Genome 570, Phylogenetic Inference

January 2016

Week 1: Parsimony, tree enumeration



A simple data set

Characters
Species |1 2 3 4 5 6
Alpha 1 0 0 1 1 O
Beta O 01 0 O O
Gamma |1 1 O O O O
Delta 1 1 0 1 1 1
Epsilon |0 O 1 1 1 O




The tree we will evaluate

Alpha  Delta Gamma Beta Epsilon




Character 1

Alpha  Delta Gamma Beta Epsilon

or

Alpha  Delta Gamma Beta Epsilon

1 2 3 4 5 6
Apha [ 1 0 0 1 1 0 T
Beta 0O 0 1 0 0 O
Gamma| 1 1 0 O O O
Delta 11 0 1 1 1
Epsilon O 0 1 1 1 O




Character 2

Alpha Delta ~Gamma Beta Epsilon

-—

Alpha Delta ~Gamma Beta Epsilon

Alpha Delta ~Gamma Beta Epsilon

1 2 3 4 5 6 _’
Alpha 1 0 0 1 1 O A
Beta O 01 0 O O
Gamma| 1 1 0 O O O
Delta 1 1 0 1 1 1
Epsilon O 0 1 1 1 O




Character 3

Alpha  Delta Gamma Beta Epsilon

Alpha  Delta  Gamma Beta Epsilon

1 2 3 4 5 6
Alpha 1 0 0 1 1 O
Beta O 01 0 O O
Gamma| 1 1 0 O O O
Delta 1 1 0 1 1 1
Epsilon O 0 1 1 1 O




Character 4 (and 5)

Alpha  Delta Gamma Beta Epsilon

~—

|

or

Alpha  Delta Gamma Beta Epsilon

——

f—

1 2 3 4 5 6
Alpha 1 0 0 1 1 O
Beta O 01 0 0 O
Gamma| 1 1 0 O O O
Delta 1 1 0 1 1 1
Epsilon O 0 1 1 1 O




Character 6

Alpha  Delta Gamma Beta Epsilon

—

1 2 3 4 5 6
Alpha 1 0 0 1 1 O
Beta O 01 0 0 O
Gamma| 1 1 0 O O O
Delta 1 1 0 1 1 1
Epsilon O 0 1 1 1 O




Changes In all characters

Alpha  Delta Gamma Beta Epsilon

There are a total of 9 changes.



Finding a better tree

Alpha  Delta ~ Gamma Beta Epsilon

Moving one species, Delta ...



Moving it to a new position ...

Alpha  Delta ~ Gamma Beta Epsilon

We end up with a tree with 8 changes.



Changes on the most parsimonious tree

Alpha  Delta Gamma Beta Epsilon

And 8 turns out to be the smallest possible number of changes.



Another rooted tree with same number of changes

Gamma Delta Alpha Beta Epsilon




The corresponding unrooted tree

Alpha
Gamma
R
agd 2 1
I I
5= 0
De|ta if root is here EpSiIOn

The changes placed on the tree really delimit regions of the tree that are
reconstructed to have particular states.



The corresponding unrooted tree

Alpha
Gamma Beta
0
fg S 5 4 fofl 4 5
i 2 1 3 I
N N
; I
570
Delta if root is here Epsilon

If we place the root of the tree in a different location, the direction of some
of the changes is altered, but not the number of these boundaries of the

state regions.
(This is true if changes in both directions have the same “cost”).



Using an outgroup to root an unrooted tree

Chimp

Gorilla
Orang

Mouse Gibbon

Baboon Macacque

If we have inferred an unrooted tree ...



Using an outgroup to root an unrooted tree

Chimp

Gorilla
Orang

Mouse Gibbon

root
known
to be
on this °
branch

Baboon Macacque

... and we know that one branch (here, the branch to Mouse) is the one
where the root connects, then that prior knowledge roots the tree. That

group or species is the “outgroup”. This amounts to the prior knowledge
that the rest of the tree is a monophyletic group (the “ingroup”).



Using an outgroup to root an unrooted tree

Chimp

Gorilla
Orang

Gibbon

Baboon Macacque

If iInstead we have this unrooted tree, and we add to the data set the
species Mouse, which will be our outgroup ...



Using an outgroup to root an unrooted tree

Chimp

Gorilla
Orang

Mouse Gibbon

v

Baboon

root attaches to this branch

Macacque

... It adds information by attaching to one branch or another. Then we use
our prior assumption that the root is on the branch between Mouse and
whatever node to which it attaches.



Branch lengths, averaging over reconstructions

Gamma

1.5 Beta

: 2.5
N\ 1.0
1.0 \
1.5 1.0

Delta Epsilon



Walter Fitch (1929-2011)

Walter Fitch, in 1975



The Fitch algorithm

To count steps at a site:

1.

At the tips of the tree, make a set with those nucleotides which are
possible at that tip (more than one if there is ambiguity)

Go down the tree (perhaps by postorder tree traversal), considering
each node only after its two descendants have been considered.

At each interior node, construct the set as the intersection of the two
descendant sets:
S, = S, NS,

If this is empty, instead construct the union of the two descendant
sets, and count one step:

Sh =S¢ U S,

Continue to the bottom node. The count of steps is the total of these
counts.



Example for the Fitch algorithm

ICr 1A 1C) {G}

VARV
NS



Example for the Fitch algorithm

ICr 1A 1C) {G}

VARV,

{ACH

NS



Example for the Fitch algorithm

{C< }A} {C} \ {G}
{ACY {AG}*

NS



Example for the Fitch algorithm

{C< }A} {C} \ /{G}
{ACY {AG}*

{ACG}*



Example for the Fitch algorithm

1IC; 1A 1C) {G}

VAR

{AC}H {AG}*

{ACG}*

{AC}



Shortest path through a graph
O



Shortest path through a graph




Shortest path through a graph




Shortest path through a graph




Shortest path through a graph




Shortest path through a graph




We finally get scores for all nodes



Then we go back from goal




This Is a ‘dynamic programming’ algorithm




Parsimony is a shortest-path problem
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David Sankoff

Tzﬁ?-q

David Sankoff, in the 1990s, writing on a glass panel
(forwards, then he went behind it)



The Sankoff algorithm

flow of computation:
[ I &

S(A) SO S$,(G) ST S,(A) S,(O) S,(G) S.(T)

~N

a S,(A) S.(O) S,(G) S(T)

1. Sk(i) is defined as the number of steps required at or above node k
given that node k is in state .

2. Set these guantities at the tips for the character (they are either O or
00).

3. move down the tree doing this at each node:

Sa(i) = min cij +Se()] + min [ei + Sy (k)]

4. At the bottom node of the tree:

S = minSqy(i)



Example for the Sankoff algorithm

{C} {A} {C} { A} { G
oo| O 0 00 co| 0 |oo|oo 0| oo 0o
2.5|2.5(3
Cost matrix:
from A c G T
53'54'5 Al 0 25 1 25
/ C|25 0 25 1
G| 1 25 0 25
T[25 1 25 0




Economizing on the score computation

By retaining the interior arrays of scores, we can avoid having to redo the
parts of the tree that have not changed. The result is a great speedup if
only a small part of the tree has changed.



The same tree?

Orang
Gorilla
Chimp
Human
Gibbon
Macacque
Colobus
Macacque
Gibbon
Gorilla
Chimp
Human
Orang
Colobus

(I's important that you know how to answer this. Also that you be able to
recognize whether two different rooted trees are the same unrooted tree).



Rooted, labelled, bifurcating trees

abcd acbd bcad abdc adbc

AT A

bdac acdb adcb dcab bcda

VYV

bdca cdba abcd acbd adbc

A AAAAVARVARYS



Adding species in all possible places



The resulting count of the number of trees

1 x3Xx5Xx7Tx9x...%x(2n—3)

We can get this from the argument about adding species in a particular
order (say, alphabetically) in all possible places on the tree. Once we
realize that all rooted bifurcating trees with that set of species can be
reached this way, and that each one can be reached in only one such way,

It becomes obvious that the above product counts the number of possible
trees.



Rooted, bifurcating, labelled trees

species number of trees
1 1
2 1
3 3
4 15
5 105
6 945
7 10,395
8 135,135
9 2,027,025
10 34,459,425
11 654,729,075
12 13,749,310,575
13 316,234,143,225
14 7,905,853,580,625
15 213,458,046,676,875
16 6,190,283,353,629,375
17 191,898,783,962,510,625
18 6,332,659,870,762,850,625
19 221,643,095,476,699,771,875
20 8,200,794,532,637,891,559,375
30 4.9518 x 1038
40 1.00985 x10°7

50 2.75292 %1076



Rooting an unrooted tree at species 1

So an unrooted tree can be considered as being a rooted tree, provided
one of the tip species becomes the “root” so that the rooted tree has one
fewer species.

Thus the number of unrooted trees is the same as the number of rooted
trees, ones that have one fewer species.



Multifurcating trees

N

Note that they have different numbers of branches as well. To count them
we have to keep track of the numbers of trees with different numbers of
Interior nodes. Then it is fairly easy. | introduced this method in 1978; the
number of rooted multifurcating trees was first counted 108 years earlier
by Ernst Schroder in 1870 using generating function methods.




Counting multifurcating rooted trees

If we add a new species to a tree that has n tips and m interior nodes,
there are two kinds of places we could add them:

1. Branching off of one of the n + m branches.

2. Coming out of one of the m interior nodes.
Each of these generates a different new tree. Branching off of a branch

creates a new interior node, coming out of an interior node does not
create a new interior node.



The algorithm counting multifurcating rooted trees

Number of species

2 3 4 5 6 7 8
1 1 1 1 1 1 1 —x1» 1
N
wn X 8
S -
8 2 3 10 25 56 119 —x2» 246
E \x 9
& ~a
s 3 15 105 490 1,918 —x3» 6,825
E \x 10
5 105 1.260 9450 — x 4= 56,980
8 \x 11\
= 5 945 17,325 x5 190,575
< X 12
6 10,395 _ x 6 270,270
\x 13
™\ 135,135

Total 1 4 26 236 2,752 39,208 660,032



Rooted trees allowing multifurcations

species number of trees
2 1
3 4
4 26
5 236
6 2,752
7 39,208
8 660,032
9 12,818,912
10 282,137,824
11 6,939,897,856
12 188,666,182,784
13 5,617,349,020,544
14 181,790,703,209,728
15 6,353,726,042,486,272
16 238,513,970,965,257,728
17 9,571,020,586,419,012,608
18 408,837,905,660,444,010,496
19 18,522,305,410,364,986,906,624
20 887,094,711,304,119,347,388,416
30 7.0717x 104!
40 1.9037x 1061
50 6.85x 108!

100 3.3388x 10195



Wedderburn’s algorithm for numbers of tree shapes

S; = 1
S = $1S,.1+52S5, 0+ ...+ S(n_l)/2S(n+1)/2 if n > 1 and n is odd
Sn = S1Sn—1+S2Sn—2+ ...+ Sn/2(Sh2+1)/2 ifn>1andniseven

This algorithm is easily obtained by considering that a rooted bifurcating
tree with n tips has a fork at its base with a tree of £ tips on one side, and
a tree of n — k tips on the other, and that exchanging the order of these
does not change the tree.



Shapes of rooted bifurcating trees

species

number of shapes

OCoO~NOOOTA,WN P
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16
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1.4068 % 10°
8.0997 x 1012
5.1501x 1016
1.0196 x 1036



Rooted, bifurcating tree shapes

n=2

R A 7
WWY/
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Unrooted bifurcating tree shapes
= n=4

RS
Sy
<



Unrooted multifurcating tree shapes
n=3

LOXX
e Y. Y-
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Same topology but different labelled histories

A B F E C A B D F E C

L N




Counting labelled histories

You can count labelled histories by going back in time, noting that there
are (;) = n(n —1)/2 different pairs that can join most recently. Before

that there are n — 1 lineages so there are (n — 1)(n — 2)/2 pairs that can
join. Going all the way back to the root, just before it 2 x 1/2 pairs can join.

Each combination of choices leads to a different labelled history, so we
take the product of these numbers.

This leaves us with
nl(n —1)!
2n—1

labelled histories.



The number of labelled histories

n Number
2 1
3 3
4 18
5 180
6 2700
7 56700
8 1587600
9 57153600
10 2571912000
11 141455160000
12 9.336041 x 102
13 7.282112 x 1014
14 6.626722 x 1016
15 6.958058 x 10%®
16 8.349669 x 10%°
17 1.135555 x 1023
18 1.737399 x 10%°
19 2.970953 x 10?7

20

5.644810 x 102°
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