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Weighting using a function

Suppose that each step is to be weighted 1/(n + 2) if the character has a
total of n steps.

Then the total weight of steps when there are n steps in that character is
n × 1/(n + 2) which is n/(n + 2)

Total steps in Weight of Total weight
the character each step of all steps

0 0.5 0
1 0.3333 0.3333
2 0.25 0.5
3 0.2 0.6
4 0.1667 0.6667
5 0.142857 0.71428

The rationale for doing this is to somewhat discount the information from
more rapidly changing characters.
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Successive weighting

J.S. Farris suggested (1969):

1. Infer a tree with unweighted parsimony

2. Calculate weights for each character (or site) based on the number

of changes in that character on that tree

3. Use those weights to infer a new tree

4. Unless the tree hasn’t changed, go back to step 2.

This method, which was put forward in the first modern quantitative paper
on weighting, was intended to discount rapidly-evolving characters.
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Successive weighting

There are 15 possible unrooted trees, which fall into 5 types according to
how many changes they have in each character. The table shows the total
weighted number of changes when each tree type is evaluated using the

weights implied by the 5 different tree types.

number have pattern type tree type used for weights

of trees of changes: of tree I II III IV V

1 (1,1,1,2,2,1) I 2.333 2.250 2.167 2.417 2.083

2 (1,2,1,2,2,1) II 2.667 2.500 2.500 2.667 2.333

2 (2,1,2,2,2,1) III 3.000 2.917 2.667 2.917 2.583

3 (2,2,2,1,1,1) IV 2.833 2.667 2.500 2.500 2.333

7 (2,2,2,2,2,1) V 3.333 3.167 3.000 3.167 2.833

From this table you can figure out what the sequence of trees will be if you

start from one of these types. Do you get different ultimate outcomes?
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Ties in successive weighting

An example of successive weighting that would show the difficulty it has in

detecting ties. The table shows the total weighted number of changes
when each tree type is evaluated using the weights implied by the different
tree types.

number have pattern type tree type used for weights

of trees of changes: of tree I II III

1 (1,1,2,2) I 1.667 1.833 1.5

1 (2,2,1,1) II 1.833 1.667 1.5

1 (2,2,2,2) III 2.333 2.333 2
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Nonsuccessive weighting

We can use a different algorithm to avoid the issue of dependence on
starting point which is seen in successive weighting:

Search over tree space in the usual way

For each tree, evaluate the number of steps in each character (or
site)

Calculate the weight for the character from its number of steps on
the current tree in the search.

Add up the weighted steps across characters to evaluate that tree.

This is equivalent to looking only at the diagonals in the preceding tables
of trees. Weights are never based on a different tree.
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Evaluating compatibility with 0/1 characters

E. O. Wilson (Systematic Zoology, 1965) pointed out that for two characters,
if all four combinations 00, 01, 10 and 11 exist in one or another species,
the two characters must be incompatible with each other, in the sense that
there can be no tree on which they each change only once (so the derived

state is uniquely derived).

Compatible
characters

0 1

0 X X
1 X

Incompatible
characters

0 1

0 X X
1 X X

The logic is straightforward: to originate a new combination requires a

step in one character (or both). With four combinations there are 3 steps
required, one more than the number that would be needed if both
characters were incompatible. (In genomics this is called the

“three-gamete condition” – out of the four possibilities there must be three

or fewer for there to have been no recombination and no recurrent
mutations).
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Data example for compatibility

The data set Table 1.1 with an added species all of whose characters are
0.

Characters

Species 1 2 3 4 5 6

Alpha 1 0 0 1 1 0

Beta 0 0 1 0 0 0

Gamma 1 1 0 0 0 0

Delta 1 1 0 1 1 1

Epsilon 0 0 1 1 1 0

Omega 0 0 0 0 0 0
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The compatibility matrix for this data set

1 2 3 4 5 61 2 3 4 5 6

1

2

3

4

5

6

The darkly-shaded boxes are the combinations that are compatible.
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The Pairwise Compatibility Theorem

A set S of characters has all pairs of characters
compatible with each other if and only if all of
the characters in the set are jointly compatible (in
that there exists a tree with which all of them are
compatible).

This theorem is true, given the right conditions, which we will explain.
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The compatibility graph

Maximal cliques? Largest?
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One of the cliques it contains
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4

56
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A maximal clique
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The largest maximal clique

1
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4

56
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Making the tree by “tree popping”

(for clique {1, 2, 3, 6})
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Making the tree by “tree popping”

(for clique {1, 2, 3, 6})
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Making the tree by “tree popping”

(for clique {1, 2, 3, 6})
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Making the tree by “tree popping”

(for clique {1, 2, 3, 6})
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Unknown states and compatibility

A data set that has all pairs of characters compatible, but which cannot
have all characters compatible with the same tree. This violates the
Pairwise Compatibility Theorem, owing to the unknown ("?") states.

Alpha 0 0 0

Beta ? 0 1

Gamma 1 ? 0

Delta 0 1 ?

Epsilon 1 1 1
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Multiple character states and compatibility

Walter Fitch’s set of nucleotide sequences that have each pair of sites
compatible, but which are not all compatible with the same tree.

Alpha A A A

Beta A C C

Gamma C G C

Delta C C G

Epsilon G A G
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Haplotypes of SNPs in a simulated population
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Values of the LD measure |D′|
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Two of the pairs of SNPs that show |D′| = 1

29 3021 22
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Transition probabilities in a two-state model

In a symmetric two-state model with rate of change r per unit time, where

0 1
r

r we have Prob (1 | 0, t, r) = 1
2
(1 − e

−2 r t)
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When r t is small then to very good approximation the probability of the
events in the branch is r t or 1 − r t . The latter is nearly 1.
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Likelihood and parsimony

Approximating all the terms 1 − r ti by 1 , we find the probabilities of

these data for the four possible choices of interior node states:
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Likelihood and parsimony

L = Prob (Data|Tree)

=
chars
∏

i=1

∑

recon−
structions

(

1
2

B
∏

j=1

{

ritj if this character changes
1 − ritj if it does not change

}

)

The sum is over all reconstructions of changes in that character that result

in the observed states at the tips of the tree. It is not just over all most
parsimonious reconstructions of changes.

We will see (later in the course) that maximizing the likelihood is a Good

Thing. We want to show that in the case where changes are infrequent,

there is a relationship between that and minimizing the (weighted)
parsimony score, and what the proper weights turn out to be.
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approximating ...

If we toss out, in each character, all the terms that have more than the
smallest possible number of terms rt, for each character (i) the likelihood
is approximately the product over all branches (the jth of which has length
tj)

1

2

B
∏

i=1

(ritj)
nij .

where nij is either 0 or 1 , for all characters the likelihood is then

approximately

L ≃
chars
∏

i=1





1

2

branches
∏

j=1

(ritj)
nij



.

Tossing out the 1/2 terms and taking logarithms, if the number of
changes in character i in branch j is nij,

− ln L ≃
chars
∑

i=1

branches
∑

j=1

nij (− ln (ritj)) .

Week 3: Parsimony variants, compatibility, statistics and parsimony – p.27/33



Weights and likelihood

Probabilities of change and resulting weights for an imaginary case.

Character ri tj changes total weight

1 0.01 1 4.605
2 0.01 2 9.210
3 0.00001 1 11.519
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with one-tenth as much change ...

Character ri tj changes total weight

1 0.001 1 6.908
2 0.001 2 13.816
3 0.000001 1 13.816
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... and with one-tenth less again

Character ri tj changes total weight

1 0.0001 1 9.210
2 0.0001 2 18.421
3 0.0000001 1 16.118
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Trees, steps, and patterns

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

0000

0001

0010

0100

0111

1000

1011

1101

1110

1111

1 1 1

1 1 1

1 2 2

1 2 2

0011

0101

0110

1001

1010

22 1
22 1

22 1
22 1

1100

1 1 1

111

0 0 0

a c

b d

a b

c d

a b

d c

This table shows how many changes of state (steps) are needed for each

of the 16 possible character patterns on each of the three unrooted tree
topologies, under a parsimony criterion.
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Trees, steps, and patterns with DNA

AAAA
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...
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1 1 11 1 1

2 2 2

2 2 2
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2 2 2

2 2 2
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AAGG
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ACCA

1 2 2

1 2 2

1 2 2

2 1 2

2 2 1
1 1 1

0 0 0

...

a c a b a b

b d c d d c
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Parsimony and patterns

Ignoring all the patterns that have the same number of steps on all

topologies, the ones that matter to a parsimony method have one of these
three sums:

nxxyy + 2nxyxy + 2nxyyx = 2(nxxyy + nxyxy + nxyyx) − nxxyy

2nxxyy + nxyxy + 2nxyyx = 2(nxxyy + nxyxy + nxyyx) − nxyxy

2nxxyy + 2nxyxy + nxyyx = 2(nxxyy + nxyxy + nxyyx) − nxyyx.
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