.. SH..I.I... ......A... .......... ..V..T...L .........T
gseal ......NI.. TH....I..N .......... .......... ..I......L .........T
hseal ......NI.. TH....I..N .......... .......... ..I......L .........T
mouse ......N... TH..F.I... ......A... ..S....... ..V..MV..I .........T
rat ......NI.. SH..F.I... ......A... ..S....... ..V..MV..L .........T
platypus .....NNL.. TH..I.IV.. .......... ..S....... ..L...I..L .........T
wallaroo ......NL.. SH..I.IV.. ......A... .......... ......I..L .........T
opossum ......NI.. TH....I..D .......... .......... ..V...I..L .........T
chicken ....APNI.. SH..L.M..N .L....A... .......... .AV..MT..L ...L.....T
xenopus ....APNI.. SH..I.I..N .......... ..SL...... ..V...A..I .........T
carp ....A-SL.. TH..I.IA.D ALV....... .......... ..L...T..L .........T
loach ....A-SL.. TH..I.IA.D ALV...A... ..V....... ..L...T..L .........T
trout ....A-NL.. TH..L.IA.D ALV...A... ..V....... ..L..AT..L .........T
lamprey .SHQPSII.. TH..LS.G.S MLV...S.A. .......... .SL......I ...I.....T
seaurchin1 -...LG.L.. EH.IFRIL.S T.V...L... L.I....... ..L...T..L .........T
seaurchin2 -...AG.L.. EH.IFRIL.S T.V...L... L.M....... ..L...I.LI ..I......TWeek 6: Protein sequence models, likelihood, hidden Markov models – p.55/57



Rates inferred from Cytochrome B

2223311112 2222222222 2222232112 2222222223 1222221112 3333111122

african PDASTAFSSI AHITRDVNYG WIIRYLHANG ASMFFICLFL HIGRGLYYGS FLYSETWNIG
caucasian .......... .......... .......... .......... .......... ..........
cchimp .......... .......... .......... .......... .......... ...L......
pchimp .......... .......... .......... ...L...... .V........ ...L......
gorilla1 .......... .......... .T........ .......... .......... ..HQ......
gorilla2 .......... .......... .T........ .......... .......... ..HQ......
borang ...T...... .......... .M..H..... ...L...... .......... .THL......
sorang .......... .......... .M..H..... .......... .......... .THL......
gibbon .........V .......... .......... .......... .......... ...L......
bovine S.TT.....V T..C...... .....M.... ........YM .V........ YTFL......
whalebm ..TM.....V T..C...... .V........ ........YA .M........ HAFR......
whalebp ..TT.....V T..C...... .......... ........YA .M........ YAFR......
dhorse S.TT.....V T..C...... .......... .........I .V........ YTFL......
horse S.TT.....V T..C...... .......... .........I .V........ YTFL......
rhinocer ..TT.....V T..C...... .M........ .........I .V........ YTFL......
cat S.TM.....V T..C...... .......... ........YM .V...M.... YTF.......
gseal S.TT.....V T..C...... .......... ........YM .V........ YTFT......
hseal S.TT.....V T..C...... .......... ........YM .V........ YTFT......
mouse S.TM.....V T..C...... .L...M.... .......... .V........ YTFM......
rat S.TM.....V T..C...... .L....Q... .......... .V........ YTFL......
platypus S.T......V ...C...... .L...M.... ..L..M.I.. .......... YTQT......
wallaroo S.TL.....V ...C...... .L..N..... .....M.... .V...I.... Y..K......
opossum S.TL.....V ...C...... .L..NI.... .....M.... .V...I.... Y..K......
chicken A.T.L....V ..TC.N.Q.. .L..N..... ..F....I.. .......... Y..K....T.
xenopus A.T.M....V ...CF..... LL..N..... L.F....IY. .......... ...K......
carp S.I......V T..C...... .L..NV.... ..F....IYM ..A....... Y..K......
loach S.I......V ...C...... .L..NI.... ..F.....Y. ..A....... Y..K......
trout S.I......V C..C...S.. .L..NI.... ..F....IYM ..A....... Y..K......
lamprey ANTEL....V M..C....N. .LM.N..... .......IYA .....I.... Y..K....V.
seaurchin1 A.I.L....A S..C...... .LL.NV.... ..L....MYC .........G SNKI....V.
seaurchin2 A.INL....V S..C...... .LL.NV...C ..L....MYC .........L TNKI....V.Week 6: Protein sequence models, likelihood, hidden Markov models – p.56/57



PhyloHMMs: used in the UCSC Genome Browser

The conservation scores calculated in the Genome Browser use
PhyloHMMs, which is just these HMM methods.
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