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A tree and the expected distances it predicts
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The predicted distances are the sums of branch lengths between those
two species.
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A tree and a set of two-species trees

0.10

0.07

0.05

0.08

0.03
0.06

0.05

A
B

C

D

E

A

C

D

E

B

The two-species trees correspond to the pairwise distances observed
between the pairs of species. The tree also predicts two-species trees,
because clipping off all other species you are left simply with the path

between that pair of species.
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A tree with branch lengths
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Distance matrix methods always infer trees that have branch lengths, and

they assume models of change of the characters (sequences).
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Distance matrix methods
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Find the tree which comes closest to predicting
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The math of least squares trees

Q =
n∑

i=1

∑

j6=i

wij(Dij − dij)
2

dij =
∑

k

xij,kvk

Q =
n∑

i=1

∑

j6=i

wij

(
Dij −

∑

k

xij,kvk

)2

.

dQ

dvk

= −2

n∑

i=1

∑

j6=i

wij xij,k

(
Dij −

∑

k

xij,kvk

)
= 0.

Equations to solve to infer branch lengths by least squares on a given tree

topology, which specifies the xij,k.
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Solving for least squares branch lengths

DAB + DAC + DAD + DAE = 4v1 + v2 + v3 + v4 + v5 + 2v6 + 2v7

DAB + DBC + DBD + DBE = v1 + 4v2 + v3 + v4 + v5 + 2v6 + 3v7

DAC + DBC + DCD + DCE = v1 + v2 + 4v3 + v4 + v5 + 3v6 + 2v7

DAD + DBD + DCD + DDE = v1 + v2 + v3 + 5v4 + v5 + 2v6 + 3v7

DAE + DBE + DCE + DDE = v1 + v2 + v3 + v4 + 4v5 + 3v6 + 2v7

DAC + DAE + DBC

+DBE + DCD + DDE = 2v1 + 2v2 + 3v3 + 2v4 + v5 + 6v6 + 4v7

DAB + DAD + DBC

+DBE + DCD + DDE = 2v1 + 3v2 + 3v4 + 2v5 + 4v6 + 6v7
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A vector of all distances, stacked

d =




DAB

DAC

DAD

DAE

DBC

DBD

DBE

DCD

DCE

DDE




They are in lexicographic (dictionary) order.
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The design matrix and least squares equations

X =




1 1 0 0 0 0 1
1 0 1 0 0 1 0
1 0 0 1 0 0 1
1 0 0 0 1 1 0
0 1 1 0 0 1 1
0 1 0 1 0 0 0
0 1 0 0 1 1 1
0 0 1 1 0 1 1
0 0 1 0 1 0 0
0 0 0 1 1 1 1




XTD =
(
XTX

)
v.

So solution of equations is

v = (XTX)−1 XTD
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A diagonal matrix of weights

W =




wAB 0 0 0 0 0 0 0 0 0
0 wAC 0 0 0 0 0 0 0 0
0 0 wAD 0 0 0 0 0 0 0
0 0 0 wAE 0 0 0 0 0 0
0 0 0 0 wBC 0 0 0 0 0
0 0 0 0 0 wBD 0 0 0 0
0 0 0 0 0 0 wBE 0 0 0
0 0 0 0 0 0 0 wCD 0 0
0 0 0 0 0 0 0 0 wCE 0
0 0 0 0 0 0 0 0 0 wDE




,
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Weighted least squares equations

X
T
WD =

(
X

T
WX
)
v,

v =

(
X

T
WX
)−1

X
T
WD.

These matrix equations solve for weighted least squares estimates of the
branch lengths on a given tree. The tree topology is specified by the

design matrix X and the weights are the elements of the diagonal matrix
W.

Week 5: Distance methods, DNA and protein models – p.11/69



A statistical justification for least squares

SSQ =
n∑

i=1

∑

j6=i

(Dij − E (Dij))
2

Var (Dij)
.

This least squares method

... is what we would get by standard statistical least squares
approaches if the distances were normally distributed,
independently varying, and had expectation and variance as shown

... but they actually aren’t independent in almost all cases (such as
molecular sequences), but ...

... it can be shown that the estimate of the tree will be a consistent
estimate in the case of non-independence, just not as efficient
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The Jukes-Cantor model

A G
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u/3

The simplest and most symmetrical of models of DNA evolution. In a
small interval of time dt the probability of change at a site is u dt, and it

is equally likely to go to each of the other three bases.
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A simple derivation of the probabilities of net change

Imagine a (fictional) kind of event that could change the base to one

of the four possible bases (including the same base) with equal

probability (instead of changing to one of the other three).
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A simple derivation of the probabilities of net change

Imagine a (fictional) kind of event that could change the base to one

of the four possible bases (including the same base) with equal

probability (instead of changing to one of the other three).

If you set the probability of change in that model to 4
3
u dt, it would

be indistinguishable from the actual Jukes-Cantor model.
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A simple derivation of the probabilities of net change

Imagine a (fictional) kind of event that could change the base to one

of the four possible bases (including the same base) with equal

probability (instead of changing to one of the other three).

If you set the probability of change in that model to 4
3
u dt, it would

be indistinguishable from the actual Jukes-Cantor model.

If any nonzero number of these fictional events occur on a branch,

the probability of ending up with (say) base C is 1
4
.
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A simple derivation of the probabilities of net change

Imagine a (fictional) kind of event that could change the base to one

of the four possible bases (including the same base) with equal

probability (instead of changing to one of the other three).

If you set the probability of change in that model to 4
3
u dt, it would

be indistinguishable from the actual Jukes-Cantor model.

If any nonzero number of these fictional events occur on a branch,

the probability of ending up with (say) base C is 1
4
.

The number of these events that occur in a branch has Poisson
distribution with expected number 4

3
u t, so the probability of no event

is e−
4
3
ut
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The Jukes-Cantor model

Probability of no event: e−
4
3
ut

Probability of some event: 1 − e−
4
3
ut

Probability of changing to C given start at A, have rate u, time t:

Prob (C|A, u, t) =
1

4

(
1 − e−

4
3
ut
)

fraction of sites different:

fD =
3

4

(
1 − e−

4
3
ut
)

.

Solving, the distance as function of the fraction of sites different is

D = ût = −
3

4
ln

(
1 −

4

3
fD

)
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Fraction of sites different versus branch length
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... as predicted by the Jukes-Cantor model.
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Branch length versus fraction of sites different
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If you don’t correct for multiple changes

A

B

C

0.155 0.155

0.0206

A

B

C

0.20 0.20

0.00

The true (unrooted) tree What we estimate

This happening because the long path between A and C is shortened
more, proportionally, than the shorter paths between A and B and
between C and B. The only way to do this is to put in a spurious branch
leading to B.

In effect, there is a “war” between the long paths and the short paths.

With properly corrected distances, each path approaches its true length
when we look at a very large number of sites.

Week 5: Distance methods, DNA and protein models – p.18/69



Least squares methods

These are just differently weighted least squares methods, as mentioned
previously.

Fitch and Margoliash (1967) used a weight of 1/D2
ij, so the quantity to be

minimized is

Q =
∑

ij

(Dij − dij)
2

D2
ij

Cavalli-Sforza and Edwards (1967) used the unweighted least squares
method:

Q =
∑

ij

(Dij − dij)
2

These amount to different assumptions about the how the size of a
distance will affect its variance.
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The Minimum Evolution method

Kidd and Sgaramella-Zonta (1971) and (independently) Rzhetsky and Nei

(1992ff.) came up with this method:

Search through tree space as usual

For each tree estimate branch lengths by least squares, not allowing
negative branch lengths

Then actually evaluate the tree not by the sum of squares, but by the
total sum of branch lengths.

This does fairly well, in spite of the mixture of two optimization criteria.

Note that it is not directly related to parsimony, in spite of its name.
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The UPGMA algorithm

i

j

k

D
ik

D
jk

D

(ij)

(ij),k

The UPGMA algorithm

 =  1

2.  Pick the values of  i  and  j  that
are for the smallest of the D

ij
3.  Make a new group  (ij)

D
(ij),k

 =  

w
i
 + w

j

row and column for (ij).

5.  Its weight is    w

6.  The distance between  (ij)  and another (say k)

7.  Delete  i  and  j  from the table, put in a

8.  If there is only one group left, stop.  Otherwise
go to step 2.

is computed as
i

 +  w
j  jk

w

1.  Assign each species weight  w i

 ik

ij
 / 2

 + w
ji

 D  D

4.  Assign time depth   D      to the connection between   i  and j.

Note that the weighting in effect weights each of the original tips equally,
so that a group’s distance to an outside species or another group is the
average of all the distances between species in one and species in the

other. This is a natural “unweighted” choice.
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Sarich 1969, immunological distances

dog bear raccoon weasel seal sea lion cat monkey

dog 0 32 48 51 50 48 98 148
bear 32 0 26 34 29 33 84 136
raccoon 48 26 0 42 44 44 92 152
weasel 51 34 42 0 44 38 86 142
seal 50 29 44 44 0 24 89 142
sea lion 48 33 44 38 24 0 90 142
cat 98 84 92 86 89 90 0 148
monkey 148 136 152 142 142 142 148 0
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Find smallest element, its rows, columns

∗ ∗
dog bear raccoon weasel seal sea lion cat monkey

dog 0 32 48 51 50 48 98 148
bear 32 0 26 34 29 33 84 136
raccoon 48 26 0 42 44 44 92 152
weasel 51 34 42 0 44 38 86 142

∗ seal 50 29 44 44 0 24 89 142

∗ sea lion 48 33 44 38 24 0 90 142

cat 98 84 92 86 89 90 0 148
monkey 148 136 152 142 142 142 148 0
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We do the following averaging

∗ ∗
dog bear raccoon weasel seal sea lion cat monkey

dog 0 32 48 51 (50 + 48)/2 98 148
bear 32 0 26 34 (29 + 33)/2 84 136
raccoon 48 26 0 42 (44 + 44)/2 92 152
weasel 51 34 42 0 (44 + 38)/2 86 142

∗ seal 49 31 44 41 0 24 89.5 142

∗ sea lion 24 0

cat 98 84 92 86 (89 + 90)/2 0 148
monkey 148 136 152 142 (142 + 142)/2 148 0
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Clustering seal and sea lion
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After clustering seal and sea lion

∗ ∗
dog bear raccoon weasel SS cat monkey

dog 0 32 48 51 49 98 148

∗ bear 32 0 26 34 31 84 136

∗ raccoon 48 26 0 42 44 92 152

weasel 51 34 42 0 41 86 142
SS 49 31 44 41 0 89.5 142
cat 98 84 92 86 89.5 0 148
monkey 148 136 152 142 142 148 0
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Clustering bear and racoon
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After clustering bear and raccoon

∗ ∗
dog BR weasel SS cat monkey

dog 0 40 51 49 98 148

∗ BR 40 0 38 37.5 88 144

weasel 51 38 0 41 86 142

∗ SS 49 37.5 41 0 89.5 142

cat 98 88 86 89.5 0 148
monkey 148 144 142 142 148 0
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Clustering bear-raccoon with seal-sealion
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After clustering those two clusters

∗ ∗
dog BRSS weasel cat monkey

dog 0 44.5 51 98 148

∗ BRSS 44.5 0 39.5 88.75 143

∗ weasel 51 39.5 0 86 142

cat 98 88.75 86 0 148
monkey 148 143 142 148 0
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Clustering weasel with BRSS
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After adding weasel to that cluster

∗ ∗
dog BRSSW cat monkey

∗ dog 0 45.8 98 148

∗ BRSSW 45.8 0 88.2 142.8
cat 98 88.2 0 148
monkey 148 142.8 148 0
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Clustering the dog with BRSSW
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After adding dog to it

∗ ∗
DBRWSS cat monkey

∗ DBRWSS 0 89.833 143.66

∗ cat 89.833 0 148

monkey 143.66 148 0
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Clustering all the carnivores and pinnipeds
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Finally, just monkey remaining

DBRWSSC monkey

DBRWSSC 0 144.2857

monkey 144.2857 0
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The UPGMA tree
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UPGMA can mislead

A
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D
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B C D A

True tree UPGMA tree

6 6 8 10.833

2.833
2

        True
distance matrix
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Neighbor-Joining

For each tip, compute ui =
∑n

j:j6=i Dij/(n − 2). Note that the

denominator is (deliberately) not the number of items summed.

Choose the i and j for which Dij − ui − uj is smallest.

Join items i and j. Compute the branch length from i to the new

node (vi) and from j to the new node (vj) as

vi = 1
2
Dij +

1
2
(ui − uj)

vj = 1
2
Dij +

1
2
(uj − ui)

(continued on next slide)
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continued ...

Compute the distance between the new node (ij) and each of the

remaining tips as

D(ij),k = (Dik + Djk − Dij)
/

2

Delete tips i and j from the tables and replace them by the new

node, (ij) , which is now treated as a tip.

If more than two nodes remain, go back to step 1. Otherwise,

connect the two remaining nodes (say, ℓ and m ) by a branch of
length Dℓm.
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The NJ star decomposition

i
j (ij)

v
i v

j

k
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The NJ tree on the Sarich data
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Same as UPGMA? No. Not clocklike.
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Unweighted least squares on the Sarich data
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Same as Neighbor-Joining tree? Close but not the same.
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Fitch-Margoliash tree on the Sarich (1969) data
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Same as the unweighted least squares tree? No.
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Minimum evolution tree on the Sarich (1969) data
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Same as either least squares tree? As NJ tree? No.
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Kimura 2-parameter model

A G

C T

α

α

β β β β

The simplest, most symmetrical model that has different rates for
transitions than for transversions.
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Parameters of K2P in terms of Ts/Tn ratio

If we let R be the expected ratio of transition changes to transversions, it
turns out that

α = R
R+1

β =
(

1
2

)
1

R+1
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Transition [sic] probabilities for K2P

Computing the net probabilities of change (“transition” in the stochastic

process sense rather than as molecular biologists use it), it turns out that

Prob (transition|t) = 1
4
− 1

2
exp

(
− 2R+1

R+1
t
)

+ 1
4
exp

(
− 2

R+1
t
)

Prob (transversion|t) = 1
2
− 1

2
exp

(
− 2

R+1
t
)
.
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Transition and transversion when R = 10
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Transition and transversion when R = 2
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ML estimates for the K2P model

The sufficient statistics for comparison of DNA sequences under the K2P
model are simply the observed fractions P and Q of transitions and
transversions. Then the maximum likelihood estimates of the branch
length t and of R are obtained by finding the values that predict exactly

those fractions. That done by solving the equations given three slides ago.

t̂ = − 1
4
ln
[
(1 − 2Q)(1 − 2P − Q)2

]

R̂ = − ln(1−2P−Q)
− ln(1−2Q) − 1

2
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Likelihood for two species under the K2P model

L = Prob (data | t,R)

=
(

1
4

)n
(1 − P − Q)n−n1−n2 Pn1

(
1
2
Q
)n2

where n1 is the number of sites differing by transitions, and n2 is the

number of sites differing by transversions. P and Q are the expected

fractions of transition and transversion differences, as given by the

expressions four screens above.

This is a function of the two parameters t and R . The values that
maximize it were given above, if we estimate both of them. But if R is

given rather than estimated, there is no closed-form equation solving for
t, it has to be inferred numerically by finding the value of t that maximizes
L.
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The Tamura/Nei model, F84, and HKY

To : A G C T
From :

A − αRπG/πR + βπG βπC βπT

G αRπA/πR + βπA − βπC βπT

C βπA βπG − αYπT/πY + βπT

T βπA βπG αYπC/πY + βπC −

For the F84 model, αR = αY

For the HKY model, αR/αY = πR/πY
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Transition/transversion ratio for the Tamura-Nei model

Ts = 2 αR πA πG / πR + 2 αY πC πT / πY

+ β ( πAπG + 2πC πT)

Tv = 2 β πR πY

To get Ts/Tv = R and Ts + Tv = 1,

β =
1

2πRπY(1 + R)

αY =
πRπYR − πAπG − πCπT

(1 + R) (πYπAπGρ + πRπCπT)

αR = ρ αY
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Using fictional events to mimic the Tamura-Nei model

We imagine two types of events:

Type I:

If the existing base is a purine, draw a replacement from a
purine pool with bases in relative proportions πA : πG . This
event has rate αR.

If the existing base is a pyrimidine, draw a replacement from a
pyrimidine pool with bases in relative proportions πC : πT .
This event has rate αY.

Type II: No matter what the existing base is, replace it by a base

drawn from a pool at the overall equilibrium frequencies:
πA : πC : πG : πT. This event has rate β.
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Transition [sic] probabilities with the Tamura-Nei model

If the branch starts with a purine:

No events exp(−(αR + β)t)

Some type I, no type II exp(−β t) (1 − exp(−αR t))

Some type II 1 − exp(−β t)

If the branch starts with a pyrimidine:

No events exp(−(αY + β) t)

Some type I, no type II exp(−β t) (1 − exp(−αY t))

Some type II 1 − exp(−β t)

Week 5: Distance methods, DNA and protein models – p.56/69



A transition probability

So if we want to compute the probability of getting a G given that a branch
starts with an A, we add up

The probability of no events, times 0 (as you can’t get a G from an A

with no events)

The probability of “some type I, no type II” times πG/πY (as the last

type I event puts in a G with probability equal to the fraction of G’s
out of all purines).

The probability of “some type II” times πG (as if there is any type II
event, we thereafter have a probability of G equal to its overall
expected frequency, and further type I events don’t change that).
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A transition probability

So that, for example

Prob (G|A, t) =

exp(−β t) (1 − exp(−αR t)) πG

πR

+ (1 − exp(−β t)) πG
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A more compact expression

More generally, we can use the Kronecker delta notation δij and the

“Watson-Kronecker” notation εij to write

Prob (j | i, t) =

exp(−(αi + β)t) δij

+exp(−βt) (1 − exp(−αit))
(

πjεij
P

k εjkπk

)

+(1 − exp(−βt)) πj

where δij is 1 if the two bases i and j are different (0 otherwise),

and εij is 1 if, of the two bases i and j, one is a purine and one is a

pyrimidine (0 otherwise).
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Reversibility and the GTR model

The condition of reversibility in a stochastic process is written in terms of
the equilibrium frequences of the states ( πi and the transition
probabilities as

πi Prob (j|i, t) = πj Prob (i|j, t)

The general time-reversible model:

To : A G C T
From :

A − πG α πC β πT γ
G πA α − πC δ πT ε
C πA β πG δ − πT η
T πA γ πG ε πC η −
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The GTR model

A G

C T

βπ
βπ

γπ
απ

απ

δπ

δπ
επ

επ

ηπ

G

A

T

γπA
A

C

G

C

T

G

T

ηπC

It is the most general model possible that still has the changes satisfy the

condition of reversibility – so that one cannot tell which direction evolution
has gone by examining the sequences before and after.
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Standardizing the rates

2πA πG α + 2 πA πC β + 2 πA πT γ

+ 2 πG πC δ + 2 πG πT ε + 2 πC πT η = 1

This is done so that the expected rate of change is 1 per unit time.
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General Time Reversible models – inference

A data example (simulated under a K2P model, true distance 0.2
transition/transversion ratio = 2

A G C T total

A 93 13 3 3 112

G 10 105 3 4 122

C 6 4 113 18 141

T 7 4 21 93 125

total 116 126 140 118 500

The K2P model is a special case of the GTR model (as are all the other
models that have been mentioned here). So if all goes well we should
infer parameters that come close to specifying a K2P model.
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Averaging across the diagonal ...

A G C T total

A 93 11.5 4.5 5 114

G 11.5 105 3.5 4 124

C 4.5 3.5 113 19.5 140.5
T 5 4 19.5 93 121.5

total 114 124 140.5 121.5 500
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Dividing each column by its sum

(column, because Pij is to be the probability of change from j to i )

P̂ =




0.815789 0.0927419 0.0320285 0.0411523
0.100877 0.846774 0.024911 0.0329218
0.0394737 0.0282258 0.80427 0.160494
0.0438596 0.0322581 0.13879 0.765432



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Rate matrix from the matrix logarithm

If the rate matrix is A,

P = eA t

so that

Ât = log
(
P̂
)

=




−0.212413 0.110794 0.034160 0.046726
0.120512 −0.174005 0.025043 0.035554
0.0421002 0.028375 −0.236980 0.205579
0.0498001 0.034837 0.177778 −0.287859


 .

Week 5: Distance methods, DNA and protein models – p.66/69



Standardizing the rates

If we denote by D̂ the diagonal matrix of observed base frequencies, and

we require that the rate of (potentially-observable) substitution is 1:

−trace(ÂD̂) = 1

We get:

t̂ = −trace(ÂtD̂) = −trace
(
log(P̂)D̂

)

and that also gives us an estimate of the rate matrix:

Â = log
(
P̂
)/

− trace
(
log(P̂)D̂

)
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The rate estimates

Â =




−0.931124 0.485671 0.149741 0.204826
0.528274 −0.762764 0.109776 0.155852
0.184549 0.124383 −1.038820 0.901168
0.218302 0.152710 0.779302 −1.261850


 .

moderately close to the actual K2P rate matrix used in the simulation
which was:

A =




−1 2/3 1/6 1/6
2/3 −1 1/6 1/6
1/6 1/6 −1 2/3
1/6 1/6 2/3 −1




(but if any of the eigenvalues of log(P̂) are negative, this doesn’t work

and the divergence time is estimated to be infinite).
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The lattice of these models

General 12−parameter model   (12)

General time−reversible model   (9)

Kimura K2P  (2)

Tamura−Nei  (6)

HKY (5) F84 (5)

Jukes−Cantor (1)

There are a great many other models, but these are the most commonly

used. They allow for unequal expected frequencies of bases, and for
inequalities of transitions and transversions.
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