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A tree and the expected distances it predicts
A B C D E

0 0.230.16 0.20 0.17
023 0 0.230.170.24
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The predicted distances are the sums of branch lengths between those
two species.



A tree and a set of two-species trees

The two-species trees correspond to the pairwise distances observed
between the pairs of species. The tree also predicts two-species trees,

because clipping off all other species you are left simply with the path
between that pair of species.



A tree with branch lengths

Distance matrix methods always infer trees that have branch lengths, and
they assume models of change of the characters (sequences).



Distance matrix methods

observed distances
calculated from
the sequence data

m m OO W >

Find the tree which comes closest to predicting
the observed pairwise distances

Each possible tree (with branch lengths)
predicts pairwise distances

mM m OO W>

A B CDEF

010 91216 9
10 0 106 9 9

910 01015 2
12 610 0 613
16 915 6 015

9 9 213150

U compare

A BCDEF

011 814159
11 0 9 7 810

8 9 01314 2
14 713 0 513
15 814 5 014

910 21314 0




The math of least squares trees

Q =) > wy(Dy—dy)?

i=1 ji
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k
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Equations to solve to infer branch lengths by least squares on a given tree
topology, which specifies the xi; \.



Solving for least squares branch lengths

Dag + Dac + Dap + Dae
Dag + Dec + Dgp + DgE
Dac + Dec + Dcp + Dce
Dap + Dgp + Dcp + Dpe
Dae + Dge + Dce + Dpe
Dac + Dae + Dgc

+Dge + Dcp + Dpe = 2vi + 2vy + 3v3 + 2v4 + v5 + Ovp + 4vy
Dag + Dap + Dgc

+Dge + Dcp + Dpe = 2vy + 3vo + 3vg + 2vs + 4ve + Ovy

Avi + Vo + v3 + V4 + V5 + 2vg + 2v7
vi + 4vo + v3 + va4 + v + 2vg + 3vy
Vi + Vo + 4vs + v4 + vs + 3vg + 2v7
Vi + Vo + v3 + bvg 4+ v5 + 2vg + 3vy
Vi + Vo + v3 + vq + 4vs + 3vg + 2v7



A vector of all distances, stacked

Dag
Dac
Dap
Dae

Dgc
d = Dgep
Dge
Dco
Dce
Dpe

They are in lexicographic (dictionary) order.



The design matrix and least squares equations

1 1 0 0 0 0 1]
1 010010
1 0010 01
1 000110

v _ |01 10011
01 01000
0100 1 1 1
00110 11
0010100

00 0 1 1 1 1
X'D = (X'X) v.

So solution of equations is

v = (XX)"1 XD



A diagonal matrix of weights




Weighted least squares equations

X'WD = (X'"WX)yv,

v = (XTWX) " XTWD.

These matrix equations solve for weighted least squares estimates of the
branch lengths on a given tree. The tree topology is specified by the
design matrix X and the weights are the elements of the diagonal matrix
W.



A statistical justification for least squares

This least squares method

... Is what we would get by standard statistical least squares
approaches if the distances were normally distributed,
iIndependently varying, and had expectation and variance as shown

... but they actually aren’t independent in almost all cases (such as
molecular sequences), but ...

... it can be shown that the estimate of the tree will be a consistent
estimate in the case of non-independence, just not as efficient



The Jukes-Cantor model

A u/3 G

u/3

The simplest and most symmetrical of models of DNA evolution. In a
small interval of time dt the probability of change at a site is udt, and it
Is equally likely to go to each of the other three bases.



A simple derivation of the probabilities of net change

Imagine a (fictional) kind of event that could change the base to one
of the four possible bases (including the same base) with equal
probability (instead of changing to one of the other three).
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A simple derivation of the probabilities of net change

Imagine a (fictional) kind of event that could change the base to one
of the four possible bases (including the same base) with equal
probability (instead of changing to one of the other three).

If you set the probability of change in that model to %u dt, it would
be indistinguishable from the actual Jukes-Cantor model.

If any nonzero number of these fictional events occur on a branch,
the probability of ending up with (say) base C is .

The number of these events that occur in a branch has Poisson
distribution with expected number gu t, so the probability of no event

. 4
is e 3ut



The Jukes-Cantor model

Probability of no event: e—3ut

Probability of some event: 1 —e 3t

Wl

Probability of changing to C given start at A, have rate u, time t:
Prob (CIA,u.t) = , (1—e 1)
Y Y 4

fraction of sites different:

fb = %(1—e_%“t) :

Solving, the distance as function of the fraction of sites different is

~ 3 4
p— p— _— — —f
D ut 2 In (1 3 D)



Fraction of sites different versus branch length

differences

per site

1

0.75

0.49

0.7945
branch length

.. as predicted by the Jukes-Cantor model.



Branch length versus fraction of sites different
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If you don’t correct for multiple changes

B B
0.00 0.0206
0.20 0.20 0.155 0.155
A C A C
The true (unrooted) tree What we estimate

This happening because the long path between A and C is shortened
more, proportionally, than the shorter paths between A and B and
between C and B. The only way to do this is to put in a spurious branch
leading to B.

In effect, there is a “war” between the long paths and the short paths.

With properly corrected distances, each path approaches its true length
when we look at a very large number of sites.



Least squares methods

These are just differently weighted least squares methods, as mentioned
previously.

Fitch and Margoliash (1967) used a weight of 1/Di2j, so the quantity to be
minimized is

D — d; %
i ij

Cavalli-Sforza and Edwards (1967) used the unweighted least squares

method:
Q = > (Dy—dy)’

1]

These amount to different assumptions about the how the size of a
distance will affect its variance.



The Minimum Evolution method

Kidd and Sgaramella-Zonta (1971) and (independently) Rzhetsky and Nei
(1992ff.) came up with this method:

Search through tree space as usual

For each tree estimate branch lengths by least squares, not allowing
negative branch lengths

Then actually evaluate the tree not by the sum of squares, but by the
total sum of branch lengths.

This does fairly well, in spite of the mixture of two optimization criteria.

Note that it is nor directly related to parsimony, in spite of its name.



The UPGMA algorithm

The UPGMA algorithm
1. Assign each species weight w; = 1

2. Pick the values of i and j that
are for the smallest of the Dij

3. Make a new group (ij)
4. Assign time depth Dij/2 to the connection between i and .

5. Its weight is w, +wj

6. The distance between (ij) and another (say k)
is computed as

Dipk =

Wi D + W, D

Wi + Wj
7. Delete i and j from the table, put in a

row and column for (ij).

8. If there is only one group left, stop. Otherwise
gotostep2.

Note that the weighting in effect weights each of the original tips equally,
so that a group’s distance to an outside species or another group is the
average of all the distances between species in one and species in the
other. This is a natural “unweighted” choice.



Sarich 1969, immunological distances

dog bear raccoon weasel seal sealion cat monkey

dog 0 32 48 51 50 48 98 148
bear 32 0 26 34 29 33 84 136
raccoon || 48 26 0 42 44 44 92 152
weasel 51 34 42 0 44 38 86 142
seal 50 29 44 44 0 24 89 142
sea lion || 48 33 44 38 24 0 90 142
cat 98 84 92 86 89 90 0 148
monkey || 148 136 152 142 142 142 148 0



Find smallest element, its rows, columns

X

dog bear raccoon weasel | seal | sealion | cat monkey

dog 0 32 48 51 50 48 98 148
bear 32 0 26 34 29 33 84 136
raccoon 48 26 0 42 44 44 92 152
weasel 51 34 42 0 44 38 86 142
seal 50 29 44 44 0 24 89 142
sea lion || 48 33 44 38 24 0 90 142
cat 98 &4 92 86 89 90 0 148
monkey || 148 136 152 142 142 142 148 0



We do the following averaging

* *
dog bear raccoon weasel | seal | sealion | cat monkey
dog 0 32 48 51 (50 + 48)/2 98 148
bear 32 0 26 34 (29 + 33)/2 84 136
raccoon || 48 26 0 42 (44 + 44)/2 92 152
weasel b1 34 42 0 (44 + 38)/2 86 142
seal 49 31 44 41 0 24 89.5 142
sea lion 24 0
cat 98 &4 92 86 (89 +90)/2 0 148
monkey || 148 136 152 142 | (142 +142)/2 | 148 0



Clustering seal and sea lion

Aeyuow

1520)
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After clustering seal and sea lion

* *
dog | bear | raccoon | weasel SS cat monkey
dog 0 32 48 51 49 98 148
x bear 32 0 26 34 31 84 136
*x raccoon || 48 26 0 42 44 92 152
weasel 51 34 42 0 41 86 142
SO 49 31 44 41 0 89.5 142
cat 98 84 92 86 89.5 0 148
monkey 148 | 136 152 142 142 148 0



Clustering bear and racoon

Aeyuow

1520)

|loseam

uol| eas u
|ees
X
uooooel
-
Jeaq >

Bop




After clustering bear and raccoon

dog | BR | weasel | SS cat monkey
dog 0 40 51 49 98 148
BR 40 0 38 37.5|| 88 144
weasel 51 38 0 41 86 142
SS 49 ||37.5 41 0 89.5 142
cat 98 88 86 89.5 0 148
monkey || 148 | 144 142 142 | 148 0




Clustering bear-raccoon with seal-sealion
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After clustering those two clusters

* *
dog | BRSS | weasel | cat  monkey
dog 0 44.5 51 98 148
x* BRSS || 44.5 0 39.5| | 88.75 143
x  weasel 51 39.5 0 86 142
cat 98 | 88.75 86 0 148
monkey || 148 143 142 148 0



Clustering weasel with BRSS
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After adding weasel to that cluster

* *
dog | BRSSW | cat monkey
x dog 0 45.8 98 148
x BRSSW || |45.8 0 88.2 142.8
cat 98 88.2 0 148
monkey 148 142.8 148 0



Clustering the dog with BRSSW
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After adding dog to it

X

DBRWSS cat monkey
+ DBRWSS 0 89.833 || 143.66
x cat 89.833 0 148
monkey 143.66 148 0




Clustering all the carnivores and pinnipeds

weasel
monkey
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Finally, just monkey remaining

DBRWSSC  monkey
DBRWSSC 0 144.2857
monkey 144.2857 0




The UPGMA tree

g c
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— Q _ — 0N
D2 8 9 ® © $
(@] ((b) ] (b)) (b)) (qv]
©O O — (¥))] n ; O
13| 13] 12| 12
22.9
575 6.75 19.75|
1 [3.15
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22.0166

27.22619 72.1428

monkey




UPGMA can mislead

True tree

A
13

B C

4 4

D
10

True
distance matrix UPGMA tree
A B C D
0 17 21 27 B C D A
17 0 12 18

—) °

Cl21 12 0 14

27 18 14 0

:> 6 6 |8 10.833
‘ 2

2.833



Neighbor-Joining
For each tip, compute u; = >/ Djj/(n — 2). Note that the
denominator is (deliberately) not the number of items summed.
Choose the i and j for which Dj — uj — u; is smallest.

Join items i and j. Compute the branch length from i to the new
node (v;) and from j to the new node (v;) as

Vi =

NI DN

Dij -+ %(Ui —
Vi = D:: + %(Uj — u;)

(continued on next slide)



continued ...

Compute the distance between the new node (ij) and each of the
remaining tips as

D)k = (Dik + Dk — Dy) /2

Delete tips i and j from the tables and replace them by the new
node, (ij), which is now treated as a tip.

If more than two nodes remain, go back to step 1. Otherwise,
connect the two remaining nodes (say, ¢ and m ) by a branch of
length Dy,.



The NJ star decomposition




The NJ tree on the Sarich data

S
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O 12.35\:ﬂ
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47.0833
20.4375
100.9166

Same as UPGMA? No. Not clocklike.

monkey




Unweighted least squares on the Sarich data

monkey

(@)
o
©

cat
weasel
raccoon

I
Same as Neighbor-Joining tree? Close but not the same.



Fitch-Margoliash tree on the Sarich (1969) data

monkey

(@)
o
©

cat
weasel
raccoon

I
Same as the unweighted least squares tree? No.



Minimum evolution tree on the Sarich (1969) data

monkey
cat
weasel
raccoon
dog

I
Same as either least squares tree? As NJ tree? No.



Kimura 2-parameter model

C T

The simplest, most symmetrical model that has different rates for
transitions than for transversions.



Parameters of K2P in terms of Ts/Tn ratio

If we let R be the expected ratio of transition changes to transversions, it
turns out that



Transition [sic] probabilities for K2P

Computing the net probabilities of change (“transition” in the stochastic
process sense rather than as molecular biologists use it), it turns out that

Prob (transition|t) = 2 —1exp (—2F'§T+11t) + 1 exp (—R%rlt)

Prob (transversion|t) = 2 — Zexp (—R%rlt).



Transition and transversion when R = 10
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Transition and transversion when R =2

0.70

-----
----
-------
.
wn®
ws®
st
wet®
wst®
.
P
.

.
P
PR
o
.
.
.
.
.
.
(:) ‘E;":) ~
-
[ ] -
o*
o
*
0
o
*

0.50

Transversions
0.40

Differences

0.30

Transitions
0.20

0.10

R =2

0.00_7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (branch length)



ML estimates for the K2P model

The sufficient statistics for comparison of DNA sequences under the K2P
model are simply the observed fractions P and Q of transitions and

transversions. Then the maximum likelihood estimates of the branch
length t and of R are obtained by finding the values that predict exactly

those fractions. That done by solving the equations given three slides ago.

+)
I

—21In[(1-2Q)(1—2P — Q)?]

—In(1-2P-Q) 1
—In(1—2Q) 2

20)
|




Likelihood for two species under the K2P model

L = Prob (data|t,R)

— (%)n (1 _P_ Q)n—nl—ng P (%Q)m

where n; is the number of sites differing by transitions, and n, is the
number of sites differing by transversions. P and Q are the expected
fractions of transition and transversion differences, as given by the
expressions four screens above.

This is a function of the two parameters t and R . The values that
maximize it were given above, if we estimate both of them. But if R is
given rather than estimated, there is no closed-form equation solving for

t, it has to be inferred numerically by finding the value of t that maximizes
L.



The Tamura/Nei model, F84, and HKY

To : A G C T
From :

A —  armg/mR + Bre  Brc BT

G QRrTA/TR + BTa — B BT

C Bra Brg —  aymr/my + BT

T Ba Brc aymc/my + Bnc —

For the F84 model, ar = ayvy

For the HKY model, ar/ay = mr/my



Transition/transversion ratio for the Tamura-Nel model
Ts = 2armang/ TR + 2ay mc 71 / Ty
+ B (7mame + 2mc 7T)
. = 20 mRrmy
Toget T;/T, =R and T4+ T, =1,

1
27TR7Ty(]. -+ R)

b =

TrRTYR — mATG — T
(1 4+ R) (mymamgp + TRTCTT)

Qy

QR = pay



Using fictional events to mimic the Tamura-Nei model

We imagine two types of events:

Type I:
If the existing base is a purine, draw a replacement from a
purine pool with bases in relative proportions wp : wg . This
event has rate ag.
If the existing base is a pyrimidine, draw a replacement from a
pyrimidine pool with bases in relative proportions w¢ : .
This event has rate ay.

Type Il:  No matter what the existing base is, replace it by a base
drawn from a pool at the overall equilibrium frequencies:
A . Tc . 7g . 7. 1his event has rate 3.



Transition [sic] probabilities with the Tamura-Nei model

If the branch starts with a purine:

No events exp(—(ar + H)t)
Some type [, no type I exp(—0t) (1 — exp(—agt))
Some type |l 1 — exp(—f4t)

If the branch starts with a pyrimidine:
No events exp(—(ay + B)t)
Some type |, no type I exp(—0t) (1 — exp(—ay t))
Some type Il 1 — exp(—0t)



A transition probability

So if we want to compute the probability of getting a G given that a branch
starts with an A, we add up

The probability of no events, times 0 (as you can’'t get a G from an A
with no events)

The probability of “some type |, no type II” times #g/my (as the last
type | event puts in a G with probability equal to the fraction of G’s
out of all purines).

The probability of “some type II” times =g (as if there is any type |l
event, we thereafter have a probability of G equal to its overall
expected frequency, and further type | events don’t change that).



A transition probability

So that, for example

Prob (G|A, t) =
exp(—0t) (1 — exp(—agrt)) z—‘;

+ (1 — exp(—01t)) 7g



A more compact expression

More generally, we can use the Kronecker delta notation ¢;; and the
“Watson-Kronecker” notation ¢;; to write

Prob (j|i,t) =
exp(—(a; + B)t) 4
+exp(—ft) (1 — exp(—ait)) ()
+ (1 — exp(—pt)) 7

where ¢,; is 1 if the two bases ¢ and j are different (O otherwise),
and ¢;; is 1 if, of the two bases ¢ and j, one is a purine and one is a
pyrimidine (O otherwise).



Reversibility and the GTR model

The condition of reversibility in a stochastic process is written in terms of
the equilibrium frequences of the states ( «; and the transition
probabilities as

mi Prob (jli,t) = m Prob (i|j,t)

The general time-reversible model:

To : A G C T
From :
A — T@mga wcf TTY
G TA O — Tcd TTE
C A B TG O — TN
T TAY TGE TC1N  —




The GTR model

It is the most general model possible that still has the changes satisfy the
condition of reversibility — so that one cannot tell which direction evolution
has gone by examining the sequences before and after.



Standardizing the rates

2Ta Mg @ + 27ma T B + 2 7A T Y

+2mcmcd + 2mgmrEe + 2mcwrn = 1

This is done so that the expected rate of change is 1 per unit time.



General Time Reversible models — inference

A data example (simulated under a K2P model, true distance 0.2
transition/transversion ratio = 2

A G C T | total

A 03 13 3 3 112
G 10 105 3 4 122
C 6 4 113 18 | 141
T 7 4 21 93 | 125
total | 116 126 140 118 | 500

The K2P model is a special case of the GTR model (as are all the other
models that have been mentioned here). So if all goes well we should
Infer parameters that come close to specifying a K2P model.



Averaging across the diagonal ...

A G C T total

A 03 115 45 5 114
G 11.5 105 3.5 4 124
C 45 35 113 19.5 | 140.5
T 5 4 19.5 03 121.5
total | 114 124 140.5 121.5| 500



Dividing each column by its sum

(column, because Pj; is to be the probability of change from j to i)

- 0.815789  0.0927419 0.0320285 0.0411523
0.100877 0.846774 0.024911 0.0329218
0.0394737 0.0282258 0.80427 0.160494

| 0.0438596 0.0322581 0.13879 0.765432

>
I




Rate matrix from the matrix logarithm
If the rate matrix is A,

P:eAt

so that

At = log (f’)

© 0212413 0.110794  0.034160  0.046726
0.120512  —0.174005 0.025043  0.035554
0.0421002 0.028375  —0.236980 0.205579
| 0.0498001 0.034837  0.177778  —0.287859




Standardizing the rates

If we denote by D the diagonal matrix of observed base frequencies, and
we require that the rate of (potentially-observable) substitution is 1:

—trace(AD) =1

We get:
f = —trace(AtD) = —trace (log(f’)f))

and that also gives us an estimate of the rate matrix:

A =log (f’) / — trace (log(f))ﬁ)



The rate estimates

[ —0.931124  0.485671 0.149741 0.204826
0.528274 —0.762764  0.109776 0.155852
0.184549  0.124383 —1.038820 0.901168
0.218302 0.152710 0.779302 —1.261850

A =

moderately close to the actual K2P rate matrix used in the simulation
which was:

T —1 2/3 1/6 1/6
2/3 —1 1/6 1/6
1/6 1/6 —1 2/3

| 1/6 1/6 2/3 —1

/\

(but if any of the eigenvalues of log(P) are negative, this doesn’t work
and the divergence time is estimated to be infinite).



The lattice of these models

General 12-parameter model (12)

 J
General time-reversible model (9)

Taera—Nei (6)

/

HKY (5) F84 (5)

AN

Kimura K2P (2)

Jukes-Cantor (1)

There are a great many other models, but these are the most commonly
used. They allow for unequal expected frequencies of bases, and for
iInequalities of transitions and transversions.
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