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Weighting using a function

Suppose that each step is to be weighted 1/(n + 2) if the character has a
total of n steps.

Then the total weight of steps when there are n steps in that character is
n x 1/(n+ 2) whichis n/(n + 2)

Total steps in Weight of  Total weight
the character each step of all steps

0 0.5 0

1 0.3333 0.3333
2 0.25 0.5

3 0.2 0.6

4 0.1667 0.6667
3) 0.142857 0.71428

The rationale for doing this is to somewhat discount the information from
more rapidly changing characters.



Successive weighting

J.S. Farris suggested (1969):

1. Infer a tree with unweighted parsimony

2. Calculate weights for each character (or site) based on the number
of changes in that character on that tree

3. Use those weights to infer a new tree
4. Unless the tree hasn’t changed, go back to step 2.

This method, which was put forward in the first modern quantitative paper
on weighting, was intended to discount rapidly-evolving characters.



Successive weighting

There are 15 possible unrooted trees, which fall into 5 types according to
how many changes they have in each character. The table shows the total
weighted number of changes when each tree type is evaluated using the
weights implied by the 5 different tree types.

number | have pattern | type tree type used for weights

of trees | of changes: | of tree I I I 1V Vv
1 (1,1,1,2,2,1) I 2.333 2.250 2.167 2.417 2.083
2 (1,2,1,2,2,1) | 2.667 2.500 2.500 2.667 2.333
2 (2,1,2,2,2,1) 1l 3.000 2917 2.667 2917 2.583
3 2,2,2,1,1,1) 1V 2.833 2.667 2.500 2.500 2.333
7 (2,2,2,2,2,1) V 3.333 3.167 3.000 3.167 2.833

From this table you can figure out what the sequence of trees will be if you
start from one of these types. Do you get different ultimate outcomes?




Ties In successive weighting

An example of successive weighting that would show the difficulty it has in
detecting ties. The table shows the total weighted number of changes

when each tree type is evaluated using the weights implied by the different
tree types.

number | have pattern | type | tree type used for weights
of trees | of changes: | of tree I | I

1 (1,1,2,2) I 1.667 1.833 1.5

1 2,2,1,1) | 1.833 1.667 1.5

1 (2,2,2,2) 1l 2.333 2.333 2




Nonsuccessive weighting

We can use a different algorithm to avoid the issue of dependence on
starting point which is seen in successive weighting:

Search over tree space in the usual way

For each tree, evaluate the number of steps in each character (or
site)

Calculate the weight for the character from its number of steps on
the current tree in the search.

Add up the weighted steps across characters to evaluate that tree.

This is equivalent to looking only at the diagonals in the preceding tables
of trees. Weights are never based on a different tree.



Evaluating compatibility with 0/1 characters

E. O. Wilson (Systematic Zoology, 1965) pointed out that for two characters,
If all four combinations 00, 01, 10 and 11 exist in one or another species,
the two characters must be incompatible with each other, in the sense that
there can be no tree on which they each change only once (so the derived
state is uniquely derived).

Compatible Incompatible
characters characters
0O 1 0O 1
X X 0| X X
1 X 1| X X

The logic is straightforward: to originate a new combination requires a
step in one character (or both). With four combinations there are 3 steps
required, one more than the number that would be needed if both
characters were incompatible. (In genomics this is called the
“three-gamete condition” — out of the four possibilities there must be three

or few_er for there to have been no recombination and no recurrent
mutations).



Data example for compatibility

The data set Table 1.1 with an added species all of whose characters are
0.

Characters
Species |1 2 3 4 5 6
Alpha 1 0 0 1 1 O
Beta O 01 0 0 O
Gamma |1 1 0 0 0 O
Delta 1 1 0 1 1 1
Epsilon |0 O 1 1 1 O
Omega [0 0O O O O O




The compatibility matrix for this data set

123456
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The darkly-shaded boxes are the combinations that are compatible.



The Pairwise Compatibility Theorem

A set S of characters has all pairs of characters
compatible with each other if and only if all of
the characters in the set are jointly compatible (in

that there exists a tree with which all of them are
compatible).

This theorem is true, given the right conditions, which we will explain.



The compatibility graph

Maximal cliques? Largest?

2 3




One of the cliques it contains



A maximal clique



The largest maximal clique



Making the tree by “tree popping”

(for clique {1,2,3,6})
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Character 3
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Making the tree by “tree popping”
(for clique {1,2,3,6})
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Character 3
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Character 2
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Making the tree by “tree popping”
(for clique {1,2,3,6})
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Making the tree by “tree popping”
(for clique {1,2,3,6})

Alpha
Beta
Gamma
Delta

Character 1
Character 3

Y

=psilon Tree is:
Alpha
Character 2 Gamma\ / Beta
! Delta / \ Epsilon

Beta
- —eeee
Epsilon

1 2 3 4 5 6

Gamma Alpha 1 0 0 1 1 O
Beta O 01 0 0 O

Gamma| 1 1 0 0 0 O

@ Delta i1 0 1 1 1
Epsilon| 0 0 1 1 1 0




Unknown states and compatibility

A data set that has all pairs of characters compatible, but which cannot
have all characters compatible with the same tree. This violates the
Pairwise Compatibility Theorem, owing to the unknown ("?") states.

Alpha O 0 O
Beta ? 0 1
Gamma |1 ? O
Delta o 1 ?
Epsilon |1 1 1




Multiple character states and compatibility

Walter Fitch’s set of nucleotide sequences that have each pair of sites
compatible, but which are not all compatible with the same tree.

Alpha A A A
Beta A C C
Gamma | C G C
Delta C C G
Epsilon | G A G




Haplotypes of SNPs in a simulated population




Values of the LD measure |D’|
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Two of the pairs of SNPs that show |D’| =1
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Transition probabilities in a two-state model

In a symmetric two-state model with rate of change r per unit time, where
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When rt is small then to very good approximation the probability of the
events in the branchis rt or 1 — rt. The latter is nearly 1.



Likelihood and parsimony

Approximating all the terms 1 —rt; by 1, we find the probabilities of
these data for the four possible choices of interior node states:

N 7

0/0_0\1 2(rts)(rta)

0 1

N 7

O/ \1 2( 5)

0 1 1

0/1—0\1 E(rtl)(rtg)(rt5)(rt3)(rt4)
0 1
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0/1_1\1 %(rtl)(r’@)



Likelihood and parsimony

L = Prob (Data|Tree)

B Chﬁrs > 1 ﬁ ri;t;  if this character changes
=] 22101 1 —rztj if it does not change
'= recon— 1=
structions

The sum is over all reconstructions of changes in that character that result
in the observed states at the tips of the tree. It is nor just over all most
parsimonious reconstructions of changes.

We will see (later in the course) that maximizing the likelihood is a Good
Thing. We want to show that in the case where changes are infrequent,
there is a relationship between that and minimizing the (weighted)
parsimony score, and what the proper weights turn out to be.



approximating ...

If we toss out, in each character, all the terms that have more than the
smallest possible number of terms rt, for each character (i) the likelihood
Is approximately the product over all branches (the jth of which has length

tj)

()"

B
=1

N| —

where nj; is either 0 or 1, for all characters the likelihood is then
approximately

chars 1 branches
L= |5 I "
i=1 j=1

Tossing out the 1/2 terms and taking logarithms, if the number of
changes in character i in branch j is nj,

chars branches

—InL ~ Z Z nij (—In (rity)) .



Weights and likelihood

Probabilities of change and resulting weights for an imaginary case.
Character r;t; changes total weight

1 0.01 1 4.605
2 0.01 2 9.210
3 0.00001 1 11.519



with one-tenth as much change ...

Character

’
2
3

ri t; changes total weight
0.001 1 6.908
0.001 2 13.816
0.000001 1 13.816



... and with one-tenth less again

Character r;t; changes total weight
1 0.0001 1 9.210
2 0.0001 2 18.421

3 0.0000001 1 16.118



Trees, steps, and patterns

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

This table shows how many changes of state (steps) are needed for each
of the 16 possible character patterns on each of the three unrooted tree
topologies, under a parsimony criterion.



Trees, steps, and patterns with DNA

a c a b a b
b d c:>__<:d d c

AAAA 0 0 0
AAAC 1 1 1
AAAG 1 1 1
AAAT 1 1 1
AACA 1 1 1
AACC 1 2 2
AACG 2 2 2
AACT 2 2 2
AAGA 1 1 1
AAGC 2 2 2
AAGG 1 2 D
AAGT 2 2 2
AATA 1 1 1
AATC 2 2 2
AATG 2 2 2
AATT 1 2 )
ACAA 1 1 1
ACAC 2 1 2
ACAG 2 2 2
ACAT 2 2 2
ACCA 2 2 1

1 1 1

ACCC

TTTT 0 0 0



Parsimony and patterns

Ilgnoring all the patterns that have the same number of steps on all
topologies, the ones that matter to a parsimony method have one of these
three sums:

nXny + 2anXy + 2nxyyx — 2(nXny + anXy =+ nnyx) — nxxyy

2Nyxyy T+ Nxyxy + 2Nyyyx = 2(”xxyy T Nyyxy T+ ”xyyX) — Nxyxy

2nxxyy _|_ 2nxyxy _|_ nxyyx — 2(nxxyy _|_ nxyxy _|_ nxyyx) T nxyyx-
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